effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Pure | val seq_mask_select: #t:inttype{~(S128? t)} -> #len:size_nat
-> a:lseq (int_t t SEC) len
-> b:lseq (int_t t SEC) len
-> mask:int_t t SEC
-> Pure (lseq (int_t t SEC) len)
(requires v mask = 0 \/ v mask = v (ones t SEC))
(ensures fun res -> res == (if v mask = 0 then b else a)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res | val seq_mask_select: #t:inttype{~(S128? t)} -> #len:size_nat
-> a:lseq (int_t t SEC) len
-> b:lseq (int_t t SEC) len
-> mask:int_t t SEC
-> Pure (lseq (int_t t SEC) len)
(requires v mask = 0 \/ v mask = v (ones t SEC))
(ensures fun res -> res == (if v mask = 0 then b else a))
let seq_mask_select #t #len a b mask = | false | null | false | let res = map2 (mask_select mask) a b in
let lemma_aux (i: nat{i < len})
: Lemma (v res.[ i ] == (if v mask = 0 then v b.[ i ] else v a.[ i ])) =
mask_select_lemma mask a.[ i ] b.[ i ]
in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Prims.unit",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.Sequence.eq_intro",
"Prims.bool",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.IntTypes.range_t",
"Lib.Sequence.op_String_Access",
"Prims.l_True",
"Prims.squash",
"Lib.IntTypes.range",
"Lib.Sequence.index",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Lib.ByteSequence.mask_select_lemma",
"Prims.l_Forall",
"Prims.l_imp",
"Lib.ByteSequence.mask_select",
"Lib.Sequence.map2"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_mask_select: #t:inttype{~(S128? t)} -> #len:size_nat
-> a:lseq (int_t t SEC) len
-> b:lseq (int_t t SEC) len
-> mask:int_t t SEC
-> Pure (lseq (int_t t SEC) len)
(requires v mask = 0 \/ v mask = v (ones t SEC))
(ensures fun res -> res == (if v mask = 0 then b else a)) | [] | Lib.ByteSequence.seq_mask_select | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len ->
b: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len ->
mask: Lib.IntTypes.int_t t Lib.IntTypes.SEC
-> Prims.Pure (Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len) | {
"end_col": 5,
"end_line": 104,
"start_col": 38,
"start_line": 96
} |
Prims.Tot | val uint_at_index_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_le #t #l #len b).[idx]} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)) | val uint_at_index_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_le #t #l #len b).[idx]}
let uint_at_index_le #t #l #len b i = | false | null | false | uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.eq2",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uints_from_bytes_le"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = () | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint_at_index_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_le #t #l #len b).[idx]} | [] | Lib.ByteSequence.uint_at_index_le | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) -> idx: Prims.nat{idx < len}
-> u186: Lib.IntTypes.uint_t t l {u186 == (Lib.ByteSequence.uints_from_bytes_le b).[ idx ]} | {
"end_col": 58,
"end_line": 355,
"start_col": 2,
"start_line": 355
} |
FStar.Pervasives.Lemma | val lemma_nat_from_to_intseq_le_preserves_value: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> b:seq (uint_t t l){length b == len} ->
Lemma (nat_to_intseq_le len (nat_from_intseq_le b) == b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b | val lemma_nat_from_to_intseq_le_preserves_value: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> b:seq (uint_t t l){length b == len} ->
Lemma (nat_to_intseq_le len (nat_from_intseq_le b) == b)
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b = | false | null | true | nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.ByteSequence.nat_from_intseq_le_inj",
"Lib.ByteSequence.nat_to_intseq_le",
"Lib.ByteSequence.nat_from_intseq_le",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = () | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_nat_from_to_intseq_le_preserves_value: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> b:seq (uint_t t l){length b == len} ->
Lemma (nat_to_intseq_le len (nat_from_intseq_le b) == b) | [] | Lib.ByteSequence.lemma_nat_from_to_intseq_le_preserves_value | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Prims.nat -> b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l) {Lib.Sequence.length b == len}
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.nat_to_intseq_le len (Lib.ByteSequence.nat_from_intseq_le b) == b) | {
"end_col": 72,
"end_line": 747,
"start_col": 2,
"start_line": 747
} |
Prims.Tot | val uint_at_index_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_be #t #l #len b).[idx]} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)) | val uint_at_index_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_be #t #l #len b).[idx]}
let uint_at_index_be #t #l #len b i = | false | null | false | uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.eq2",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uints_from_bytes_be"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint_at_index_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_be #t #l #len b).[idx]} | [] | Lib.ByteSequence.uint_at_index_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) -> idx: Prims.nat{idx < len}
-> u191: Lib.IntTypes.uint_t t l {u191 == (Lib.ByteSequence.uints_from_bytes_be b).[ idx ]} | {
"end_col": 58,
"end_line": 358,
"start_col": 2,
"start_line": 358
} |
FStar.Pervasives.Lemma | val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i | val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i = | false | null | true | let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len s) i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_be_inner",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_to_intseq_be",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | [] | Lib.ByteSequence.index_uints_to_bytes_be_aux | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.ByteSequence.nat_to_intseq_be len n in
FStar.Seq.Base.index (Lib.ByteSequence.uints_to_bytes_be s) i ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_be (Lib.IntTypes.numbytes t)
(Lib.IntTypes.v s.[ i / Lib.IntTypes.numbytes t ]))
(i % Lib.IntTypes.numbytes t))) | {
"end_col": 44,
"end_line": 583,
"start_col": 2,
"start_line": 580
} |
Prims.Tot | val mask_select: #t:inttype{~(S128? t)} -> mask:int_t t SEC -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mask_select #t mask a b =
b ^. (mask &. (a ^. b)) | val mask_select: #t:inttype{~(S128? t)} -> mask:int_t t SEC -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC
let mask_select #t mask a b = | false | null | false | b ^. (mask &. (a ^. b)) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot",
"Lib.IntTypes.op_Amp_Dot"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mask_select: #t:inttype{~(S128? t)} -> mask:int_t t SEC -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC | [] | Lib.ByteSequence.mask_select | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mask: Lib.IntTypes.int_t t Lib.IntTypes.SEC ->
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC ->
b: Lib.IntTypes.int_t t Lib.IntTypes.SEC
-> Lib.IntTypes.int_t t Lib.IntTypes.SEC | {
"end_col": 25,
"end_line": 79,
"start_col": 2,
"start_line": 79
} |
FStar.Pervasives.Lemma | val index_uints_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_le #t #l #len ul) i == (uint_to_bytes_le ul.[i / numbytes t]).[i % numbytes t]) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i | val index_uints_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_le #t #l #len ul) i == (uint_to_bytes_le ul.[i / numbytes t]).[i % numbytes t])
let index_uints_to_bytes_le #t #l #len ul i = | false | null | true | index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.nat",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_le_inner",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_uints_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_le #t #l #len ul) i == (uint_to_bytes_le ul.[i / numbytes t]).[i % numbytes t]) | [] | Lib.ByteSequence.index_uints_to_bytes_le | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
ul: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_to_bytes_le ul) i ==
(Lib.ByteSequence.uint_to_bytes_le ul.[ i / Lib.IntTypes.numbytes t ]).[ i %
Lib.IntTypes.numbytes t ]) | {
"end_col": 86,
"end_line": 323,
"start_col": 2,
"start_line": 323
} |
Prims.Tot | val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b | val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n = | false | null | false | if len = 0
then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total",
""
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.empty",
"Lib.IntTypes.int_t",
"Prims.bool",
"Prims.unit",
"FStar.Seq.Properties.append_slices",
"Lib.Sequence.create",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.length",
"Prims.l_or",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_be",
"Lib.ByteSequence.nat_to_intseq_be_",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"Prims._assert",
"Prims.pos",
"Lib.IntTypes.modulus",
"Prims.op_Division",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Prims.op_Modulus",
"Lib.IntTypes.uint",
"Prims.op_Subtraction",
"Lib.IntTypes.uint_t"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len) | [
"recursion"
] | Lib.ByteSequence.nat_to_intseq_be_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> Prims.Tot
(b:
Lib.Sequence.seq (Lib.IntTypes.int_t t l)
{Lib.Sequence.length b == len /\ n == Lib.ByteSequence.nat_from_intseq_be b}) | {
"end_col": 5,
"end_line": 161,
"start_col": 2,
"start_line": 151
} |
FStar.Pervasives.Lemma | val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
} | val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c = | false | null | true | calc ( == ) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
( == ) { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
( == ) { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
( == ) { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r)) }
(a / pow2 (r * c)) % pow2 r;
} | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.pow2_modulo_division_lemma_1",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mul_sub_distr",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.modulo_modulo_lemma"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r) | [] | Lib.ByteSequence.modulo_pow2_prop | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: Prims.pos -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat{c < b}
-> FStar.Pervasives.Lemma
(ensures
a % Prims.pow2 (r * b) / Prims.pow2 (r * c) % Prims.pow2 r ==
a / Prims.pow2 (r * c) % Prims.pow2 r) | {
"end_col": 3,
"end_line": 599,
"start_col": 2,
"start_line": 589
} |
FStar.Pervasives.Lemma | val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k = | false | null | true | let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[ k ] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k == | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | [] | Lib.ByteSequence.uints_from_bytes_le_slice_lemma_lp | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_le b) i j) k ==
Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | {
"end_col": 82,
"end_line": 427,
"start_col": 59,
"start_line": 424
} |
FStar.Pervasives.Lemma | val lemma_uint_from_to_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_le #t #l (uint_from_bytes_le #t #l s) `equal` s) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s) | val lemma_uint_from_to_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_le #t #l (uint_from_bytes_le #t #l s) `equal` s)
let lemma_uint_from_to_bytes_le_preserves_value #t #l s = | false | null | true | let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert (nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert (nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert (s' == nat_to_bytes_le #l (length s') (uint_v i));
assert (s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert (s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.ByteSequence.lemma_nat_from_to_bytes_le_preserves_value",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.ByteSequence.nat_from_intseq_le",
"FStar.Seq.Base.length",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.ByteSequence.lemma_reveal_uint_to_bytes_le",
"Lib.IntTypes.uint_v",
"Lib.ByteSequence.uint_from_bytes_le",
"Prims.int",
"Prims.op_GreaterThanOrEqual",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.IntTypes.range",
"Lib.ByteSequence.lemma_uint_to_bytes_le_preserves_value",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_uint_from_to_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_le #t #l (uint_from_bytes_le #t #l s) `equal` s) | [] | Lib.ByteSequence.lemma_uint_from_to_bytes_le_preserves_value | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.equal (Lib.ByteSequence.uint_to_bytes_le (Lib.ByteSequence.uint_from_bytes_le s))
s) | {
"end_col": 60,
"end_line": 784,
"start_col": 57,
"start_line": 773
} |
FStar.Pervasives.Lemma | val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k = | false | null | true | let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[ k ] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_be",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | [] | Lib.ByteSequence.uints_from_bytes_be_slice_lemma_lp | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_le b) i j) k ==
Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | {
"end_col": 82,
"end_line": 491,
"start_col": 59,
"start_line": 488
} |
FStar.Pervasives.Lemma | val lemma_uint_from_to_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_be #t #l (uint_from_bytes_be #t #l s) `equal` s) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert(nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert(nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert(s' == nat_to_bytes_be #l (length s') (uint_v i));
assert(s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert(s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s) | val lemma_uint_from_to_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_be #t #l (uint_from_bytes_be #t #l s) `equal` s)
let lemma_uint_from_to_bytes_be_preserves_value #t #l s = | false | null | true | let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert (nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert (nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert (s' == nat_to_bytes_be #l (length s') (uint_v i));
assert (s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert (s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.ByteSequence.lemma_nat_from_to_bytes_be_preserves_value",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.ByteSequence.nat_from_intseq_be",
"FStar.Seq.Base.length",
"Lib.ByteSequence.nat_to_bytes_be",
"Lib.ByteSequence.lemma_reveal_uint_to_bytes_be",
"Lib.IntTypes.uint_v",
"Lib.ByteSequence.uint_from_bytes_be",
"Prims.int",
"Prims.op_GreaterThanOrEqual",
"Lib.ByteSequence.uint_to_bytes_be",
"Lib.IntTypes.range",
"Lib.ByteSequence.lemma_uint_to_bytes_be_preserves_value",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i
let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_uint_from_to_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_be #t #l (uint_from_bytes_be #t #l s) `equal` s) | [] | Lib.ByteSequence.lemma_uint_from_to_bytes_be_preserves_value | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.equal (Lib.ByteSequence.uint_to_bytes_be (Lib.ByteSequence.uint_from_bytes_be s))
s) | {
"end_col": 60,
"end_line": 797,
"start_col": 57,
"start_line": 786
} |
FStar.Pervasives.Lemma | val uints_to_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n) ==
nat_to_bytes_le (len * numbytes t) n) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n) | val uints_to_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n) ==
nat_to_bytes_le (len * numbytes t) n)
let uints_to_bytes_le_nat_lemma #t #l len n = | false | null | true | Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_le",
"Lib.ByteSequence.nat_to_intseq_le",
"Lib.ByteSequence.nat_to_bytes_le",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.uints_to_bytes_le_nat_lemma_"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
} | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_to_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n) ==
nat_to_bytes_le (len * numbytes t) n) | [] | Lib.ByteSequence.uints_to_bytes_le_nat_lemma | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.uints_to_bytes_le (Lib.ByteSequence.nat_to_intseq_le len n) ==
Lib.ByteSequence.nat_to_bytes_le (len * Lib.IntTypes.numbytes t) n) | {
"end_col": 49,
"end_line": 670,
"start_col": 2,
"start_line": 668
} |
FStar.Pervasives.Lemma | val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i | val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i = | false | null | true | let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i == uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[ i / m ]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[ i / m ])) (i % m) ==
uint (v s.[ i / m ] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.ByteSequence.some_arithmetic",
"Prims.unit",
"Lib.ByteSequence.index_nat_to_intseq_le",
"Prims.op_Division",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"FStar.Seq.Base.index",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Prims.op_Modulus",
"Lib.IntTypes.uint",
"Prims.int",
"Lib.Sequence.lseq",
"Lib.ByteSequence.nat_to_intseq_le"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) == | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i) | [] | Lib.ByteSequence.index_nat_to_intseq_to_bytes_le | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.ByteSequence.nat_to_intseq_le len n in
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_le (Lib.IntTypes.numbytes t)
(Lib.IntTypes.v s.[ i / Lib.IntTypes.numbytes t ]))
(i % Lib.IntTypes.numbytes t) ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_le (len * Lib.IntTypes.numbytes t) n) i)
) | {
"end_col": 23,
"end_line": 647,
"start_col": 51,
"start_line": 637
} |
FStar.Pervasives.Lemma | val nat_from_intseq_be_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_be b1 == nat_from_intseq_be b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end | val nat_from_intseq_be_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_be b1 == nat_from_intseq_be b2)
(ensures Seq.equal b1 b2)
(decreases (length b1))
let rec nat_from_intseq_be_inj #t #l b1 b2 = | false | null | true | if length b1 = 0
then ()
else
(nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma",
""
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Lib.Sequence.length",
"Prims.bool",
"FStar.Seq.Properties.lemma_split",
"Prims.op_Subtraction",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_be_inj",
"FStar.Seq.Base.slice"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_be_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_be b1 == nat_from_intseq_be b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_be_inj | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b1: Lib.Sequence.seq (Lib.IntTypes.uint_t t l) -> b2: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> FStar.Pervasives.Lemma
(requires
Lib.Sequence.length b1 == Lib.Sequence.length b2 /\
Lib.ByteSequence.nat_from_intseq_be b1 == Lib.ByteSequence.nat_from_intseq_be b2)
(ensures FStar.Seq.Base.equal b1 b2)
(decreases Lib.Sequence.length b1) | {
"end_col": 5,
"end_line": 736,
"start_col": 2,
"start_line": 731
} |
FStar.Pervasives.Lemma | val nat_from_intseq_le_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_le b1 == nat_from_intseq_le b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end | val nat_from_intseq_le_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_le b1 == nat_from_intseq_le b2)
(ensures Seq.equal b1 b2)
(decreases (length b1))
let rec nat_from_intseq_le_inj #t #l b1 b2 = | false | null | true | if length b1 = 0
then ()
else
(nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma",
""
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Lib.Sequence.length",
"Prims.bool",
"FStar.Seq.Properties.lemma_split",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_le_inj",
"FStar.Seq.Base.slice"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1" | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_le_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_le b1 == nat_from_intseq_le b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_le_inj | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b1: Lib.Sequence.seq (Lib.IntTypes.uint_t t l) -> b2: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> FStar.Pervasives.Lemma
(requires
Lib.Sequence.length b1 == Lib.Sequence.length b2 /\
Lib.ByteSequence.nat_from_intseq_le b1 == Lib.ByteSequence.nat_from_intseq_le b2)
(ensures FStar.Seq.Base.equal b1 b2)
(decreases Lib.Sequence.length b1) | {
"end_col": 5,
"end_line": 728,
"start_col": 2,
"start_line": 723
} |
Prims.Tot | val seq_eq_mask: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> res:int_t t SEC{
(sub b1 0 len == sub b2 0 len ==> v res == v (ones t SEC)) /\
(sub b1 0 len =!= sub b2 0 len ==> v res == v (zeros t SEC))} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC) | val seq_eq_mask: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> res:int_t t SEC{
(sub b1 0 len == sub b2 0 len ==> v res == v (ones t SEC)) /\
(sub b1 0 len =!= sub b2 0 len ==> v res == v (zeros t SEC))}
let seq_eq_mask #t #len1 #len2 b1 b2 len = | false | null | false | repeati_inductive len
(fun (i: nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Lib.LoopCombinators.repeati_inductive",
"Prims.nat",
"Prims.l_imp",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.IntTypes.ones",
"Lib.IntTypes.zeros",
"Lib.ByteSequence.seq_eq_mask_inner"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_eq_mask: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> res:int_t t SEC{
(sub b1 0 len == sub b2 0 len ==> v res == v (ones t SEC)) /\
(sub b1 0 len =!= sub b2 0 len ==> v res == v (zeros t SEC))} | [] | Lib.ByteSequence.seq_eq_mask | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b1: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len1 ->
b2: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len2 ->
len: Lib.IntTypes.size_nat{len <= len1 /\ len <= len2}
-> res:
Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ (Lib.Sequence.sub b1 0 len == Lib.Sequence.sub b2 0 len ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC)) /\
(~(Lib.Sequence.sub b1 0 len == Lib.Sequence.sub b2 0 len) ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) } | {
"end_col": 16,
"end_line": 70,
"start_col": 2,
"start_line": 65
} |
FStar.Pervasives.Lemma | val nat_from_intseq_le_public_to_secret:
#t:inttype{unsigned t} -> len:size_pos{len * bits t < pow2 32} -> b:lseq (uint_t t PUB) len ->
Lemma (nat_from_intseq_le b == nat_from_intseq_le (map secret b)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_le_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_le_lemma0 b;
