effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val seq_of_bytes' (x: bytes32) (accu: Seq.seq byte) : Tot (y: Seq.seq byte {y `Seq.equal` (accu `Seq.append` (B32.reveal x))}) (decreases (B32.length x))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_of_bytes' (x: bytes32) (accu: Seq.seq byte) : Tot (y: Seq.seq byte { y `Seq.equal` (accu `Seq.append` B32.reveal x) }) (decreases (B32.length x)) = if B32.len x = 0ul then accu else (seq_of_bytes' (B32.slice x 1ul (B32.len x)) (Seq.append accu (Seq.create 1 (B32.index x 0))) <: Seq.seq byte)
val seq_of_bytes' (x: bytes32) (accu: Seq.seq byte) : Tot (y: Seq.seq byte {y `Seq.equal` (accu `Seq.append` (B32.reveal x))}) (decreases (B32.length x)) let rec seq_of_bytes' (x: bytes32) (accu: Seq.seq byte) : Tot (y: Seq.seq byte {y `Seq.equal` (accu `Seq.append` (B32.reveal x))}) (decreases (B32.length x)) =
false
null
false
if B32.len x = 0ul then accu else (seq_of_bytes' (B32.slice x 1ul (B32.len x)) (Seq.append accu (Seq.create 1 (B32.index x 0))) <: Seq.seq byte)
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "total", "" ]
[ "LowParse.SLow.Base.bytes32", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "Prims.op_Equality", "FStar.UInt32.t", "FStar.Bytes.len", "FStar.UInt32.__uint_to_t", "Prims.bool", "LowParse.SLow.Base.seq_of_bytes'", "FStar.Bytes.slice", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "FStar.Bytes.index", "FStar.Seq.Base.equal", "FStar.Bytes.reveal" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2 ))) = parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2)) let serializer32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (s32: serializer32 s) (input1 input2: t) : Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) = assert (parse p (serialize s input1) == parse p (serialize s input2)) let parse32_size (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) (data: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (data, consumed))) (ensures ( k.parser_kind_low <= U32.v consumed /\ ( Some? k.parser_kind_high ==> ( let (Some hi) = k.parser_kind_high in U32.v consumed <= hi )))) = parser_kind_prop_equiv k p let parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low <= B32.length input )) (ensures ( Some? (p32 input) )) = parser_kind_prop_equiv k p inline_for_extraction let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) = 4294967295ul inline_for_extraction let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) = if U32.lt (U32.sub u32_max y) x then u32_max else U32.add x y let size32_postcond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (y: U32.t) : GTot Type0 = let sz = Seq.length (serialize s x) in if sz > U32.v u32_max then y == u32_max else U32.v y == sz [@unifier_hint_injective] inline_for_extraction let size32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (x: t) -> Tot (y: U32.t { size32_postcond s x y }) let size32_constant_precond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) : GTot Type0 = k.parser_kind_high == Some k.parser_kind_low /\ U32.v len32 == k.parser_kind_low inline_for_extraction let size32_constant (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) (u: unit { size32_constant_precond s len32 } ) : Tot (size32 s) = fun x -> [@inline_let] let (z: U32.t { size32_postcond s x z } ) = len32 in z inline_for_extraction let size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2)) = fun input -> s1' input (* Total parsers for sequences *) [@"opaque_to_smt"] irreducible let rec bytes_of_seq' (x: Seq.seq byte) (accu: bytes32 { B32.length accu + Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` (B32.reveal accu `Seq.append` x) }) (decreases (Seq.length x)) = if Seq.length x = 0 then accu else bytes_of_seq' (Seq.tail x) (B32.append accu (B32.create 1ul (Seq.head x))) [@"opaque_to_smt"] inline_for_extraction let bytes_of_seq (x: Seq.seq byte { Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` x }) = bytes_of_seq' x B32.empty_bytes inline_for_extraction let parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ begin match k.parser_kind_high with | None -> False | Some max -> max < 4294967296 end }) (x: Seq.seq byte) : Tot (y: _ { y == parse p x }) = match k.parser_kind_high with | Some max -> if Seq.length x < max then match p32 (bytes_of_seq x) with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed) else begin [@inline_let] let max32 = U32.uint_to_t max in let res = p32 (bytes_of_seq (Seq.slice x 0 max)) in Classical.move_requires (parse_strong_prefix p x) (Seq.slice x 0 max); Classical.move_requires (parse_strong_prefix p (Seq.slice x 0 max)) x; parser_kind_prop_equiv k p; match res with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed) end [@"opaque_to_smt"] irreducible let rec seq_of_bytes' (x: bytes32) (accu: Seq.seq byte) : Tot (y: Seq.seq byte { y `Seq.equal` (accu `Seq.append` B32.reveal x) })