nat_from_intseq_le_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_le_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_le b1 == nat_from_intseq_le (map secret b1));
nat_from_intseq_le_slice_lemma b 1;
nat_from_intseq_le_lemma0 (slice b 0 1);
//assert (nat_from_intseq_le b == nat_from_intseq_le (slice b 0 1) + pow2 (bits t) * nat_from_intseq_le (slice b 1 len));
nat_from_intseq_le_slice_lemma b_secret 1;
nat_from_intseq_le_lemma0 (slice b_secret 0 1);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end | val nat_from_intseq_le_public_to_secret:
#t:inttype{unsigned t} -> len:size_pos{len * bits t < pow2 32} -> b:lseq (uint_t t PUB) len ->
Lemma (nat_from_intseq_le b == nat_from_intseq_le (map secret b))
let rec nat_from_intseq_le_public_to_secret #t len b = | false | null | true | if len = 1
then
(nat_from_intseq_le_lemma0 b;
nat_from_intseq_le_lemma0 (map secret b))
else
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_le_public_to_secret #t (len - 1) b1;
nat_from_intseq_le_slice_lemma b 1;
nat_from_intseq_le_lemma0 (slice b 0 1);
nat_from_intseq_le_slice_lemma b_secret 1;
nat_from_intseq_le_lemma0 (slice b_secret 0 1);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.PUB",
"Prims.op_Equality",
"Prims.int",
"Lib.ByteSequence.nat_from_intseq_le_lemma0",
"Lib.IntTypes.SEC",
"Lib.Sequence.map",
"Lib.IntTypes.secret",
"Prims.unit",
"Prims.bool",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.int_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma",
"Lib.ByteSequence.nat_from_intseq_le_public_to_secret",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Prims.l_imp"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i
let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s)
let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert(nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert(nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert(s' == nat_to_bytes_be #l (length s') (uint_v i));
assert(s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert(s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s)
let rec nat_from_intseq_be_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_be_lemma0 b;
nat_from_intseq_be_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_be_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_be b1 == nat_from_intseq_be (map secret b1));
nat_from_intseq_be_slice_lemma b 1;
nat_from_intseq_be_lemma0 (slice b 0 1);
//assert (nat_from_intseq_be b == nat_from_intseq_be b1 + pow2 ((len - 1) * bits t) * v b.[0]);
nat_from_intseq_be_slice_lemma b_secret 1;
nat_from_intseq_be_lemma0 (slice b_secret 0 1);
//assert (nat_from_intseq_be b_secret == nat_from_intseq_be b1_secret + pow2 ((len - 1) * bits t) * v b_secret.[0]);
//assert (v b.[0] == v b_secret.[0]);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_le_public_to_secret:
#t:inttype{unsigned t} -> len:size_pos{len * bits t < pow2 32} -> b:lseq (uint_t t PUB) len ->
Lemma (nat_from_intseq_le b == nat_from_intseq_le (map secret b)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_le_public_to_secret | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Lib.IntTypes.size_pos{len * Lib.IntTypes.bits t < Prims.pow2 32} ->
b: Lib.Sequence.lseq (Lib.IntTypes.uint_t t Lib.IntTypes.PUB) len
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le b ==
Lib.ByteSequence.nat_from_intseq_le (Lib.Sequence.map Lib.IntTypes.secret b)) | {
"end_col": 10,
"end_line": 836,
"start_col": 2,
"start_line": 821
} |
FStar.Pervasives.Lemma | val nat_from_intseq_be_public_to_secret:
#t:inttype{unsigned t} -> len:size_pos{len * bits t < pow2 32} -> b:lseq (uint_t t PUB) len ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (map secret b)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_be_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_be_lemma0 b;
nat_from_intseq_be_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_be_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_be b1 == nat_from_intseq_be (map secret b1));
nat_from_intseq_be_slice_lemma b 1;
nat_from_intseq_be_lemma0 (slice b 0 1);
//assert (nat_from_intseq_be b == nat_from_intseq_be b1 + pow2 ((len - 1) * bits t) * v b.[0]);
nat_from_intseq_be_slice_lemma b_secret 1;
nat_from_intseq_be_lemma0 (slice b_secret 0 1);
//assert (nat_from_intseq_be b_secret == nat_from_intseq_be b1_secret + pow2 ((len - 1) * bits t) * v b_secret.[0]);
//assert (v b.[0] == v b_secret.[0]);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end | val nat_from_intseq_be_public_to_secret:
#t:inttype{unsigned t} -> len:size_pos{len * bits t < pow2 32} -> b:lseq (uint_t t PUB) len ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (map secret b))
let rec nat_from_intseq_be_public_to_secret #t len b = | false | null | true | if len = 1
then
(nat_from_intseq_be_lemma0 b;
nat_from_intseq_be_lemma0 (map secret b))
else
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_be_public_to_secret #t (len - 1) b1;
nat_from_intseq_be_slice_lemma b 1;
nat_from_intseq_be_lemma0 (slice b 0 1);
nat_from_intseq_be_slice_lemma b_secret 1;
nat_from_intseq_be_lemma0 (slice b_secret 0 1);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.PUB",
"Prims.op_Equality",
"Prims.int",
"Lib.ByteSequence.nat_from_intseq_be_lemma0",
"Lib.IntTypes.SEC",
"Lib.Sequence.map",
"Lib.IntTypes.secret",
"Prims.unit",
"Prims.bool",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.int_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma",
"Lib.ByteSequence.nat_from_intseq_be_public_to_secret",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Prims.l_imp"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i
let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s)
let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert(nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert(nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert(s' == nat_to_bytes_be #l (length s') (uint_v i));
assert(s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert(s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_be_public_to_secret:
#t:inttype{unsigned t} -> len:size_pos{len * bits t < pow2 32} -> b:lseq (uint_t t PUB) len ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (map secret b)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_be_public_to_secret | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Lib.IntTypes.size_pos{len * Lib.IntTypes.bits t < Prims.pow2 32} ->
b: Lib.Sequence.lseq (Lib.IntTypes.uint_t t Lib.IntTypes.PUB) len
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be b ==
Lib.ByteSequence.nat_from_intseq_be (Lib.Sequence.map Lib.IntTypes.secret b)) | {
"end_col": 10,
"end_line": 817,
"start_col": 2,
"start_line": 800
} |
FStar.Pervasives.Lemma | val index_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - i - 1) ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end | val index_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - i - 1) ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t)))
let rec index_nat_to_intseq_be #t #l len n i = | false | null | true | if i = 0
then if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc ( == ) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
( == ) { index_nat_to_intseq_be #t #l len' n' i' }
uint (n' / pow2 (bits t * i') % pow2 (bits t));
( == ) { () }
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
( == ) { Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i')) }
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
( == ) { Math.Lemmas.pow2_plus (bits t) (bits t * i') }
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
( == ) { Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1) }
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.head_nat_to_intseq_be",
"Prims.unit",
"Lib.ByteSequence.nat_to_intseq_be_pos",
"FStar.Calc.calc_finish",
"Lib.IntTypes.uint_t",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_be",
"Prims.op_Subtraction",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.ByteSequence.index_nat_to_intseq_be",
"Prims.squash",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.distributivity_add_right",
"FStar.Math.Lemmas.lemma_div_lt_nat"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - i - 1) ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | [
"recursion"
] | Lib.ByteSequence.index_nat_to_intseq_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Lib.IntTypes.size_nat ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_intseq_be len n) (len - i - 1) ==
Lib.IntTypes.uint (n / Prims.pow2 (Lib.IntTypes.bits t * i) % Prims.pow2 (Lib.IntTypes.bits t)
)) | {
"end_col": 7,
"end_line": 278,
"start_col": 2,
"start_line": 256
} |
FStar.Pervasives.Lemma | val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1) | val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j = | false | null | true | Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"FStar.Seq.Base.lemma_index_slice",
"Prims.op_Subtraction",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) | [] | Lib.ByteSequence.lemma_not_equal_last | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b1: FStar.Seq.Base.seq a ->
b2: FStar.Seq.Base.seq a ->
i: Prims.nat ->
j: Prims.nat{i < j /\ j <= FStar.Seq.Base.length b1 /\ j <= FStar.Seq.Base.length b2}
-> FStar.Pervasives.Lemma
(requires ~(FStar.Seq.Base.index b1 (j - 1) == FStar.Seq.Base.index b2 (j - 1)))
(ensures ~(FStar.Seq.Base.equal (FStar.Seq.Base.slice b1 i j) (FStar.Seq.Base.slice b2 i j))) | {
"end_col": 42,
"end_line": 29,
"start_col": 2,
"start_line": 28
} |
Prims.Tot | val nat_to_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} ->
b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat_to_intseq_le = nat_to_intseq_le_ | val nat_to_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} ->
b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}
let nat_to_intseq_le = | false | null | false | nat_to_intseq_le_ | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.ByteSequence.nat_to_intseq_le_"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_to_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} ->
b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b} | [] | Lib.ByteSequence.nat_to_intseq_le | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> b:
Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
{Lib.Sequence.length b == len /\ n == Lib.ByteSequence.nat_from_intseq_le b} | {
"end_col": 40,
"end_line": 183,
"start_col": 23,
"start_line": 183
} |
Prims.Tot | val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n | val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b = | false | null | false | let len = length b in
if len = 0
then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
let n = l + shift * n' in
n | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total",
""
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Lib.IntTypes.bits",
"Prims.op_Subtraction",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"FStar.Seq.Base.index",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_from_intseq_le_",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Prims.pos"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_le_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> Prims.Tot (n: Prims.nat{n < Prims.pow2 (Lib.Sequence.length b * Lib.IntTypes.bits t)}) | {
"end_col": 5,
"end_line": 139,
"start_col": 37,
"start_line": 129
} |
Prims.Tot | val uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l -> lbytes_l l (numbytes t) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n) | val uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l -> lbytes_l l (numbytes t)
let uint_to_bytes_be #t #l n = | false | null | false | nat_to_bytes_be (numbytes t) (v n) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.nat_to_bytes_be",
"Lib.IntTypes.numbytes",
"Lib.IntTypes.v",
"Lib.ByteSequence.lbytes_l"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l -> lbytes_l l (numbytes t) | [] | Lib.ByteSequence.uint_to_bytes_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | u121: Lib.IntTypes.uint_t t l -> Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t) | {
"end_col": 36,
"end_line": 288,
"start_col": 2,
"start_line": 288
} |
Prims.Tot | val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i] | val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () = | false | null | false | let open Lib.Sequence in (), uint_to_bytes_be #t #l b.[ i ] | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uint_to_bytes_be",
"Lib.Sequence.op_String_Access",
"FStar.Pervasives.Native.tuple2"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) | [] | Lib.ByteSequence.uints_to_bytes_be_inner | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.Sequence.lseq (Lib.IntTypes.int_t t l) len -> i: Prims.nat{i < len} -> _: Prims.unit
-> Prims.unit *
Lib.Sequence.lseq (Lib.IntTypes.uint_t Lib.IntTypes.U8 l) (Lib.IntTypes.numbytes t) | {
"end_col": 34,
"end_line": 331,
"start_col": 2,
"start_line": 330
} |
Prims.Tot | val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n' | val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b = | false | null | false | let len = length b in
if len = 0
then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n' | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total",
""
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Lib.IntTypes.bits",
"Prims.op_Subtraction",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_from_intseq_be_",
"Prims.pos",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"FStar.Seq.Base.index"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_be_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> Prims.Tot (n: Prims.nat{n < Prims.pow2 (Lib.Sequence.length b * Lib.IntTypes.bits t)}) | {
"end_col": 18,
"end_line": 120,
"start_col": 37,
"start_line": 111
} |
Prims.Tot | val uint_from_bytes_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> b:lbytes_l l (numbytes t) -> uint_t t l | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n | val uint_from_bytes_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> b:lbytes_l l (numbytes t) -> uint_t t l
let uint_from_bytes_le #t #l b = | false | null | false | let n = nat_from_intseq_le #U8 b in
uint #t #l n | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.IntTypes.uint",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.IntTypes.uint_t"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint_from_bytes_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> b:lbytes_l l (numbytes t) -> uint_t t l | [] | Lib.ByteSequence.uint_from_bytes_le | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t) -> Lib.IntTypes.uint_t t l | {
"end_col": 14,
"end_line": 295,
"start_col": 32,
"start_line": 293
} |
FStar.Pervasives.Lemma | val nat_from_intseq_be_slice_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (uint_t t l) len -> i:nat{i <= len} ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be (slice b 0 i)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i | val nat_from_intseq_be_slice_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (uint_t t l) len -> i:nat{i <= len} ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be (slice b 0 i))
let nat_from_intseq_be_slice_lemma #t #l #len b i = | false | null | true | nat_from_intseq_be_slice_lemma_ #t #l #len b i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma_",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_be_slice_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (uint_t t l) len -> i:nat{i <= len} ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be (slice b 0 i)) | [] | Lib.ByteSequence.nat_from_intseq_be_slice_lemma | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len -> i: Prims.nat{i <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be b ==
Lib.ByteSequence.nat_from_intseq_be (Lib.Sequence.slice b i len) +
Prims.pow2 ((len - i) * Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_be (Lib.Sequence.slice b 0 i)) | {
"end_col": 48,
"end_line": 417,
"start_col": 2,
"start_line": 417
} |
Prims.Tot | val uint_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> lbytes_l l (numbytes t) -> uint_t t l | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n | val uint_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> lbytes_l l (numbytes t) -> uint_t t l
let uint_from_bytes_be #t #l b = | false | null | false | let n = nat_from_intseq_be #U8 b in
uint #t #l n | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.IntTypes.uint",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.nat_from_intseq_be",
"Lib.IntTypes.uint_t"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> lbytes_l l (numbytes t) -> uint_t t l | [] | Lib.ByteSequence.uint_from_bytes_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t) -> Lib.IntTypes.uint_t t l | {
"end_col": 14,
"end_line": 299,
"start_col": 32,
"start_line": 297
} |
FStar.Pervasives.Lemma | val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
} | val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i = | false | null | true | let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc ( == ) {
Seq.index (nat_to_bytes_be #l m (v s.[ len - 1 - i / m ])) (m - (i % m) - 1);
( == ) { index_nat_to_intseq_be #U8 #l m (v s.[ len - 1 - i / m ]) (i % m) }
uint (v s.[ len - 1 - i / m ] / pow2 (8 * (i % m)) % pow2 8);
( == ) { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
( == ) { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
( == ) { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
} | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"FStar.Calc.calc_finish",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_bytes_be",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.int_t",
"Prims.op_Subtraction",
"Prims.op_Division",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.IntTypes.uint",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.ByteSequence.index_nat_to_intseq_be",
"Prims.squash",
"Lib.ByteSequence.some_arithmetic",
"Prims.int",
"Lib.Sequence.lseq",
"Lib.ByteSequence.nat_to_intseq_be"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) == | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1)) | [] | Lib.ByteSequence.index_nat_to_intseq_to_bytes_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.ByteSequence.nat_to_intseq_be len n in
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_be (Lib.IntTypes.numbytes t)
(Lib.IntTypes.v s.[ len - 1 - i / Lib.IntTypes.numbytes t ]))
(Lib.IntTypes.numbytes t - 1 - i % Lib.IntTypes.numbytes t) ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_be (len * Lib.IntTypes.numbytes t) n)
(len * Lib.IntTypes.numbytes t - i - 1))) | {
"end_col": 3,
"end_line": 695,
"start_col": 51,
"start_line": 682
} |
Prims.Tot | val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res | val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res = | false | null | false | logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[ i ] b2.[ i ] &. z0 in
logand_spec (eq_mask b1.[ i ] b2.[ i ]) z0;
if v res = ones_v t
then
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
else
if v z0 = 0 then lemma_not_equal_slice b1 b2 0 i (i + 1) else lemma_not_equal_last b1 b2 0 (i + 1);
res | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.l_imp",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.nat",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.IntTypes.ones",
"Lib.IntTypes.zeros",
"Prims.unit",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.ones_v",
"Prims._assert",
"Lib.Sequence.equal",
"FStar.Seq.Properties.lemma_split",
"Prims.bool",
"Lib.ByteSequence.lemma_not_equal_slice",
"Lib.ByteSequence.lemma_not_equal_last",
"Lib.IntTypes.logand_spec",
"Lib.IntTypes.eq_mask",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.range",
"Lib.IntTypes.logand_ones",
"Lib.IntTypes.logand_zeros"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))} | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))} | [] | Lib.ByteSequence.seq_eq_mask_inner | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b1: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len1 ->
b2: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len2 ->
len: Lib.IntTypes.size_nat{len <= len1 /\ len <= len2} ->
i: Lib.IntTypes.size_nat{i < len} ->
res:
Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ (Lib.Sequence.sub b1 0 i == Lib.Sequence.sub b2 0 i ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC)) /\
(~(Lib.Sequence.sub b1 0 i == Lib.Sequence.sub b2 0 i) ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) }
-> res':
Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ (Lib.Sequence.sub b1 0 (i + 1) == Lib.Sequence.sub b2 0 (i + 1) ==>
Lib.IntTypes.v res' == Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC)) /\
(~(Lib.Sequence.sub b1 0 (i + 1) == Lib.Sequence.sub b2 0 (i + 1)) ==>
Lib.IntTypes.v res' == Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) } | {
"end_col": 5,
"end_line": 62,
"start_col": 2,
"start_line": 43
} |
Prims.Tot | val uints_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lbytes_l l (len * numbytes t) -> lseq (uint_t t l) len | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))) | val uints_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lbytes_l l (len * numbytes t) -> lseq (uint_t t l) len
let uints_from_bytes_be #t #l #len b = | false | null | false | Lib.Sequence.createi #(int_t t l)
len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Lib.Sequence.createi",
"Lib.IntTypes.int_t",
"Prims.nat",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.Sequence.lseq"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = () | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lbytes_l l (len * numbytes t) -> lseq (uint_t t l) len | [] | Lib.ByteSequence.uints_from_bytes_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len | {
"end_col": 71,
"end_line": 350,
"start_col": 2,
"start_line": 349
} |
FStar.Pervasives.Lemma | val index_uint_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_le #t #l u) i ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u)) | val index_uint_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_le #t #l u) i ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8))
let index_uint_to_bytes_le #t #l u = | false | null | true | Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u)) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.op_LessThan",
"Lib.IntTypes.numbytes",
"Prims.eq2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_le",
"Lib.IntTypes.v",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.index_nat_to_intseq_le",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_uint_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_le #t #l u) i ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | [] | Lib.ByteSequence.index_uint_to_bytes_le | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | u118: Lib.IntTypes.uint_t t l
-> FStar.Pervasives.Lemma
(ensures
forall (i: Prims.nat{i < Lib.IntTypes.numbytes t}).
Lib.Sequence.index (Lib.ByteSequence.uint_to_bytes_le u118) i ==
Lib.IntTypes.uint (Lib.IntTypes.v u118 / Prims.pow2 (8 * i) % Prims.pow2 8)) | {
"end_col": 75,
"end_line": 285,
"start_col": 2,
"start_line": 285
} |
FStar.Pervasives.Lemma | val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end | val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i = | false | null | true | if len = 0
then ()
else
if i = len
then ()
else
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 ==
nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[ i ]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b ==
nat_from_intseq_be_ (slice b (i + 1) len) +
pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len
(v b.[ i ])
(nat_from_intseq_be_ (slice b 0 i))
(bits t)
(len - i) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma",
""
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.l_or",
"Lib.IntTypes.max_size_t",
"Lib.ByteSequence.nat_from_intseq_slice_lemma_aux",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.nat_from_intseq_be_",
"Lib.Sequence.slice",
"Lib.IntTypes.bits",
"Prims.op_Subtraction",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma_",
"Prims.l_and",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.index"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_be_slice_lemma_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.Sequence.lseq (Lib.IntTypes.int_t t l) len -> i: Prims.nat{i <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be_ b ==
Lib.ByteSequence.nat_from_intseq_be_ (Lib.Sequence.slice b i len) +
Prims.pow2 ((len - i) * Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_be_ (Lib.Sequence.slice b 0 i)) (decreases len - i) | {
"end_col": 5,
"end_line": 411,
"start_col": 2,
"start_line": 400
} |
FStar.Pervasives.Lemma | val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
} | val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
let some_arithmetic t n i = | false | null | true | let m = numbytes t in
calc ( == ) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
( == ) { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
( == ) { (FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m) }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
( == ) { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
( == ) { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
( == ) { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m)))
(pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
( == ) { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
} | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_U1",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims._assert",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.distributivity_sub_right",
"Lib.ByteSequence.modulo_pow2_prop",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"Lib.IntTypes.numbytes"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8) | [] | Lib.ByteSequence.some_arithmetic | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Lib.IntTypes.inttype{~(U1? t)} -> n: Prims.nat -> i: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(let m = Lib.IntTypes.numbytes t in
n / Prims.pow2 (Lib.IntTypes.bits t * (i / m)) % Prims.pow2 (Lib.IntTypes.bits t) /
Prims.pow2 (8 * (i % m)) %
Prims.pow2 8 ==
n / Prims.pow2 (8 * i) % Prims.pow2 8)) | {
"end_col": 3,
"end_line": 625,
"start_col": 27,
"start_line": 607
} |
FStar.Pervasives.Lemma | val index_uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_be #t #l u) (numbytes t - i - 1) ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u)) | val index_uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_be #t #l u) (numbytes t - i - 1) ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8))
let index_uint_to_bytes_be #t #l u = | false | null | true | Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u)) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.op_LessThan",
"Lib.IntTypes.numbytes",
"Prims.eq2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_be",
"Lib.IntTypes.v",
"Prims.op_Subtraction",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.index_nat_to_intseq_be",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_be #t #l u) (numbytes t - i - 1) ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | [] | Lib.ByteSequence.index_uint_to_bytes_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | u124: Lib.IntTypes.uint_t t l
-> FStar.Pervasives.Lemma
(ensures
forall (i: Prims.nat{i < Lib.IntTypes.numbytes t}).
Lib.Sequence.index (Lib.ByteSequence.uint_to_bytes_be u124)
(Lib.IntTypes.numbytes t - i - 1) ==
Lib.IntTypes.uint (Lib.IntTypes.v u124 / Prims.pow2 (8 * i) % Prims.pow2 8)) | {
"end_col": 75,
"end_line": 291,
"start_col": 2,
"start_line": 291
} |
Prims.Tot | val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b | val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n = | false | null | false | if len = 0
then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"total",
""
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.empty",
"Lib.IntTypes.uint_t",
"Prims.bool",
"Prims.unit",
"FStar.Seq.Properties.append_slices",
"Lib.Sequence.create",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.append",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.length",
"Prims.l_or",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.ByteSequence.nat_to_intseq_le_",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"Prims._assert",
"Prims.pos",
"Lib.IntTypes.modulus",
"Prims.op_Division",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Prims.op_Modulus",
"Lib.IntTypes.uint",
"Prims.op_Subtraction"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len) | [
"recursion"
] | Lib.ByteSequence.nat_to_intseq_le_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> Prims.Tot
(b:
Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
{Lib.Sequence.length b == len /\ n == Lib.ByteSequence.nat_from_intseq_le b}) | {
"end_col": 5,
"end_line": 181,
"start_col": 2,
"start_line": 171
} |
FStar.Pervasives.Lemma | val uints_from_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le (uints_from_bytes_le #t #l #len b) == nat_from_bytes_le b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b | val uints_from_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le (uints_from_bytes_le #t #l #len b) == nat_from_bytes_le b)
let uints_from_bytes_le_nat_lemma #t #l #len b = | false | null | true | uints_from_bytes_le_nat_lemma_ #t #l #len b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Lib.ByteSequence.uints_from_bytes_le_nat_lemma_",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le (uints_from_bytes_le #t #l #len b) == nat_from_bytes_le b) | [] | Lib.ByteSequence.uints_from_bytes_le_nat_lemma | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le (Lib.ByteSequence.uints_from_bytes_le b) ==
Lib.ByteSequence.nat_from_bytes_le b) | {
"end_col": 45,
"end_line": 480,
"start_col": 2,
"start_line": 480
} |
FStar.Pervasives.Lemma | val lemma_nat_from_to_bytes_be_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_be #l len (nat_from_bytes_be b) == b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b | val lemma_nat_from_to_bytes_be_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_be #l len (nat_from_bytes_be b) == b)
let lemma_nat_from_to_bytes_be_preserves_value #l b len = | false | null | true | lemma_nat_from_to_intseq_be_preserves_value len b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.bytes_l",
"Lib.IntTypes.size_nat",
"Prims.eq2",
"Prims.nat",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.lemma_nat_from_to_intseq_be_preserves_value",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_nat_from_to_bytes_be_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_be #l len (nat_from_bytes_be b) == b) | [] | Lib.ByteSequence.lemma_nat_from_to_bytes_be_preserves_value | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.bytes_l l -> len: Lib.IntTypes.size_nat{len == Lib.Sequence.length b}
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.nat_to_bytes_be len (Lib.ByteSequence.nat_from_bytes_be b) == b) | {
"end_col": 51,
"end_line": 756,
"start_col": 2,
"start_line": 756
} |
FStar.Pervasives.Lemma | val lemma_uint_to_from_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
i : uint_t t l ->
Lemma(uint_from_bytes_be #t #l (uint_to_bytes_be #t #l i) == i) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i | val lemma_uint_to_from_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
i : uint_t t l ->
Lemma(uint_from_bytes_be #t #l (uint_to_bytes_be #t #l i) == i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i = | false | null | true | lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.lemma_uint_to_bytes_be_preserves_value",
"Prims.unit",
"Lib.ByteSequence.lemma_reveal_uint_to_bytes_be",
"Lib.ByteSequence.uint_to_bytes_be"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_uint_to_from_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
i : uint_t t l ->
Lemma(uint_from_bytes_be #t #l (uint_to_bytes_be #t #l i) == i) | [] | Lib.ByteSequence.lemma_uint_to_from_bytes_be_preserves_value | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | i: Lib.IntTypes.uint_t t l
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.uint_from_bytes_be (Lib.ByteSequence.uint_to_bytes_be i) == i) | {
"end_col": 48,
"end_line": 771,
"start_col": 2,
"start_line": 770
} |
FStar.Pervasives.Lemma | val index_uints_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_be #t #l #len ul) i == (uint_to_bytes_be ul.[i / numbytes t]).[i % numbytes t]) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i | val index_uints_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_be #t #l #len ul) i == (uint_to_bytes_be ul.[i / numbytes t]).[i % numbytes t])
let index_uints_to_bytes_be #t #l #len ul i = | false | null | true | index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.nat",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_be_inner",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_uints_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_be #t #l #len ul) i == (uint_to_bytes_be ul.[i / numbytes t]).[i % numbytes t]) | [] | Lib.ByteSequence.index_uints_to_bytes_be | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
ul: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_to_bytes_be ul) i ==
(Lib.ByteSequence.uint_to_bytes_be ul.[ i / Lib.IntTypes.numbytes t ]).[ i %
Lib.IntTypes.numbytes t ]) | {
"end_col": 86,
"end_line": 340,
"start_col": 2,
"start_line": 340
} |
FStar.Pervasives.Lemma | val lemma_nat_from_to_bytes_le_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_le #l len (nat_from_bytes_le b) == b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b | val lemma_nat_from_to_bytes_le_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_le #l len (nat_from_bytes_le b) == b)
let lemma_nat_from_to_bytes_le_preserves_value #l b len = | false | null | true | lemma_nat_from_to_intseq_le_preserves_value len b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.bytes_l",
"Lib.IntTypes.size_nat",
"Prims.eq2",
"Prims.nat",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.lemma_nat_from_to_intseq_le_preserves_value",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_nat_from_to_bytes_le_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_le #l len (nat_from_bytes_le b) == b) | [] | Lib.ByteSequence.lemma_nat_from_to_bytes_le_preserves_value | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.bytes_l l -> len: Lib.IntTypes.size_nat{len == Lib.Sequence.length b}
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.nat_to_bytes_le len (Lib.ByteSequence.nat_from_bytes_le b) == b) | {
"end_col": 51,
"end_line": 753,
"start_col": 2,
"start_line": 753
} |
FStar.Pervasives.Lemma | val uints_from_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be (uints_from_bytes_be #t #l #len b) == nat_from_bytes_be b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b | val uints_from_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be (uints_from_bytes_be #t #l #len b) == nat_from_bytes_be b)
let uints_from_bytes_be_nat_lemma #t #l #len b = | false | null | true | uints_from_bytes_be_nat_lemma_ #t #l #len b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Lib.ByteSequence.uints_from_bytes_be_nat_lemma_",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be (uints_from_bytes_be #t #l #len b) == nat_from_bytes_be b) | [] | Lib.ByteSequence.uints_from_bytes_be_nat_lemma | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be (Lib.ByteSequence.uints_from_bytes_be b) ==
Lib.ByteSequence.nat_from_bytes_be b) | {
"end_col": 45,
"end_line": 550,
"start_col": 2,
"start_line": 550
} |
FStar.Pervasives.Lemma | val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0]) | val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b = | false | null | true | let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r ==
nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[ 0 ]) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.ByteSequence.nat_from_intseq_be_",
"Prims.op_Addition",
"Lib.ByteSequence.nat_from_intseq_be",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Prims.op_Subtraction",
"Lib.IntTypes.bits",
"Lib.IntTypes.uint_v",
"Lib.Sequence.op_String_Access",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma",
"Lib.ByteSequence.uints_from_bytes_be_slice_lemma",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.uints_from_bytes_be"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t))) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t))) | [] | Lib.ByteSequence.uints_from_bytes_be_nat_lemma_aux | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be_ (Lib.ByteSequence.uints_from_bytes_be b) ==
Lib.ByteSequence.nat_from_intseq_be (Lib.ByteSequence.uints_from_bytes_be (Lib.Sequence.slice b
(Lib.IntTypes.numbytes t)
(len * Lib.IntTypes.numbytes t))) +
Prims.pow2 ((len - 1) * Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_be_ (Lib.Sequence.slice b 0 (Lib.IntTypes.numbytes t))) | {
"end_col": 113,
"end_line": 532,
"start_col": 52,
"start_line": 528
} |
FStar.Pervasives.Lemma | val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end | val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b = | false | null | true | if len = 0
then ()
else
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.uints_from_bytes_le_nat_lemma_aux",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Prims.l_or",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.bits",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.op_Subtraction",
"Lib.ByteSequence.nat_from_intseq_le_",
"Lib.ByteSequence.uints_from_bytes_le_nat_lemma_",
"Prims.op_Addition",
"Lib.Sequence.slice",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma_",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"FStar.Seq.Base.index",
"Lib.Sequence.index"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b) | [
"recursion"
] | Lib.ByteSequence.uints_from_bytes_le_nat_lemma_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le_ (Lib.ByteSequence.uints_from_bytes_le b) ==
Lib.ByteSequence.nat_from_intseq_le_ b) | {
"end_col": 5,
"end_line": 477,
"start_col": 2,
"start_line": 469
} |
FStar.Pervasives.Lemma | val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i | val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i = | false | null | true | let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len s) i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_le_inner",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_to_intseq_le",
"Prims.unit"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | [] | Lib.ByteSequence.index_uints_to_bytes_le_aux | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.ByteSequence.nat_to_intseq_le len n in
FStar.Seq.Base.index (Lib.ByteSequence.uints_to_bytes_le s) i ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_le (Lib.IntTypes.numbytes t)
(Lib.IntTypes.v s.[ i / Lib.IntTypes.numbytes t ]))
(i % Lib.IntTypes.numbytes t))) | {
"end_col": 44,
"end_line": 567,
"start_col": 2,
"start_line": 564
} |
FStar.Pervasives.Lemma | val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end | val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b = | false | null | true | if len = 0
then ()
else
(uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.uints_from_bytes_be_nat_lemma_",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma_",
"Lib.ByteSequence.uints_from_bytes_be_nat_lemma_aux"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b) | [
"recursion"
] | Lib.ByteSequence.uints_from_bytes_be_nat_lemma_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be_ (Lib.ByteSequence.uints_from_bytes_be b) ==
Lib.ByteSequence.nat_from_intseq_be_ b) | {
"end_col": 5,
"end_line": 547,
"start_col": 2,
"start_line": 542
} |
FStar.Pervasives.Lemma | val lemma_uints_to_from_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
Lemma(uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s) == s) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_uints_to_from_bytes_le_preserves_value #t #l #len s =
let lemma_uints_to_from_bytes_le_preserves_value_i (i : size_nat {i < len}) :
Lemma(index (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) i == index s i) =
let b8 = uints_to_bytes_le #t #l s in
index_uints_from_bytes_le #t #l #len b8 i;
assert (index (uints_from_bytes_le b8) i ==
uint_from_bytes_le (sub b8 (i * numbytes t) (numbytes t)));
lemma_uints_to_bytes_le_sub s i;
assert (sub b8 (i * numbytes t) (numbytes t) == uint_to_bytes_le (index s i));
lemma_uint_to_from_bytes_le_preserves_value (index s i) in
Classical.forall_intro lemma_uints_to_from_bytes_le_preserves_value_i;
eq_intro (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) s | val lemma_uints_to_from_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
Lemma(uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s) == s)
let lemma_uints_to_from_bytes_le_preserves_value #t #l #len s = | false | null | true | let lemma_uints_to_from_bytes_le_preserves_value_i (i: size_nat{i < len})
: Lemma (index (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) i == index s i) =
let b8 = uints_to_bytes_le #t #l s in
index_uints_from_bytes_le #t #l #len b8 i;
assert (index (uints_from_bytes_le b8) i ==
uint_from_bytes_le (sub b8 (i * numbytes t) (numbytes t)));
lemma_uints_to_bytes_le_sub s i;
assert (sub b8 (i * numbytes t) (numbytes t) == uint_to_bytes_le (index s i));
lemma_uint_to_from_bytes_le_preserves_value (index s i)
in
Classical.forall_intro lemma_uints_to_from_bytes_le_preserves_value_i;
eq_intro (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) s | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.Sequence.eq_intro",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.ByteSequence.uints_to_bytes_le",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.l_True",
"Prims.squash",
"Lib.IntTypes.int_t",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Lib.ByteSequence.lemma_uint_to_from_bytes_le_preserves_value",
"Prims._assert",
"Lib.IntTypes.U8",
"Lib.Sequence.sub",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.ByteSequence.lemma_uints_to_bytes_le_sub",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Prims.op_Multiply"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i
let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s)
let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert(nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert(nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert(s' == nat_to_bytes_be #l (length s') (uint_v i));
assert(s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert(s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s)
let rec nat_from_intseq_be_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_be_lemma0 b;
nat_from_intseq_be_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_be_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_be b1 == nat_from_intseq_be (map secret b1));
nat_from_intseq_be_slice_lemma b 1;
nat_from_intseq_be_lemma0 (slice b 0 1);
//assert (nat_from_intseq_be b == nat_from_intseq_be b1 + pow2 ((len - 1) * bits t) * v b.[0]);
nat_from_intseq_be_slice_lemma b_secret 1;
nat_from_intseq_be_lemma0 (slice b_secret 0 1);
//assert (nat_from_intseq_be b_secret == nat_from_intseq_be b1_secret + pow2 ((len - 1) * bits t) * v b_secret.[0]);
//assert (v b.[0] == v b_secret.[0]);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end
let rec nat_from_intseq_le_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_le_lemma0 b;
nat_from_intseq_le_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_le_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_le b1 == nat_from_intseq_le (map secret b1));
nat_from_intseq_le_slice_lemma b 1;
nat_from_intseq_le_lemma0 (slice b 0 1);
//assert (nat_from_intseq_le b == nat_from_intseq_le (slice b 0 1) + pow2 (bits t) * nat_from_intseq_le (slice b 1 len));
nat_from_intseq_le_slice_lemma b_secret 1;
nat_from_intseq_le_lemma0 (slice b_secret 0 1);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end
let lemma_uints_to_bytes_le_sub #t #l #len s i =
let lemma_uints_to_bytes_le_i_j (j : size_nat {j < numbytes t}):
Lemma(index (uints_to_bytes_le #t #l s) (i * numbytes t + j) == index (uint_to_bytes_le (index s i)) j) =
index_uints_to_bytes_le #t #l #len s (i*numbytes t + j);
assert (index (uints_to_bytes_le #t #l s) (i*numbytes t + j) ==
index (uint_to_bytes_le (index s i)) j) in
Classical.forall_intro lemma_uints_to_bytes_le_i_j;
eq_intro (sub (uints_to_bytes_le #t #l s) (i * numbytes t) (numbytes t)) (uint_to_bytes_le (index s i)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_uints_to_from_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
Lemma(uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s) == s) | [] | Lib.ByteSequence.lemma_uints_to_from_bytes_le_preserves_value | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.uints_from_bytes_le (Lib.ByteSequence.uints_to_bytes_le s) == s) | {
"end_col": 68,
"end_line": 860,
"start_col": 63,
"start_line": 848
} |
FStar.Pervasives.Lemma | val uints_to_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n) ==
nat_to_bytes_be (len * numbytes t) n) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n) | val uints_to_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n) ==
nat_to_bytes_be (len * numbytes t) n)
let uints_to_bytes_be_nat_lemma #t #l len n = | false | null | true | Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_be",
"Lib.ByteSequence.nat_to_intseq_be",
"Lib.ByteSequence.nat_to_bytes_be",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.uints_to_bytes_be_nat_lemma_"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
} | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_to_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n) ==
nat_to_bytes_be (len * numbytes t) n) | [] | Lib.ByteSequence.uints_to_bytes_be_nat_lemma | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.uints_to_bytes_be (Lib.ByteSequence.nat_to_intseq_be len n) ==
Lib.ByteSequence.nat_to_bytes_be (len * Lib.IntTypes.numbytes t) n) | {
"end_col": 49,
"end_line": 718,
"start_col": 2,
"start_line": 716
} |
FStar.Pervasives.Lemma | val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k = | false | null | true | let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j - i) b1 in
index_uints_from_bytes_le #t #l #(j - i) b1 k;
assert (r.[ k ] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[ k ] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.op_Multiply",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k == | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | [] | Lib.ByteSequence.uints_from_bytes_le_slice_lemma_rp | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t)))
k ==
Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | {
"end_col": 82,
"end_line": 439,
"start_col": 59,
"start_line": 434
} |
FStar.Pervasives.Lemma | val uints_from_bytes_le_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_le #t #l #len b) i j == uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | val uints_from_bytes_le_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_le #t #l #len b) i j == uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j = | false | null | true | FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j)
(uints_from_bytes_le #t #l #(j - i) (slice b (i * numbytes t) (j * numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.IntTypes.U8",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Prims.op_Addition",
"Lib.ByteSequence.uints_from_bytes_le_slice_lemma_rp",
"Lib.ByteSequence.uints_from_bytes_le_slice_lemma_lp"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_le_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_le #t #l #len b) i j == uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | [] | Lib.ByteSequence.uints_from_bytes_le_slice_lemma | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_le b) i j ==
Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t))) | {
"end_col": 136,
"end_line": 444,
"start_col": 2,
"start_line": 442
} |
FStar.Pervasives.Lemma | val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k = | false | null | true | let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j - i) b1 in
index_uints_from_bytes_be #t #l #(j - i) b1 k;
assert (r.[ k ] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[ k ] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_be",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.uints_from_bytes_be",
"Prims.op_Multiply",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | [] | Lib.ByteSequence.uints_from_bytes_be_slice_lemma_rp | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_from_bytes_be (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t)))
k ==
Lib.ByteSequence.uint_from_bytes_be (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | {
"end_col": 82,
"end_line": 509,
"start_col": 59,
"start_line": 504
} |
FStar.Pervasives.Lemma | val index_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) i ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end | val index_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) i ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t)))
let rec index_nat_to_intseq_le #t #l len n i = | false | null | true | if i = 0
then if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
(FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc ( == ) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
( == ) { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
( == ) { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
( == ) { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
( == ) { Math.Lemmas.distributivity_add_right (bits t) i (- 1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
( == ) { () }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.head_nat_to_intseq_le",
"Prims.unit",
"Lib.ByteSequence.nat_to_intseq_le_pos",
"FStar.Calc.calc_finish",
"Lib.IntTypes.uint_t",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_le",
"Prims.op_Subtraction",
"Prims.op_Division",
"Lib.IntTypes.modulus",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.ByteSequence.index_nat_to_intseq_le",
"Prims.squash",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.distributivity_add_right",
"Prims.op_Minus",
"FStar.Math.Lemmas.lemma_div_lt_nat"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0" | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) i ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | [
"recursion"
] | Lib.ByteSequence.index_nat_to_intseq_le | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Lib.IntTypes.size_nat ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_intseq_le len n) i ==
Lib.IntTypes.uint (n / Prims.pow2 (Lib.IntTypes.bits t * i) % Prims.pow2 (Lib.IntTypes.bits t)
)) | {
"end_col": 7,
"end_line": 252,
"start_col": 2,
"start_line": 233
} |
FStar.Pervasives.Lemma | val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
} | val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i = | false | null | true | let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc ( == ) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
( == ) { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[ i / numbytes t ])) (i % numbytes t);
( == ) { index_nat_to_intseq_to_bytes_le #t #l len n i }
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
} | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"FStar.Calc.calc_finish",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.uints_to_bytes_le",
"Lib.ByteSequence.nat_to_intseq_le",
"Lib.ByteSequence.nat_to_bytes_le",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.int_t",
"Prims.op_Division",
"Prims.op_Modulus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.ByteSequence.index_uints_to_bytes_le_aux",
"Prims.squash",
"Lib.ByteSequence.index_nat_to_intseq_to_bytes_le",
"Lib.Sequence.lseq"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i) | [] | Lib.ByteSequence.uints_to_bytes_le_nat_lemma_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.index (Lib.ByteSequence.uints_to_bytes_le (Lib.ByteSequence.nat_to_intseq_le len
n))
i ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_le (len * Lib.IntTypes.numbytes t) n) i) | {
"end_col": 3,
"end_line": 665,
"start_col": 48,
"start_line": 657
} |
FStar.Pervasives.Lemma | val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j = | false | null | true | FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j)
(uints_from_bytes_be #t #l #(j - i) (slice b (i * numbytes t) (j * numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.uints_from_bytes_be",
"Lib.IntTypes.U8",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Prims.op_Addition",
"Lib.ByteSequence.uints_from_bytes_be_slice_lemma_rp",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.ByteSequence.uints_from_bytes_be_slice_lemma_lp"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | [] | Lib.ByteSequence.uints_from_bytes_be_slice_lemma | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_be b) i j ==
Lib.ByteSequence.uints_from_bytes_be (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t))) | {
"end_col": 136,
"end_line": 518,
"start_col": 2,
"start_line": 516
} |
FStar.Pervasives.Lemma | val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) | val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b = | false | null | true | let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[ 0 ] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[ 0 ]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len ==
uints_from_bytes_le #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.IntTypes.U8",
"Prims.unit",
"Lib.ByteSequence.uints_from_bytes_le_slice_lemma",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.bits",
"Lib.IntTypes.range",
"Lib.ByteSequence.nat_from_intseq_le_",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Prims.op_Addition",
"Lib.IntTypes.int_t"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))) | [] | Lib.ByteSequence.uints_from_bytes_le_nat_lemma_aux | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le_ (Lib.ByteSequence.uints_from_bytes_le b) ==
Lib.ByteSequence.nat_from_intseq_le_ (Lib.Sequence.slice b 0 (Lib.IntTypes.numbytes t)) +
Prims.pow2 (Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_le_ (Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.slice
b
(Lib.IntTypes.numbytes t)
(len * Lib.IntTypes.numbytes t)))) | {
"end_col": 104,
"end_line": 460,
"start_col": 52,
"start_line": 455
} |
FStar.Pervasives.Lemma | val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end | val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i = | false | null | true | if len = 0
then ()
else
if i = 0
then ()
else
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 ==
nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[ i - 1 ]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b ==
nat_from_intseq_le_ (slice b 0 (i - 1)) +
pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len
(v b.[ i - 1 ])
(nat_from_intseq_le_ (slice b i len))
(bits t)
i | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.nat_from_intseq_slice_lemma_aux",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Prims.op_Subtraction",
"Lib.ByteSequence.nat_from_intseq_le_",
"Lib.Sequence.slice",
"Lib.IntTypes.bits",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma_",
"Prims.l_and",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len)) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len)) | [
"recursion"
] | Lib.ByteSequence.nat_from_intseq_le_slice_lemma_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Lib.Sequence.lseq (Lib.IntTypes.int_t t l) len -> i: Prims.nat{i <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le_ b ==
Lib.ByteSequence.nat_from_intseq_le_ (Lib.Sequence.slice b 0 i) +
Prims.pow2 (i * Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_le_ (Lib.Sequence.slice b i len)) | {
"end_col": 5,
"end_line": 386,
"start_col": 2,
"start_line": 375
} |
FStar.Pervasives.Lemma | val lemma_uints_to_bytes_le_sub :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
i : size_nat {i < len} ->
Lemma(sub (uints_to_bytes_le #t #l s) (i * numbytes t) (numbytes t) == uint_to_bytes_le (index s i)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_uints_to_bytes_le_sub #t #l #len s i =
let lemma_uints_to_bytes_le_i_j (j : size_nat {j < numbytes t}):
Lemma(index (uints_to_bytes_le #t #l s) (i * numbytes t + j) == index (uint_to_bytes_le (index s i)) j) =
index_uints_to_bytes_le #t #l #len s (i*numbytes t + j);
assert (index (uints_to_bytes_le #t #l s) (i*numbytes t + j) ==
index (uint_to_bytes_le (index s i)) j) in
Classical.forall_intro lemma_uints_to_bytes_le_i_j;
eq_intro (sub (uints_to_bytes_le #t #l s) (i * numbytes t) (numbytes t)) (uint_to_bytes_le (index s i)) | val lemma_uints_to_bytes_le_sub :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
i : size_nat {i < len} ->
Lemma(sub (uints_to_bytes_le #t #l s) (i * numbytes t) (numbytes t) == uint_to_bytes_le (index s i))
let lemma_uints_to_bytes_le_sub #t #l #len s i = | false | null | true | let lemma_uints_to_bytes_le_i_j (j: size_nat{j < numbytes t})
: Lemma
(index (uints_to_bytes_le #t #l s) (i * numbytes t + j) ==
index (uint_to_bytes_le (index s i)) j) =
index_uints_to_bytes_le #t #l #len s (i * numbytes t + j);
assert (index (uints_to_bytes_le #t #l s) (i * numbytes t + j) ==
index (uint_to_bytes_le (index s i)) j)
in
Classical.forall_intro lemma_uints_to_bytes_le_i_j;
eq_intro (sub (uints_to_bytes_le #t #l s) (i * numbytes t) (numbytes t))
(uint_to_bytes_le (index s i)) | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.U8",
"Lib.Sequence.sub",
"Lib.ByteSequence.uints_to_bytes_le",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.Sequence.index",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Prims.op_Addition",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.l_True",
"Prims.squash",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims._assert",
"Lib.ByteSequence.index_uints_to_bytes_le"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i
let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s)
let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert(nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert(nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert(s' == nat_to_bytes_be #l (length s') (uint_v i));
assert(s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert(s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s)
let rec nat_from_intseq_be_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_be_lemma0 b;
nat_from_intseq_be_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_be_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_be b1 == nat_from_intseq_be (map secret b1));
nat_from_intseq_be_slice_lemma b 1;
nat_from_intseq_be_lemma0 (slice b 0 1);
//assert (nat_from_intseq_be b == nat_from_intseq_be b1 + pow2 ((len - 1) * bits t) * v b.[0]);
nat_from_intseq_be_slice_lemma b_secret 1;
nat_from_intseq_be_lemma0 (slice b_secret 0 1);
//assert (nat_from_intseq_be b_secret == nat_from_intseq_be b1_secret + pow2 ((len - 1) * bits t) * v b_secret.[0]);
//assert (v b.[0] == v b_secret.[0]);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end
let rec nat_from_intseq_le_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_le_lemma0 b;
nat_from_intseq_le_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_le_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_le b1 == nat_from_intseq_le (map secret b1));
nat_from_intseq_le_slice_lemma b 1;
nat_from_intseq_le_lemma0 (slice b 0 1);
//assert (nat_from_intseq_le b == nat_from_intseq_le (slice b 0 1) + pow2 (bits t) * nat_from_intseq_le (slice b 1 len));
nat_from_intseq_le_slice_lemma b_secret 1;
nat_from_intseq_le_lemma0 (slice b_secret 0 1);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_uints_to_bytes_le_sub :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
i : size_nat {i < len} ->
Lemma(sub (uints_to_bytes_le #t #l s) (i * numbytes t) (numbytes t) == uint_to_bytes_le (index s i)) | [] | Lib.ByteSequence.lemma_uints_to_bytes_le_sub | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len -> i: Lib.IntTypes.size_nat{i < len}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.sub (Lib.ByteSequence.uints_to_bytes_le s)
(i * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t) ==
Lib.ByteSequence.uint_to_bytes_le (Lib.Sequence.index s i)) | {
"end_col": 105,
"end_line": 846,
"start_col": 48,
"start_line": 838
} |
FStar.Pervasives.Lemma | val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
} | val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i = | false | null | true | let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc ( == ) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
( == ) { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[ i / numbytes t ])) (i % numbytes t);
( == ) { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i) }
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
} | {
"checked_file": "Lib.ByteSequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"FStar.Calc.calc_finish",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.uints_to_bytes_be",
"Lib.ByteSequence.nat_to_intseq_be",
"Lib.ByteSequence.nat_to_bytes_be",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.int_t",
"Prims.op_Division",
"Prims.op_Modulus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.ByteSequence.index_uints_to_bytes_be_aux",
"Prims.squash",
"Lib.ByteSequence.index_nat_to_intseq_to_bytes_be",
"Prims.op_Subtraction",
"Lib.Sequence.lseq"
] | [] | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i) | false | false | Lib.ByteSequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i) | [] | Lib.ByteSequence.uints_to_bytes_be_nat_lemma_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.index (Lib.ByteSequence.uints_to_bytes_be (Lib.ByteSequence.nat_to_intseq_be len
n))
i ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_be (len * Lib.IntTypes.numbytes t) n) i) | {
"end_col": 3,
"end_line": 713,
"start_col": 48,
"start_line": 705
} |
Prims.GTot | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s) | let store_pre
(#a: Type)
(#rrel #rel: MB.srel a)
(b: MB.mbuffer a rrel rel)
(i: nat)
(j: nat{i + j <= MB.length b})
(predicate: (Seq.seq a -> Type0))
= | false | null | false | fun (h: HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s: Seq.seq a).
(Seq.length s == len /\ Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j))) ==>
rel sb s) | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [
"sometrivial"
] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Monotonic.Buffer.mbuffer",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"LowStar.Monotonic.Buffer.length",
"FStar.Seq.Base.seq",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.eq2",
"FStar.Seq.Base.length",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.logical"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store_pre : b: LowStar.Monotonic.Buffer.mbuffer a rrel rel ->
i: Prims.nat ->
j: Prims.nat{i + j <= LowStar.Monotonic.Buffer.length b} ->
predicate: (_: FStar.Seq.Base.seq a -> Type0) ->
h: FStar.Monotonic.HyperStack.mem
-> Prims.GTot Prims.logical | [] | LowStar.Endianness.store_pre | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel ->
i: Prims.nat ->
j: Prims.nat{i + j <= LowStar.Monotonic.Buffer.length b} ->
predicate: (_: FStar.Seq.Base.seq a -> Type0) ->
h: FStar.Monotonic.HyperStack.mem
-> Prims.GTot Prims.logical | {
"end_col": 20,
"end_line": 84,
"start_col": 4,
"start_line": 69
} |
|
Prims.GTot | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j))) | let store_post
(#a: Type)
(#rrel #rel: MB.srel a)
(b: MB.mbuffer a rrel rel)
(i: nat)
(j: nat{i + j <= MB.length b})
(predicate: (Seq.seq a -> Type0))
= | false | null | false | fun (h0: HS.mem) (_: unit) (h1: HS.mem) ->
MB.live h1 b /\ MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j))) | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [
"sometrivial"
] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Monotonic.Buffer.mbuffer",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"LowStar.Monotonic.Buffer.length",
"FStar.Seq.Base.seq",
"FStar.Monotonic.HyperStack.mem",
"Prims.unit",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.logical"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store_post : b: LowStar.Monotonic.Buffer.mbuffer a rrel rel ->
i: Prims.nat ->
j: Prims.nat{i + j <= LowStar.Monotonic.Buffer.length b} ->
predicate: (_: FStar.Seq.Base.seq a -> Type0) ->
h0: FStar.Monotonic.HyperStack.mem ->
_: Prims.unit ->
h1: FStar.Monotonic.HyperStack.mem
-> Prims.GTot Prims.logical | [] | LowStar.Endianness.store_post | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel ->
i: Prims.nat ->
j: Prims.nat{i + j <= LowStar.Monotonic.Buffer.length b} ->
predicate: (_: FStar.Seq.Base.seq a -> Type0) ->
h0: FStar.Monotonic.HyperStack.mem ->
_: Prims.unit ->
h1: FStar.Monotonic.HyperStack.mem
-> Prims.GTot Prims.logical | {
"end_col": 41,
"end_line": 102,
"start_col": 5,
"start_line": 92
} |
|
FStar.HyperStack.ST.Stack | val load64_be (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt64.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul | val load64_be (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt64.v z))
let load64_be (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt64.v z)) = | true | null | false | load64_be_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load64_be_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u64",
"FStar.UInt64.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt64.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt64.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load64_be (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt64.v z)) | [] | LowStar.Endianness.load64_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 8}
-> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 19,
"end_line": 367,
"start_col": 2,
"start_line": 367
} |
FStar.HyperStack.ST.Stack | val store64_be (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z | val store64_be (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
let store64_be (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z)) = | true | null | false | store64_be_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt64.t",
"LowStar.Endianness.store64_be_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt64.n",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt64.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store64_be (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z)) | [] | LowStar.Endianness.store64_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 8} -> z: FStar.UInt64.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 22,
"end_line": 377,
"start_col": 2,
"start_line": 377
} |
FStar.HyperStack.ST.Stack | val load32_le (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt32.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul | val load32_le (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt32.v z))
let load32_le (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt32.v z)) = | true | null | false | load32_le_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load32_le_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u32",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt32.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load32_le (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt32.v z)) | [] | LowStar.Endianness.load32_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 4}
-> FStar.HyperStack.ST.Stack FStar.UInt32.t | {
"end_col": 19,
"end_line": 317,
"start_col": 2,
"start_line": 317
} |
FStar.HyperStack.ST.Stack | val store32_be (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z | val store32_be (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
let store32_be (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z)) = | true | null | false | store32_be_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowStar.Endianness.store32_be_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt32.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store32_be (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z)) | [] | LowStar.Endianness.store32_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 4} -> z: FStar.UInt32.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 22,
"end_line": 328,
"start_col": 2,
"start_line": 328
} |
FStar.HyperStack.ST.Stack | val store16_le (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z | val store16_le (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
let store16_le (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z)) = | true | null | false | store16_le_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt16.t",
"LowStar.Endianness.store16_le_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt16.n",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt16.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store16_le (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z)) | [] | LowStar.Endianness.store16_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 2} -> z: FStar.UInt16.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 22,
"end_line": 268,
"start_col": 2,
"start_line": 268
} |
FStar.HyperStack.ST.Stack | val load64_le (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt64.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul | val load64_le (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt64.v z))
let load64_le (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt64.v z)) = | true | null | false | load64_le_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load64_le_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u64",
"FStar.UInt64.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt64.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt64.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load64_le (b: B.buffer UInt8.t {B.length b == 8})
: Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt64.v z)) | [] | LowStar.Endianness.load64_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 8}
-> FStar.HyperStack.ST.Stack FStar.UInt64.t | {
"end_col": 19,
"end_line": 357,
"start_col": 2,
"start_line": 357
} |
FStar.HyperStack.ST.Stack | val load16_be (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt16.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul | val load16_be (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt16.v z))
let load16_be (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt16.v z)) = | true | null | false | load16_be_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load16_be_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u16",
"FStar.UInt16.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt16.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt16.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load16_be (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt16.v z)) | [] | LowStar.Endianness.load16_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 2}
-> FStar.HyperStack.ST.Stack FStar.UInt16.t | {
"end_col": 19,
"end_line": 297,
"start_col": 2,
"start_line": 297
} |
FStar.HyperStack.ST.Stack | val store32_le (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z | val store32_le (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
let store32_le (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z)) = | true | null | false | store32_le_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowStar.Endianness.store32_le_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt32.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store32_le (b: B.buffer UInt8.t {B.length b == 4}) (z: UInt32.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z)) | [] | LowStar.Endianness.store32_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 4} -> z: FStar.UInt32.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 22,
"end_line": 308,
"start_col": 2,
"start_line": 308
} |
FStar.HyperStack.ST.Stack | val store16_be (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z | val store16_be (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
let store16_be (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z)) = | true | null | false | store16_be_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt16.t",
"LowStar.Endianness.store16_be_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt16.n",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt16.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store16_be (b: B.buffer UInt8.t {B.length b == 2}) (z: UInt16.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z)) | [] | LowStar.Endianness.store16_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 2} -> z: FStar.UInt16.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 22,
"end_line": 288,
"start_col": 2,
"start_line": 288
} |
FStar.HyperStack.ST.Stack | val load32_be (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt32.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul | val load32_be (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt32.v z))
let load32_be (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt32.v z)) = | true | null | false | load32_be_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load32_be_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u32",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt32.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load32_be (b: B.buffer UInt8.t {B.length b == 4})
: Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt32.v z)) | [] | LowStar.Endianness.load32_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 4}
-> FStar.HyperStack.ST.Stack FStar.UInt32.t | {
"end_col": 19,
"end_line": 337,
"start_col": 2,
"start_line": 337
} |
FStar.HyperStack.ST.Stack | val load16_le (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt16.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul | val load16_le (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt16.v z))
let load16_le (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt16.v z)) = | true | null | false | load16_le_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load16_le_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u16",
"FStar.UInt16.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt16.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt16.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load16_le (b: B.buffer UInt8.t {B.length b == 2})
: Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt16.v z)) | [] | LowStar.Endianness.load16_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 2}
-> FStar.HyperStack.ST.Stack FStar.UInt16.t | {
"end_col": 19,
"end_line": 277,
"start_col": 2,
"start_line": 277
} |
FStar.HyperStack.ST.Stack | val store64_le (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z | val store64_le (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
let store64_le (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z)) = | true | null | false | store64_le_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt64.t",
"LowStar.Endianness.store64_le_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt64.n",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt64.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store64_le (b: B.buffer UInt8.t {B.length b == 8}) (z: UInt64.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z)) | [] | LowStar.Endianness.store64_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 8} -> z: FStar.UInt64.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 22,
"end_line": 348,
"start_col": 2,
"start_line": 348
} |
FStar.HyperStack.ST.Stack | val store128_le (b: B.buffer UInt8.t {B.length b == 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z | val store128_le (b: B.buffer UInt8.t {B.length b == 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
let store128_le (b: B.buffer UInt8.t {B.length b == 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z)) = | true | null | false | store128_le_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt128.t",
"LowStar.Endianness.store128_le_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt128.n",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt128.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store128_le (b: B.buffer UInt8.t {B.length b == 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z)) | [] | LowStar.Endianness.store128_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 16} ->
z: FStar.UInt128.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 23,
"end_line": 397,
"start_col": 2,
"start_line": 397
} |
FStar.HyperStack.ST.Stack | val store128_be (b: B.buffer UInt8.t {B.length b = 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let store128_be
(b:B.buffer UInt8.t{B.length b = 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_be_i b 0ul z | val store128_be (b: B.buffer UInt8.t {B.length b = 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
let store128_be (b: B.buffer UInt8.t {B.length b = 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z)) = | true | null | false | store128_be_i b 0ul z | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt128.t",
"LowStar.Endianness.store128_be_i",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.eq2",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt128.n",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt128.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z
let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_be_i b 0ul
let store128_be
(b:B.buffer UInt8.t{B.length b = 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val store128_be (b: B.buffer UInt8.t {B.length b = 16}) (z: UInt128.t)
: Stack unit
(requires (fun h -> B.live h b))
(ensures
(fun h0 _ h1 ->
B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z)) | [] | LowStar.Endianness.store128_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b = 16} ->
z: FStar.UInt128.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 23,
"end_line": 417,
"start_col": 2,
"start_line": 417
} |
FStar.HyperStack.ST.Stack | val index_64_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_be (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_64_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u64
(requires fun h ->
MB.live h b /\ MB.length b % 8 = 0 /\
U32.v i < MB.length b / 8)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_be (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i))
= load64_be_i b FStar.UInt32.(8ul *^ i) | val index_64_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_be (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i))
let index_64_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_be (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i)) = | true | null | false | load64_be_i b FStar.UInt32.(8ul *^ i) | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Endianness.u8",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Endianness.u32",
"LowStar.Endianness.load64_be_i",
"FStar.UInt32.op_Star_Hat",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u64",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"LowStar.Monotonic.Buffer.length",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_Division",
"Prims.eq2",
"FStar.UInt64.t",
"FStar.Seq.Base.index",
"FStar.Endianness.seq_uint64_of_be",
"LowStar.Monotonic.Buffer.as_seq"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z
let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_be_i b 0ul
let store128_be
(b:B.buffer UInt8.t{B.length b = 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_be_i b 0ul z
/// Index and update
/// ----------------
///
/// These are more sophisticated than load/store above, because they reason
/// over the underlying sequence of bytes interpreted as a sequence of (little|big)-endian
/// integers.
#set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
inline_for_extraction
let index_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_be_i b FStar.UInt32.(4ul *^ i)
inline_for_extraction
let index_32_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_le_i b FStar.UInt32.(4ul *^ i)
inline_for_extraction
let index_64_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u64
(requires fun h ->
MB.live h b /\ MB.length b % 8 = 0 /\
U32.v i < MB.length b / 8)
(ensures fun h0 r h1 ->
h0 == h1 /\ | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_64_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_be (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i)) | [] | LowStar.Endianness.index_64_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Monotonic.Buffer.mbuffer LowStar.Endianness.u8 rrel rel -> i: LowStar.Endianness.u32
-> FStar.HyperStack.ST.Stack LowStar.Endianness.u64 | {
"end_col": 41,
"end_line": 465,
"start_col": 4,
"start_line": 465
} |
FStar.HyperStack.ST.Stack | val load128_le (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt128.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul | val load128_le (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt128.v z))
let load128_le (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt128.v z)) = | true | null | false | load128_le_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load128_le_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u128",
"FStar.UInt128.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt128.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.le_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt128.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load128_le (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ le_to_n (B.as_seq h1 b) == UInt128.v z)) | [] | LowStar.Endianness.load128_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 16}
-> FStar.HyperStack.ST.Stack FStar.UInt128.t | {
"end_col": 20,
"end_line": 387,
"start_col": 2,
"start_line": 387
} |
FStar.HyperStack.ST.Stack | val load128_be (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt128.v z)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_be_i b 0ul | val load128_be (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt128.v z))
let load128_be (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt128.v z)) = | true | null | false | load128_be_i b 0ul | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Endianness.load128_be_i",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u128",
"FStar.UInt128.t",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"Prims.l_and",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt128.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Endianness.be_to_n",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt128.v"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z
let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z)) | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val load128_be (b: B.buffer UInt8.t {B.length b == 16})
: Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\ be_to_n (B.as_seq h1 b) == UInt128.v z)) | [] | LowStar.Endianness.load128_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer FStar.UInt8.t {LowStar.Monotonic.Buffer.length b == 16}
-> FStar.HyperStack.ST.Stack FStar.UInt128.t | {
"end_col": 20,
"end_line": 407,
"start_col": 2,
"start_line": 407
} |
FStar.HyperStack.ST.Stack | val index_64_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_le (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_64_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u64
(requires fun h ->
MB.live h b /\ MB.length b % 8 = 0 /\
U32.v i < MB.length b / 8)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_le (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i))
= load64_le_i b FStar.UInt32.(8ul *^ i) | val index_64_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_le (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i))
let index_64_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_le (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i)) = | true | null | false | load64_le_i b FStar.UInt32.(8ul *^ i) | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Endianness.u8",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Endianness.u32",
"LowStar.Endianness.load64_le_i",
"FStar.UInt32.op_Star_Hat",
"FStar.UInt32.__uint_to_t",
"LowStar.Endianness.u64",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"LowStar.Monotonic.Buffer.length",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_Division",
"Prims.eq2",
"FStar.UInt64.t",
"FStar.Seq.Base.index",
"FStar.Endianness.seq_uint64_of_le",
"LowStar.Monotonic.Buffer.as_seq"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z
let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_be_i b 0ul
let store128_be
(b:B.buffer UInt8.t{B.length b = 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_be_i b 0ul z
/// Index and update
/// ----------------
///
/// These are more sophisticated than load/store above, because they reason
/// over the underlying sequence of bytes interpreted as a sequence of (little|big)-endian
/// integers.
#set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
inline_for_extraction
let index_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_be_i b FStar.UInt32.(4ul *^ i)
inline_for_extraction
let index_32_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_le_i b FStar.UInt32.(4ul *^ i)
inline_for_extraction
let index_64_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u64
(requires fun h ->
MB.live h b /\ MB.length b % 8 = 0 /\
U32.v i < MB.length b / 8)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_be (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i))
= load64_be_i b FStar.UInt32.(8ul *^ i)
inline_for_extraction
let index_64_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u64
(requires fun h ->
MB.live h b /\ MB.length b % 8 = 0 /\
U32.v i < MB.length b / 8)
(ensures fun h0 r h1 ->
h0 == h1 /\ | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_64_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u64
(requires fun h -> MB.live h b /\ MB.length b % 8 = 0 /\ U32.v i < MB.length b / 8)
(ensures
fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_le (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i)) | [] | LowStar.Endianness.index_64_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Monotonic.Buffer.mbuffer LowStar.Endianness.u8 rrel rel -> i: LowStar.Endianness.u32
-> FStar.HyperStack.ST.Stack LowStar.Endianness.u64 | {
"end_col": 41,
"end_line": 478,
"start_col": 4,
"start_line": 478
} |
FStar.HyperStack.ST.Stack | val index_32_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_32_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_le_i b FStar.UInt32.(4ul *^ i) | val index_32_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
let index_32_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i)) = | true | null | false | load32_le_i b FStar.UInt32.(4ul *^ i) | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Endianness.u8",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Endianness.u32",
"LowStar.Endianness.load32_le_i",
"FStar.UInt32.op_Star_Hat",
"FStar.UInt32.__uint_to_t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"LowStar.Monotonic.Buffer.length",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_Division",
"Prims.eq2",
"FStar.UInt32.t",
"FStar.Seq.Base.index",
"FStar.Endianness.seq_uint32_of_le",
"LowStar.Monotonic.Buffer.as_seq"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z
let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_be_i b 0ul
let store128_be
(b:B.buffer UInt8.t{B.length b = 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_be_i b 0ul z
/// Index and update
/// ----------------
///
/// These are more sophisticated than load/store above, because they reason
/// over the underlying sequence of bytes interpreted as a sequence of (little|big)-endian
/// integers.
#set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
inline_for_extraction
let index_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_be_i b FStar.UInt32.(4ul *^ i)
inline_for_extraction
let index_32_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\ | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_32_le (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i)) | [] | LowStar.Endianness.index_32_le | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Monotonic.Buffer.mbuffer LowStar.Endianness.u8 rrel rel -> i: LowStar.Endianness.u32
-> FStar.HyperStack.ST.Stack LowStar.Endianness.u32 | {
"end_col": 41,
"end_line": 452,
"start_col": 4,
"start_line": 452
} |
FStar.HyperStack.ST.Stack | val index_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_be_i b FStar.UInt32.(4ul *^ i) | val index_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
let index_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i)) = | true | null | false | load32_be_i b FStar.UInt32.(4ul *^ i) | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Endianness.u8",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Endianness.u32",
"LowStar.Endianness.load32_be_i",
"FStar.UInt32.op_Star_Hat",
"FStar.UInt32.__uint_to_t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"LowStar.Monotonic.Buffer.length",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_Division",
"Prims.eq2",
"FStar.UInt32.t",
"FStar.Seq.Base.index",
"FStar.Endianness.seq_uint32_of_be",
"LowStar.Monotonic.Buffer.as_seq"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z
let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_be_i b 0ul
let store128_be
(b:B.buffer UInt8.t{B.length b = 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_be_i b 0ul z
/// Index and update
/// ----------------
///
/// These are more sophisticated than load/store above, because they reason
/// over the underlying sequence of bytes interpreted as a sequence of (little|big)-endian
/// integers.
#set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
inline_for_extraction
let index_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\ | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i: u32)
: Stack u32
(requires fun h -> MB.live h b /\ MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i)) | [] | LowStar.Endianness.index_32_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Monotonic.Buffer.mbuffer LowStar.Endianness.u8 rrel rel -> i: LowStar.Endianness.u32
-> FStar.HyperStack.ST.Stack LowStar.Endianness.u32 | {
"end_col": 41,
"end_line": 439,
"start_col": 4,
"start_line": 439
} |
FStar.HyperStack.ST.Stack | val upd_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i v: u32)
: Stack unit
(requires
fun h ->
MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4 /\
store_pre b (let open U32 in v (4ul *^ i)) 4 (fun s -> be_to_n s == U32.v v) h)
(ensures
fun h0 _ h1 ->
MB.(modifies (loc_buffer b) h0 h1) /\
(seq_uint32_of_be (MB.length b / 4) (MB.as_seq h1 b))
`Seq.equal`
(Seq.upd (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i) v)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Endianness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let upd_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32) (v:u32)
: Stack unit
(requires fun h ->
MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4 /\
store_pre b (U32.(v (4ul *^ i))) 4 (fun s -> be_to_n s == U32.v v) h)
(ensures fun h0 _ h1 ->
MB.(modifies (loc_buffer b) h0 h1) /\
seq_uint32_of_be (MB.length b / 4) (MB.as_seq h1 b) `Seq.equal` Seq.upd (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i) v)
= let h0 = get () in
store32_be_i b U32.(4ul *^ i) v;
let h1 = get () in
//AR: 03/01: the following 3 assertions say how the buffer changed
assert (be_to_n (Seq.slice (MB.as_seq h1 b) (U32.(v (4ul *^ i))) (U32.(v (4ul *^ i) + 4))) == U32.v v);
assert (Seq.equal (Seq.slice (MB.as_seq h0 b) 0 (U32.(v (4ul *^ i))))
(Seq.slice (MB.as_seq h1 b) 0 (U32.(v (4ul *^ i)))));
assert (Seq.equal (Seq.slice (MB.as_seq h0 b) (U32.(v (4ul *^ i) + 4)) (MB.length b))
(Seq.slice (MB.as_seq h1 b) (U32.(v (4ul *^ i) + 4)) (MB.length b)));
let f () : Lemma
(seq_uint32_of_be (MB.length b / 4) (MB.as_seq h1 b) `Seq.equal` Seq.upd (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b))
(UInt32.v i) v)
= let s0 = MB.as_seq h0 b in
let s1 = MB.as_seq h1 b in
let n = MB.length b / 4 in
assert (4 `Prims.op_Multiply` n == MB.length b);
let s0' = seq_uint32_of_be n s0 in
let s1' = seq_uint32_of_be n s1 in
let lo = UInt32.v i in
let hi = lo + 1 in
let s2' = Seq.upd s0' lo v in
assert (Seq.length s1' == Seq.length s2');
let i' = UInt32.v i in
let g
(j' : nat)
: Lemma
(requires (j' < n))
(ensures (j' < n /\ Seq.index s1' j' == Seq.index s2' j'))
= if j' = UInt32.v i
then ()
else begin
let u () : Lemma
(Seq.slice s0 (4 * j') (4 * j' + 4) == Seq.slice s1 (4 * j') (4 * j' + 4))
= if j' < UInt32.v i
then begin
Seq.slice_slice s0 0 (4 * i') (4 * j') (4 * j' + 4);
Seq.slice_slice s1 0 (4 * i') (4 * j') (4 * j' + 4)
end else begin
Seq.slice_slice s0 (4 * i' + 4) (MB.length b) (4 * (j' - i' - 1)) (4 * (j' - i'));
Seq.slice_slice s1 (4 * i' + 4) (MB.length b) (4 * (j' - i' - 1)) (4 * (j' - i'))
end
in
u ()
end
in
Classical.forall_intro (Classical.move_requires g)
in
f () | val upd_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i v: u32)
: Stack unit
(requires
fun h ->
MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4 /\
store_pre b (let open U32 in v (4ul *^ i)) 4 (fun s -> be_to_n s == U32.v v) h)
(ensures
fun h0 _ h1 ->
MB.(modifies (loc_buffer b) h0 h1) /\
(seq_uint32_of_be (MB.length b / 4) (MB.as_seq h1 b))
`Seq.equal`
(Seq.upd (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i) v))
let upd_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i v: u32)
: Stack unit
(requires
fun h ->
MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4 /\
store_pre b (let open U32 in v (4ul *^ i)) 4 (fun s -> be_to_n s == U32.v v) h)
(ensures
fun h0 _ h1 ->
MB.(modifies (loc_buffer b) h0 h1) /\
(seq_uint32_of_be (MB.length b / 4) (MB.as_seq h1 b))
`Seq.equal`
(Seq.upd (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i) v)) = | true | null | false | let h0 = get () in
store32_be_i b U32.(4ul *^ i) v;
let h1 = get () in
assert (be_to_n (Seq.slice (MB.as_seq h1 b)
(let open U32 in v (4ul *^ i))
(let open U32 in v (4ul *^ i) + 4)) ==
U32.v v);
assert (Seq.equal (Seq.slice (MB.as_seq h0 b) 0 (let open U32 in v (4ul *^ i)))
(Seq.slice (MB.as_seq h1 b) 0 (let open U32 in v (4ul *^ i))));
assert (Seq.equal (Seq.slice (MB.as_seq h0 b) (let open U32 in v (4ul *^ i) + 4) (MB.length b))
(Seq.slice (MB.as_seq h1 b) (let open U32 in v (4ul *^ i) + 4) (MB.length b)));
let f ()
: Lemma
((seq_uint32_of_be (MB.length b / 4) (MB.as_seq h1 b))
`Seq.equal`
(Seq.upd (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (UInt32.v i) v)) =
let s0 = MB.as_seq h0 b in
let s1 = MB.as_seq h1 b in
let n = MB.length b / 4 in
assert (4 `Prims.op_Multiply` n == MB.length b);
let s0' = seq_uint32_of_be n s0 in
let s1' = seq_uint32_of_be n s1 in
let lo = UInt32.v i in
let hi = lo + 1 in
let s2' = Seq.upd s0' lo v in
assert (Seq.length s1' == Seq.length s2');
let i' = UInt32.v i in
let g (j': nat)
: Lemma (requires (j' < n)) (ensures (j' < n /\ Seq.index s1' j' == Seq.index s2' j')) =
if j' = UInt32.v i
then ()
else
let u () : Lemma (Seq.slice s0 (4 * j') (4 * j' + 4) == Seq.slice s1 (4 * j') (4 * j' + 4)) =
if j' < UInt32.v i
then
(Seq.slice_slice s0 0 (4 * i') (4 * j') (4 * j' + 4);
Seq.slice_slice s1 0 (4 * i') (4 * j') (4 * j' + 4))
else
(Seq.slice_slice s0 (4 * i' + 4) (MB.length b) (4 * (j' - i' - 1)) (4 * (j' - i'));
Seq.slice_slice s1 (4 * i' + 4) (MB.length b) (4 * (j' - i' - 1)) (4 * (j' - i')))
in
u ()
in
Classical.forall_intro (Classical.move_requires g)
in
f () | {
"checked_file": "LowStar.Endianness.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Endianness.fst"
} | [] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Endianness.u8",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Endianness.u32",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"FStar.Seq.Base.equal",
"FStar.UInt32.t",
"FStar.Endianness.seq_uint32_of_be",
"Prims.op_Division",
"LowStar.Monotonic.Buffer.length",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Seq.Base.upd",
"FStar.UInt32.v",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.index",
"FStar.Classical.move_requires",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Prims.op_Multiply",
"Prims.op_Addition",
"FStar.Seq.Properties.slice_slice",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"FStar.UInt.uint_t",
"Prims._assert",
"FStar.Seq.Base.length",
"FStar.UInt32.op_Star_Hat",
"FStar.UInt32.__uint_to_t",
"FStar.Endianness.be_to_n",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Endianness.store32_be_i",
"Prims.op_Modulus",
"LowStar.Endianness.store_pre",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer"
] | [] | module LowStar.Endianness
/// Stateful operations between machine integers and buffers of uint8s. Most of
/// these operations are implemented natively using the target's system endianness
/// headers, relying on macros or static inline declarations.
///
/// .. note::
///
/// This module supersedes ``C.Endianness``.
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Endianness
open LowStar.BufferOps
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module HS = FStar.HyperStack
inline_for_extraction
type u8 = U8.t
inline_for_extraction
type u16 = U16.t
inline_for_extraction
type u32 = U32.t
inline_for_extraction
type u64 = U64.t
inline_for_extraction
type u128 = U128.t
/// Byte-swapping operations
/// ------------------------
///
/// TODO these are totally unspecified
assume val htole16: u16 -> u16
assume val le16toh: u16 -> u16
assume val htole32: u32 -> u32
assume val le32toh: u32 -> u32
assume val htole64: u64 -> u64
assume val le64toh: u64 -> u64
assume val htobe16: u16 -> u16
assume val be16toh: u16 -> u16
assume val htobe32: u32 -> u32
assume val be32toh: u32 -> u32
assume val htobe64: u64 -> u64
assume val be64toh: u64 -> u64
/// Precondition for store functions
///
/// Parametrized by the predicate that different store functions can pass accordingly
///
/// Typically saying sequence contents are le_to_n or be_to_n etc.
unfold let store_pre
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h:HS.mem) ->
let sb = MB.as_seq h b in
let len = MB.length b in
MB.live h b /\
(forall (s:Seq.seq a). //monotonicity precondition that once the contents of the buffer
//between [i, j) are replaced as per the predicate, the
//preorder rel is satisfied
(Seq.length s == len /\
Seq.equal (Seq.slice s 0 i) (Seq.slice sb 0 i) /\
Seq.equal (Seq.slice s (i + j) len) (Seq.slice sb (i + j) len) /\
predicate (Seq.slice s i (i + j)))
==> rel sb s)
/// Common postcondition
unfold let store_post
(#a:Type) (#rrel #rel:MB.srel a) (b:MB.mbuffer a rrel rel)
(i:nat) (j:nat{i + j <= MB.length b}) (predicate:Seq.seq a -> Type0)
= fun (h0:HS.mem) (_:unit) (h1:HS.mem) ->
MB.live h1 b /\
MB.(modifies (loc_buffer b) h0 h1) /\
(let s1 = MB.as_seq h0 b in
let s2 = MB.as_seq h1 b in
let len = MB.length b in
//the buffer only changes in the interval [i, j) as per the predicate
Seq.equal (Seq.slice s2 0 i) (Seq.slice s1 0 i) /\
Seq.equal (Seq.slice s2 (i + j) len) (Seq.slice s1 (i + j) len) /\
predicate (Seq.slice s2 i (i + j)))
/// Loads and stores
/// ----------------
///
/// These are primitive
assume val store16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> le_to_n s == U16.v z)))
assume val load16_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
(z:u16)
: Stack unit
(requires (store_pre b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
(ensures (store_post b (U32.v i) 2 (fun s -> be_to_n s == U16.v z)))
assume val load16_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 2 <= MB.length b})
: Stack u16
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 2)) == U16.v z)
assume val store32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> le_to_n s == U32.v z)))
assume val load32_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
(z:u32)
: Stack unit
(requires (store_pre b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
(ensures (store_post b (U32.v i) 4 (fun s -> be_to_n s == U32.v z)))
assume val load32_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 4 <= MB.length b})
: Stack u32
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 4)) == U32.v z)
assume val store64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> le_to_n s == U64.v z)))
assume val load64_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
(z:u64)
: Stack unit
(requires (store_pre b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
(ensures (store_post b (U32.v i) 8 (fun s -> be_to_n s == U64.v z)))
assume val load64_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 8 <= MB.length b})
: Stack u64
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 8)) == U64.v z)
assume val store128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> le_to_n s == U128.v z)))
assume val load128_le_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
le_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
assume val store128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
(z:u128)
: Stack unit
(requires (store_pre b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
(ensures (store_post b (U32.v i) 16 (fun s -> be_to_n s == U128.v z)))
assume val load128_be_i
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32{U32.v i + 16 <= MB.length b})
: Stack u128
(requires fun h -> MB.live h b)
(ensures fun h0 z h1 ->
h0 == h1 /\
MB.live h1 b /\
be_to_n (Seq.slice (MB.as_seq h1 b) (U32.v i) (U32.v i + 16)) == U128.v z)
/// Loads and stores, on buffers of the right size.
/// -----------------------------------------------
///
/// There is bunch of legacy code that wants these operators that operate on buffers of exactly the right size. This is actually more restrictive than the version above, which operates on monotonic buffers, so we offer specialized operators.
let store16_le
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_le_i b 0ul z
let load16_le
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_le_i b 0ul
let store16_be
(b:B.buffer UInt8.t{B.length b == 2})
(z:UInt16.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
store16_be_i b 0ul z
let load16_be
(b:B.buffer UInt8.t{B.length b == 2}):
Stack UInt16.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt16.v z))
=
load16_be_i b 0ul
let store32_le
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_le_i b 0ul z
let load32_le
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_le_i b 0ul
let store32_be
(b:B.buffer UInt8.t{B.length b == 4})
(z:UInt32.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
store32_be_i b 0ul z
let load32_be
(b:B.buffer UInt8.t{B.length b == 4}):
Stack UInt32.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt32.v z))
=
load32_be_i b 0ul
let store64_le
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_le_i b 0ul z
let load64_le
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_le_i b 0ul
let load64_be
(b:B.buffer UInt8.t{B.length b == 8}):
Stack UInt64.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
load64_be_i b 0ul
let store64_be
(b:B.buffer UInt8.t{B.length b == 8})
(z:UInt64.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt64.v z))
=
store64_be_i b 0ul z
let load128_le
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_le_i b 0ul
let store128_le
(b:B.buffer UInt8.t{B.length b == 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
le_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_le_i b 0ul z
let load128_be
(b:B.buffer UInt8.t{B.length b == 16}):
Stack UInt128.t
(requires (fun h -> B.live h b))
(ensures (fun h0 z h1 -> h0 == h1 /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
load128_be_i b 0ul
let store128_be
(b:B.buffer UInt8.t{B.length b = 16})
(z:UInt128.t):
Stack unit
(requires (fun h -> B.live h b))
(ensures (fun h0 _ h1 -> B.(modifies (loc_buffer b) h0 h1) /\ B.live h1 b /\
be_to_n (B.as_seq h1 b) == UInt128.v z))
=
store128_be_i b 0ul z
/// Index and update
/// ----------------
///
/// These are more sophisticated than load/store above, because they reason
/// over the underlying sequence of bytes interpreted as a sequence of (little|big)-endian
/// integers.
#set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
inline_for_extraction
let index_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_be_i b FStar.UInt32.(4ul *^ i)
inline_for_extraction
let index_32_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u32
(requires fun h ->
MB.live h b /\ MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint32_of_le (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i))
= load32_le_i b FStar.UInt32.(4ul *^ i)
inline_for_extraction
let index_64_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u64
(requires fun h ->
MB.live h b /\ MB.length b % 8 = 0 /\
U32.v i < MB.length b / 8)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_be (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i))
= load64_be_i b FStar.UInt32.(8ul *^ i)
inline_for_extraction
let index_64_le
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32)
: Stack u64
(requires fun h ->
MB.live h b /\ MB.length b % 8 = 0 /\
U32.v i < MB.length b / 8)
(ensures fun h0 r h1 ->
h0 == h1 /\
r = Seq.index (seq_uint64_of_le (MB.length b / 8) (MB.as_seq h0 b)) (UInt32.v i))
= load64_le_i b FStar.UInt32.(8ul *^ i)
#reset-options "--using_facts_from 'Prims'"
let interval_4_disjoint (i j: nat)
: Lemma
(requires (i <> j))
(ensures (let open FStar.Mul in 4 * i + 4 <= 4 * j \/ 4 * j + 4 <= 4 * i))
= ()
#reset-options "--z3rlimit 16 --max_fuel 0 --max_ifuel 0"
open FStar.Mul
inline_for_extraction
let upd_32_be
(#rrel #rel:MB.srel u8) (b:MB.mbuffer u8 rrel rel)
(i:u32) (v:u32)
: Stack unit
(requires fun h ->
MB.length b % 4 = 0 /\
U32.v i < MB.length b / 4 /\
store_pre b (U32.(v (4ul *^ i))) 4 (fun s -> be_to_n s == U32.v v) h)
(ensures fun h0 _ h1 ->
MB.(modifies (loc_buffer b) h0 h1) /\ | false | false | LowStar.Endianness.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val upd_32_be (#rrel #rel: MB.srel u8) (b: MB.mbuffer u8 rrel rel) (i v: u32)
: Stack unit
(requires
fun h ->
MB.length b % 4 = 0 /\ U32.v i < MB.length b / 4 /\
store_pre b (let open U32 in v (4ul *^ i)) 4 (fun s -> be_to_n s == U32.v v) h)
(ensures
fun h0 _ h1 ->
MB.(modifies (loc_buffer b) h0 h1) /\
(seq_uint32_of_be (MB.length b / 4) (MB.as_seq h1 b))
`Seq.equal`
(Seq.upd (seq_uint32_of_be (MB.length b / 4) (MB.as_seq h0 b)) (U32.v i) v)) | [] | LowStar.Endianness.upd_32_be | {
"file_name": "ulib/LowStar.Endianness.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
b: LowStar.Monotonic.Buffer.mbuffer LowStar.Endianness.u8 rrel rel ->
i: LowStar.Endianness.u32 ->
v: LowStar.Endianness.u32
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 8,
"end_line": 551,
"start_col": 3,
"start_line": 504
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bytes32 = B32.bytes | let bytes32 = | false | null | false | B32.bytes | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"total"
] | [
"FStar.Bytes.bytes"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32 | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bytes32 : t: Type0{Prims.hasEq t} | [] | LowParse.SLow.Base.bytes32 | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | t: Type0{Prims.hasEq t} | {
"end_col": 23,
"end_line": 7,
"start_col": 14,
"start_line": 7
} |
|
Prims.GTot | val serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input | val serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0 = | false | null | false | (B32.reveal res) `bytes_equal` (s input) | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"sometrivial"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.bytes32",
"LowParse.Bytes.bytes_equal",
"FStar.Bytes.reveal"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0 | [] | LowParse.SLow.Base.serializer32_correct' | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> input: t -> res: LowParse.SLow.Base.bytes32
-> Prims.GTot Type0 | {
"end_col": 38,
"end_line": 118,
"start_col": 2,
"start_line": 118
} |
Prims.GTot | val serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input | val serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0 = | false | null | false | B32.reveal res == s input | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"sometrivial"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.bytes32",
"Prims.eq2",
"FStar.Seq.Base.seq",
"FStar.Bytes.byte",
"FStar.Bytes.reveal"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0 | [] | LowParse.SLow.Base.serializer32_correct | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> input: t -> res: LowParse.SLow.Base.bytes32
-> Prims.GTot Type0 | {
"end_col": 27,
"end_line": 108,
"start_col": 2,
"start_line": 108
} |
Prims.Tot | val make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32:
(input: bytes32
-> Pure (option (t * U32.t))
(requires True)
(ensures (fun res -> parser32_correct p input res))))
: Tot (parser32 p) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) | val make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32:
(input: bytes32
-> Pure (option (t * U32.t))
(requires True)
(ensures (fun res -> parser32_correct p input res))))
: Tot (parser32 p)
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32:
(input: bytes32
-> Pure (option (t * U32.t))
(requires True)
(ensures (fun res -> parser32_correct p input res))))
: Tot (parser32 p) = | false | null | false | (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) {parser32_correct p input res}))) | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.bytes32",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.UInt32.t",
"Prims.l_True",
"LowParse.SLow.Base.parser32_correct",
"LowParse.SLow.Base.parser32"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32:
(input: bytes32
-> Pure (option (t * U32.t))
(requires True)
(ensures (fun res -> parser32_correct p input res))))
: Tot (parser32 p) | [] | LowParse.SLow.Base.make_parser32 | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.Base.parser k t ->
p32:
(input: LowParse.SLow.Base.bytes32
-> Prims.Pure (FStar.Pervasives.Native.option (t * FStar.UInt32.t)))
-> LowParse.SLow.Base.parser32 p | {
"end_col": 102,
"end_line": 64,
"start_col": 2,
"start_line": 64
} |
Prims.GTot | val size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0
= k.parser_kind_high == Some k.parser_kind_low /\
U32.v len32 == k.parser_kind_low | val size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0
let size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0 = | false | null | false | k.parser_kind_high == Some k.parser_kind_low /\ U32.v len32 == k.parser_kind_low | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"sometrivial"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"Prims.nat",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p
let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input)
))
= parser_kind_prop_equiv k p
inline_for_extraction
let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) =
4294967295ul
inline_for_extraction
let add_overflow
(x y: U32.t)
: Pure U32.t
(requires True)
(ensures (fun z ->
if U32.v x + U32.v y > U32.v u32_max then
z == u32_max
else U32.v z == U32.v x + U32.v y
))
= if U32.lt (U32.sub u32_max y) x
then u32_max
else U32.add x y
let size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0
= let sz = Seq.length (serialize s x) in
if sz > U32.v u32_max
then y == u32_max
else U32.v y == sz
[@unifier_hint_injective]
inline_for_extraction
let size32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (x: t) ->
Tot (y: U32.t {
size32_postcond s x y
})
let size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0 | [] | LowParse.SLow.Base.size32_constant_precond | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> len32: FStar.UInt32.t -> Prims.GTot Type0 | {
"end_col": 34,
"end_line": 352,
"start_col": 2,
"start_line": 351
} |
Prims.GTot | val parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
) | val parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0 = | false | null | false | let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\
(let Some (hres', consumed') = gp in
hres == hres' /\ U32.v consumed == (consumed' <: nat)) | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"sometrivial"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.bytes32",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.UInt32.t",
"Prims.eq2",
"LowParse.Spec.Base.consumed_length",
"FStar.Bytes.reveal",
"FStar.Pervasives.Native.None",
"Prims.l_and",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_Some",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.UInt32.v",
"Prims.nat",
"Prims.logical",
"LowParse.Spec.Base.parse"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t)) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0 | [] | LowParse.SLow.Base.parser32_correct | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.Base.parser k t ->
input: LowParse.SLow.Base.bytes32 ->
res: FStar.Pervasives.Native.option (t * FStar.UInt32.t)
-> Prims.GTot Type0 | {
"end_col": 5,
"end_line": 24,
"start_col": 1,
"start_line": 16
} |
Prims.GTot | val validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
) | val validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0 = | false | null | false | let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some consumed ->
Some? gp /\
(let Some (_, consumed') = gp in
U32.v consumed == (consumed' <: nat)) | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"sometrivial"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.bytes32",
"FStar.Pervasives.Native.option",
"FStar.UInt32.t",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"FStar.Bytes.reveal",
"FStar.Pervasives.Native.None",
"Prims.l_and",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_Some",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.UInt32.v",
"Prims.nat",
"Prims.logical",
"LowParse.Spec.Base.parse"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0 | [] | LowParse.SLow.Base.validator_correct | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.Base.parser k t ->
input: LowParse.SLow.Base.bytes32 ->
res: FStar.Pervasives.Native.option FStar.UInt32.t
-> Prims.GTot Type0 | {
"end_col": 5,
"end_line": 91,
"start_col": 1,
"start_line": 84
} |
Prims.GTot | val size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0
= let sz = Seq.length (serialize s x) in
if sz > U32.v u32_max
then y == u32_max
else U32.v y == sz | val size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0
let size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0 = | false | null | false | let sz = Seq.length (serialize s x) in
if sz > U32.v u32_max then y == u32_max else U32.v y == sz | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"sometrivial"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"FStar.UInt32.t",
"Prims.op_GreaterThan",
"FStar.UInt32.v",
"LowParse.SLow.Base.u32_max",
"Prims.eq2",
"Prims.bool",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.nat",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"LowParse.Spec.Base.serialize"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p
let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input)
))
= parser_kind_prop_equiv k p
inline_for_extraction
let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) =
4294967295ul
inline_for_extraction
let add_overflow
(x y: U32.t)
: Pure U32.t
(requires True)
(ensures (fun z ->
if U32.v x + U32.v y > U32.v u32_max then
z == u32_max
else U32.v z == U32.v x + U32.v y
))
= if U32.lt (U32.sub u32_max y) x
then u32_max
else U32.add x y
let size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0 | [] | LowParse.SLow.Base.size32_postcond | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> x: t -> y: FStar.UInt32.t -> Prims.GTot Type0 | {
"end_col": 20,
"end_line": 329,
"start_col": 1,
"start_line": 326
} |
FStar.Pervasives.Lemma | val serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma (requires (serializer32_correct s input res))
(ensures
(let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\
(match k.parser_kind_high with
| Some max -> len <= max
| _ -> True)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input | val serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma (requires (serializer32_correct s input res))
(ensures
(let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\
(match k.parser_kind_high with
| Some max -> len <= max
| _ -> True)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma (requires (serializer32_correct s input res))
(ensures
(let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\
(match k.parser_kind_high with
| Some max -> len <= max
| _ -> True)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = | false | null | true | serialize_length s input | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.bytes32",
"LowParse.Spec.Base.serialize_length",
"Prims.unit",
"LowParse.SLow.Base.serializer32_correct",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"Prims.nat",
"FStar.Pervasives.Native.option",
"Prims.l_True",
"Prims.logical",
"FStar.UInt.uint_t",
"FStar.Bytes.length",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
))) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma (requires (serializer32_correct s input res))
(ensures
(let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\
(match k.parser_kind_high with
| Some max -> len <= max
| _ -> True)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] | [] | LowParse.SLow.Base.serializer32_correct_length | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> input: t -> res: LowParse.SLow.Base.bytes32
-> FStar.Pervasives.Lemma (requires LowParse.SLow.Base.serializer32_correct s input res)
(ensures
(let len = FStar.Bytes.length res in
Mkparser_kind'?.parser_kind_low k <= len /\
(match Mkparser_kind'?.parser_kind_high k with
| FStar.Pervasives.Native.Some #_ max -> len <= max
| _ -> Prims.l_True)))
[
SMTPat (LowParse.SLow.Base.serializer32_correct s input res);
SMTPat (FStar.Bytes.length res)
] | {
"end_col": 26,
"end_line": 147,
"start_col": 2,
"start_line": 147
} |
FStar.Pervasives.Lemma | val parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32)
: Lemma
(requires
(k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input)) (ensures (Some? (p32 input))) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input)
))
= parser_kind_prop_equiv k p | val parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32)
: Lemma
(requires
(k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input)) (ensures (Some? (p32 input)))
let parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32)
: Lemma
(requires
(k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input)) (ensures (Some? (p32 input))) = | false | null | true | parser_kind_prop_equiv k p | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"Prims.unit",
"Prims.l_and",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"Prims.nat",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low",
"LowParse.Spec.Base.parser_kind_metadata_some",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_metadata",
"LowParse.Spec.Base.ParserKindMetadataTotal",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Bytes.length",
"Prims.squash",
"FStar.Pervasives.Native.uu___is_Some",
"FStar.Pervasives.Native.tuple2",
"FStar.UInt32.t",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p
let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32)
: Lemma
(requires
(k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input)) (ensures (Some? (p32 input))) | [] | LowParse.SLow.Base.parse32_total | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p32: LowParse.SLow.Base.parser32 p -> input: LowParse.SLow.Base.bytes32
-> FStar.Pervasives.Lemma
(requires
Mkparser_kind'?.parser_kind_high k ==
FStar.Pervasives.Native.Some (Mkparser_kind'?.parser_kind_low k) /\
Mkparser_kind'?.parser_kind_metadata k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserKindMetadataTotal /\
Mkparser_kind'?.parser_kind_low k <= FStar.Bytes.length input) (ensures Some? (p32 input)) | {
"end_col": 28,
"end_line": 298,
"start_col": 2,
"start_line": 298
} |
FStar.Pervasives.Lemma | val parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma (requires (p32 input == Some (data, consumed)))
(ensures
(k.parser_kind_low <= U32.v consumed /\
(Some? k.parser_kind_high ==>
(let Some hi = k.parser_kind_high in
U32.v consumed <= hi)))) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p | val parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma (requires (p32 input == Some (data, consumed)))
(ensures
(k.parser_kind_low <= U32.v consumed /\
(Some? k.parser_kind_high ==>
(let Some hi = k.parser_kind_high in
U32.v consumed <= hi))))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma (requires (p32 input == Some (data, consumed)))
(ensures
(k.parser_kind_low <= U32.v consumed /\
(Some? k.parser_kind_high ==>
(let Some hi = k.parser_kind_high in
U32.v consumed <= hi)))) = | false | null | true | parser_kind_prop_equiv k p | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"FStar.UInt32.t",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"Prims.unit",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low",
"FStar.UInt32.v",
"Prims.l_imp",
"FStar.Pervasives.Native.uu___is_Some",
"Prims.nat",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"Prims.logical",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma (requires (p32 input == Some (data, consumed)))
(ensures
(k.parser_kind_low <= U32.v consumed /\
(Some? k.parser_kind_high ==>
(let Some hi = k.parser_kind_high in
U32.v consumed <= hi)))) | [] | LowParse.SLow.Base.parse32_size | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p32: LowParse.SLow.Base.parser32 p ->
input: LowParse.SLow.Base.bytes32 ->
data: t ->
consumed: FStar.UInt32.t
-> FStar.Pervasives.Lemma (requires p32 input == FStar.Pervasives.Native.Some (data, consumed))
(ensures
Mkparser_kind'?.parser_kind_low k <= FStar.UInt32.v consumed /\
(Some? (Mkparser_kind'?.parser_kind_high k) ==>
(let _ = Mkparser_kind'?.parser_kind_high k in
(let FStar.Pervasives.Native.Some #_ hi = _ in
FStar.UInt32.v consumed <= hi)
<:
Prims.logical))) | {
"end_col": 28,
"end_line": 281,
"start_col": 2,
"start_line": 281
} |
Prims.Tot | val bytes_of_seq (x: Seq.seq byte {Seq.length x < 4294967296})
: Tot (y: bytes32{(B32.reveal y) `Seq.equal` x}) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bytes_of_seq
(x: Seq.seq byte { Seq.length x < 4294967296 })
: Tot (y: bytes32 { B32.reveal y `Seq.equal` x })
= bytes_of_seq' x B32.empty_bytes | val bytes_of_seq (x: Seq.seq byte {Seq.length x < 4294967296})
: Tot (y: bytes32{(B32.reveal y) `Seq.equal` x})
let bytes_of_seq (x: Seq.seq byte {Seq.length x < 4294967296})
: Tot (y: bytes32{(B32.reveal y) `Seq.equal` x}) = | false | null | false | bytes_of_seq' x B32.empty_bytes | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"LowParse.Bytes.byte",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"LowParse.SLow.Base.bytes_of_seq'",
"FStar.Bytes.empty_bytes",
"LowParse.SLow.Base.bytes32",
"FStar.Seq.Base.equal",
"FStar.Bytes.byte",
"FStar.Bytes.reveal"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p
let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input)
))
= parser_kind_prop_equiv k p
inline_for_extraction
let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) =
4294967295ul
inline_for_extraction
let add_overflow
(x y: U32.t)
: Pure U32.t
(requires True)
(ensures (fun z ->
if U32.v x + U32.v y > U32.v u32_max then
z == u32_max
else U32.v z == U32.v x + U32.v y
))
= if U32.lt (U32.sub u32_max y) x
then u32_max
else U32.add x y
let size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0
= let sz = Seq.length (serialize s x) in
if sz > U32.v u32_max
then y == u32_max
else U32.v y == sz
[@unifier_hint_injective]
inline_for_extraction
let size32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (x: t) ->
Tot (y: U32.t {
size32_postcond s x y
})
let size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0
= k.parser_kind_high == Some k.parser_kind_low /\
U32.v len32 == k.parser_kind_low
inline_for_extraction
let size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit { size32_constant_precond s len32 } )
: Tot (size32 s)
= fun x ->
[@inline_let]
let (z: U32.t { size32_postcond s x z } ) = len32 in
z
inline_for_extraction
let size32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': size32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (size32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
(* Total parsers for sequences *)
[@"opaque_to_smt"]
irreducible
let rec bytes_of_seq'
(x: Seq.seq byte)
(accu: bytes32 { B32.length accu + Seq.length x < 4294967296 })
: Tot (y: bytes32 { B32.reveal y `Seq.equal` (B32.reveal accu `Seq.append` x) })
(decreases (Seq.length x))
= if Seq.length x = 0
then accu
else bytes_of_seq' (Seq.tail x) (B32.append accu (B32.create 1ul (Seq.head x)))
[@"opaque_to_smt"]
inline_for_extraction
let bytes_of_seq
(x: Seq.seq byte { Seq.length x < 4294967296 }) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bytes_of_seq (x: Seq.seq byte {Seq.length x < 4294967296})
: Tot (y: bytes32{(B32.reveal y) `Seq.equal` x}) | [] | LowParse.SLow.Base.bytes_of_seq | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.Seq.Base.seq LowParse.Bytes.byte {FStar.Seq.Base.length x < 4294967296}
-> y: LowParse.SLow.Base.bytes32{FStar.Seq.Base.equal (FStar.Bytes.reveal y) x} | {
"end_col": 33,
"end_line": 400,
"start_col": 2,
"start_line": 400
} |
Prims.Tot | val seq_of_bytes (x: bytes32) : Tot (y: Seq.seq byte {y `Seq.equal` (B32.reveal x)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_of_bytes
(x: bytes32)
: Tot (y: Seq.seq byte { y `Seq.equal` B32.reveal x })
= seq_of_bytes' x Seq.empty | val seq_of_bytes (x: bytes32) : Tot (y: Seq.seq byte {y `Seq.equal` (B32.reveal x)})
let seq_of_bytes (x: bytes32) : Tot (y: Seq.seq byte {y `Seq.equal` (B32.reveal x)}) = | false | null | false | seq_of_bytes' x Seq.empty | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"total"
] | [
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.seq_of_bytes'",
"FStar.Seq.Base.empty",
"LowParse.Bytes.byte",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.equal",
"FStar.Bytes.reveal"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p
let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input)
))
= parser_kind_prop_equiv k p
inline_for_extraction
let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) =
4294967295ul
inline_for_extraction
let add_overflow
(x y: U32.t)
: Pure U32.t
(requires True)
(ensures (fun z ->
if U32.v x + U32.v y > U32.v u32_max then
z == u32_max
else U32.v z == U32.v x + U32.v y
))
= if U32.lt (U32.sub u32_max y) x
then u32_max
else U32.add x y
let size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0
= let sz = Seq.length (serialize s x) in
if sz > U32.v u32_max
then y == u32_max
else U32.v y == sz
[@unifier_hint_injective]
inline_for_extraction
let size32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (x: t) ->
Tot (y: U32.t {
size32_postcond s x y
})
let size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0
= k.parser_kind_high == Some k.parser_kind_low /\
U32.v len32 == k.parser_kind_low
inline_for_extraction
let size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit { size32_constant_precond s len32 } )
: Tot (size32 s)
= fun x ->
[@inline_let]
let (z: U32.t { size32_postcond s x z } ) = len32 in
z
inline_for_extraction
let size32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': size32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (size32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
(* Total parsers for sequences *)
[@"opaque_to_smt"]
irreducible
let rec bytes_of_seq'
(x: Seq.seq byte)
(accu: bytes32 { B32.length accu + Seq.length x < 4294967296 })
: Tot (y: bytes32 { B32.reveal y `Seq.equal` (B32.reveal accu `Seq.append` x) })
(decreases (Seq.length x))
= if Seq.length x = 0
then accu
else bytes_of_seq' (Seq.tail x) (B32.append accu (B32.create 1ul (Seq.head x)))
[@"opaque_to_smt"]
inline_for_extraction
let bytes_of_seq
(x: Seq.seq byte { Seq.length x < 4294967296 })
: Tot (y: bytes32 { B32.reveal y `Seq.equal` x })
= bytes_of_seq' x B32.empty_bytes
inline_for_extraction
let parse_tot_seq_of_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p {
k.parser_kind_subkind == Some ParserStrong /\
begin match k.parser_kind_high with
| None -> False
| Some max -> max < 4294967296
end
})
(x: Seq.seq byte)
: Tot (y: _ { y == parse p x })
= match k.parser_kind_high with
| Some max ->
if Seq.length x < max
then
match p32 (bytes_of_seq x) with
| None -> None
| Some (x, consumed) -> Some (x, U32.v consumed)
else begin
[@inline_let]
let max32 = U32.uint_to_t max in
let res = p32 (bytes_of_seq (Seq.slice x 0 max)) in
Classical.move_requires (parse_strong_prefix p x) (Seq.slice x 0 max);
Classical.move_requires (parse_strong_prefix p (Seq.slice x 0 max)) x;
parser_kind_prop_equiv k p;
match res with
| None -> None
| Some (x, consumed) -> Some (x, U32.v consumed)
end
[@"opaque_to_smt"]
irreducible
let rec seq_of_bytes'
(x: bytes32)
(accu: Seq.seq byte)
: Tot (y: Seq.seq byte { y `Seq.equal` (accu `Seq.append` B32.reveal x) })
(decreases (B32.length x))
= if B32.len x = 0ul
then accu
else (seq_of_bytes' (B32.slice x 1ul (B32.len x)) (Seq.append accu (Seq.create 1 (B32.index x 0))) <: Seq.seq byte)
[@"opaque_to_smt"]
inline_for_extraction
let seq_of_bytes
(x: bytes32) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_of_bytes (x: bytes32) : Tot (y: Seq.seq byte {y `Seq.equal` (B32.reveal x)}) | [] | LowParse.SLow.Base.seq_of_bytes | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: LowParse.SLow.Base.bytes32
-> y: FStar.Seq.Base.seq LowParse.Bytes.byte {FStar.Seq.Base.equal y (FStar.Bytes.reveal x)} | {
"end_col": 27,
"end_line": 451,
"start_col": 2,
"start_line": 451
} |
FStar.Pervasives.Lemma | val serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2)) | val serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) = | false | null | true | assert (parse p (serialize s input1) == parse p (serialize s input2)) | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.serializer32",
"Prims._assert",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.serialize",
"LowParse.Spec.Base.parse",
"Prims.unit",
"LowParse.SLow.Base.bytes32",
"Prims.l_or",
"LowParse.SLow.Base.serializer32_correct",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2)) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) | [] | LowParse.SLow.Base.serializer32_injective | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.Base.serializer p ->
s32: LowParse.SLow.Base.serializer32 s ->
input1: t ->
input2: t
-> FStar.Pervasives.Lemma (requires s32 input1 == s32 input2) (ensures input1 == input2) | {
"end_col": 71,
"end_line": 263,
"start_col": 2,
"start_line": 263
} |
Prims.Tot | val size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit{size32_constant_precond s len32})
: Tot (size32 s) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit { size32_constant_precond s len32 } )
: Tot (size32 s)
= fun x ->
[@inline_let]
let (z: U32.t { size32_postcond s x z } ) = len32 in
z | val size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit{size32_constant_precond s len32})
: Tot (size32 s)
let size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit{size32_constant_precond s len32})
: Tot (size32 s) = | false | null | false | fun x ->
[@@ inline_let ]let z:z: U32.t{size32_postcond s x z} = len32 in
z | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"FStar.UInt32.t",
"Prims.unit",
"LowParse.SLow.Base.size32_constant_precond",
"LowParse.SLow.Base.size32_postcond",
"LowParse.SLow.Base.size32"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p
let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input)
))
= parser_kind_prop_equiv k p
inline_for_extraction
let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) =
4294967295ul
inline_for_extraction
let add_overflow
(x y: U32.t)
: Pure U32.t
(requires True)
(ensures (fun z ->
if U32.v x + U32.v y > U32.v u32_max then
z == u32_max
else U32.v z == U32.v x + U32.v y
))
= if U32.lt (U32.sub u32_max y) x
then u32_max
else U32.add x y
let size32_postcond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(x: t)
(y: U32.t)
: GTot Type0
= let sz = Seq.length (serialize s x) in
if sz > U32.v u32_max
then y == u32_max
else U32.v y == sz
[@unifier_hint_injective]
inline_for_extraction
let size32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (x: t) ->
Tot (y: U32.t {
size32_postcond s x y
})
let size32_constant_precond
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
: GTot Type0
= k.parser_kind_high == Some k.parser_kind_low /\
U32.v len32 == k.parser_kind_low
inline_for_extraction
let size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit { size32_constant_precond s len32 } ) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_constant
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(len32: U32.t)
(u: unit{size32_constant_precond s len32})
: Tot (size32 s) | [] | LowParse.SLow.Base.size32_constant | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.Base.serializer p ->
len32: FStar.UInt32.t ->
u147: u148: Prims.unit{LowParse.SLow.Base.size32_constant_precond s len32}
-> LowParse.SLow.Base.size32 s | {
"end_col": 3,
"end_line": 366,
"start_col": 2,
"start_line": 363
} |
Prims.Tot | val u32_max:(y: U32.t{forall (x: U32.t). {:pattern (U32.v x)} U32.v x <= U32.v y}) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) =
4294967295ul | val u32_max:(y: U32.t{forall (x: U32.t). {:pattern (U32.v x)} U32.v x <= U32.v y})
let u32_max:(y: U32.t{forall (x: U32.t). {:pattern (U32.v x)} U32.v x <= U32.v y}) = | false | null | false | 4294967295ul | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32
let validator_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option U32.t)
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (consumed) ->
Some? gp /\ (
let (Some (_ , consumed')) = gp in
U32.v consumed == (consumed' <: nat)
)
let validator
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } )
let serializer32_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res == s input
let serializer32_correct'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: GTot Type0
= B32.reveal res `bytes_equal` s input
[@unifier_hint_injective]
inline_for_extraction
let serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_correct_length
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(input: t)
(res: bytes32)
: Lemma
(requires (serializer32_correct s input res))
(ensures (
let len = FStar.Bytes.length res in
k.parser_kind_low <= len /\ (
match k.parser_kind_high with
| Some max -> len <= max
| _ -> True
)))
[SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)]
= serialize_length s input
inline_for_extraction
let serialize32_ext
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(s1: serializer p1)
(s1': serializer32 s1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
: Tot (serializer32 (serialize_ext p1 s1 p2))
= fun input -> s1' input
inline_for_extraction
let partial_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
: Tot Type
= (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } )
let serializer32_then_parser32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: t)
: Lemma
(p32 (s32 input) == Some (input, B32.len (s32 input)))
= ()
let parser32_then_serializer32
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
: Lemma
(requires (Some? (p32 input)))
(ensures (
let (Some (v, consumed)) = p32 input in
U32.v consumed <= B32.length input /\
s32 v == B32.b32slice input 0ul consumed
))
= serializer_correct_implies_complete p s
let parser32_then_serializer32'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(p32: parser32 p)
(s32: serializer32 s)
(input: bytes32)
(v: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (v, consumed)))
(ensures (
B32.length (s32 v) == U32.v consumed /\
U32.v consumed <= B32.length input /\
B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
))
= parser32_then_serializer32 s p32 s32 input
let parser32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input1 input2: bytes32)
: Lemma
(requires (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, _)) = p1 in
let (Some (v2, _)) = p2 in
v1 == v2
)))
(ensures (
let p1 = p32 input1 in
let p2 = p32 input2 in
Some? p1 /\
Some? p2 /\ (
let (Some (v1, consumed1)) = p1 in
let (Some (v2, consumed2)) = p2 in
v1 == v2 /\
consumed1 == consumed2 /\
U32.v consumed1 <= B32.length input1 /\
U32.v consumed2 <= B32.length input2 /\
B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
)))
= parser_kind_prop_equiv k p;
assert (injective_precond p (B32.reveal input1) (B32.reveal input2));
assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
let serializer32_injective
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(s32: serializer32 s)
(input1 input2: t)
: Lemma
(requires (s32 input1 == s32 input2))
(ensures (input1 == input2))
= assert (parse p (serialize s input1) == parse p (serialize s input2))
let parse32_size
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
(data: t)
(consumed: U32.t)
: Lemma
(requires (p32 input == Some (data, consumed)))
(ensures (
k.parser_kind_low <= U32.v consumed /\ (
Some? k.parser_kind_high ==> (
let (Some hi) = k.parser_kind_high in
U32.v consumed <= hi
))))
= parser_kind_prop_equiv k p
let parse32_total
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(requires (
k.parser_kind_high == Some k.parser_kind_low /\
k.parser_kind_metadata == Some ParserKindMetadataTotal /\
k.parser_kind_low <= B32.length input
))
(ensures (
Some? (p32 input)
))
= parser_kind_prop_equiv k p
inline_for_extraction | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u32_max:(y: U32.t{forall (x: U32.t). {:pattern (U32.v x)} U32.v x <= U32.v y}) | [] | LowParse.SLow.Base.u32_max | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | y:
FStar.UInt32.t
{forall (x: FStar.UInt32.t). {:pattern FStar.UInt32.v x} FStar.UInt32.v x <= FStar.UInt32.v y} | {
"end_col": 14,
"end_line": 302,
"start_col": 2,
"start_line": 302
} |
Prims.Tot | val coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit{t2 == t1})
: Tot (parser32 (coerce_parser t2 p)) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } )
: Tot (parser32 (coerce_parser t2 p))
= p32 | val coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit{t2 == t1})
: Tot (parser32 (coerce_parser t2 p))
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit{t2 == t1})
: Tot (parser32 (coerce_parser t2 p)) = | false | null | false | p32 | {
"checked_file": "LowParse.SLow.Base.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Base.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"Prims.unit",
"Prims.eq2",
"LowParse.Spec.Base.coerce_parser"
] | [] | module LowParse.SLow.Base
include LowParse.Spec.Base
module B32 = LowParse.Bytes32
module U32 = FStar.UInt32
let bytes32 = B32.bytes
let parser32_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(input: bytes32)
(res: option (t * U32.t))
: GTot Type0
= let gp = parse p (B32.reveal input) in
match res with
| None -> gp == None
| Some (hres, consumed) ->
Some? gp /\ (
let (Some (hres' , consumed')) = gp in
hres == hres' /\
U32.v consumed == (consumed' <: nat)
)
[@unifier_hint_injective]
inline_for_extraction
let parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot Type
= (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } )
let parser32_consumes
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input))
= ()
let parser32_consumes'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(input: bytes32)
: Lemma
(match p32 input with
| Some (_, consumed) -> U32.v consumed <= B32.length input
| _ -> True)
= ()
inline_for_extraction
let make_parser32
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res)))
: Tot (parser32 p)
= (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } )))
inline_for_extraction
let coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit { t2 == t1 } ) | false | false | LowParse.SLow.Base.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val coerce_parser32
(t2: Type)
(#k: parser_kind)
(#t1: Type)
(#p: parser k t1)
(p32: parser32 p)
(u: unit{t2 == t1})
: Tot (parser32 (coerce_parser t2 p)) | [] | LowParse.SLow.Base.coerce_parser32 | {
"file_name": "src/lowparse/LowParse.SLow.Base.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | t2: Type -> p32: LowParse.SLow.Base.parser32 p -> u33: u34: Prims.unit{t2 == t1}
-> LowParse.SLow.Base.parser32 (LowParse.Spec.Base.coerce_parser t2 p) | {
"end_col": 5,
"end_line": 75,
"start_col": 2,
"start_line": 75
} |
Subsets and Splits