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_of_bytes' (x: bytes32) (accu: Seq.seq byte) : Tot (y: Seq.seq byte {y `Seq.equal` (accu `Seq.append` (B32.reveal x))}) (decreases (B32.length x))
[ "recursion" ]
LowParse.SLow.Base.seq_of_bytes'
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: LowParse.SLow.Base.bytes32 -> accu: FStar.Seq.Base.seq LowParse.Bytes.byte -> Prims.Tot (y: FStar.Seq.Base.seq LowParse.Bytes.byte {FStar.Seq.Base.equal y (FStar.Seq.Base.append accu (FStar.Bytes.reveal x))})
{ "end_col": 117, "end_line": 444, "start_col": 2, "start_line": 442 }
Prims.Tot
val serialize_tot_seq_of_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (s32: serializer32 s) (x: t) : Tot (y: _{y == serialize s x})
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_tot_seq_of_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (s32: serializer32 s) (x: t) : Tot (y: _ { y == serialize s x }) = seq_of_bytes (s32 x)
val serialize_tot_seq_of_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (s32: serializer32 s) (x: t) : Tot (y: _{y == serialize s x}) let serialize_tot_seq_of_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (s32: serializer32 s) (x: t) : Tot (y: _{y == serialize s x}) =
false
null
false
seq_of_bytes (s32 x)
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.serializer32", "LowParse.SLow.Base.seq_of_bytes", "LowParse.Bytes.bytes", "Prims.eq2", "LowParse.Spec.Base.serialize" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2 ))) = parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2)) let serializer32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (s32: serializer32 s) (input1 input2: t) : Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) = assert (parse p (serialize s input1) == parse p (serialize s input2)) let parse32_size (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) (data: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (data, consumed))) (ensures ( k.parser_kind_low <= U32.v consumed /\ ( Some? k.parser_kind_high ==> ( let (Some hi) = k.parser_kind_high in U32.v consumed <= hi )))) = parser_kind_prop_equiv k p let parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low <= B32.length input )) (ensures ( Some? (p32 input) )) = parser_kind_prop_equiv k p inline_for_extraction let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) = 4294967295ul inline_for_extraction let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) = if U32.lt (U32.sub u32_max y) x then u32_max else U32.add x y let size32_postcond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (y: U32.t) : GTot Type0 = let sz = Seq.length (serialize s x) in if sz > U32.v u32_max then y == u32_max else U32.v y == sz [@unifier_hint_injective] inline_for_extraction let size32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (x: t) -> Tot (y: U32.t { size32_postcond s x y }) let size32_constant_precond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) : GTot Type0 = k.parser_kind_high == Some k.parser_kind_low /\ U32.v len32 == k.parser_kind_low inline_for_extraction let size32_constant (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) (u: unit { size32_constant_precond s len32 } ) : Tot (size32 s) = fun x -> [@inline_let] let (z: U32.t { size32_postcond s x z } ) = len32 in z inline_for_extraction let size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2)) = fun input -> s1' input (* Total parsers for sequences *) [@"opaque_to_smt"] irreducible let rec bytes_of_seq' (x: Seq.seq byte) (accu: bytes32 { B32.length accu + Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` (B32.reveal accu `Seq.append` x) }) (decreases (Seq.length x)) = if Seq.length x = 0 then accu else bytes_of_seq' (Seq.tail x) (B32.append accu (B32.create 1ul (Seq.head x))) [@"opaque_to_smt"] inline_for_extraction let bytes_of_seq (x: Seq.seq byte { Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` x }) = bytes_of_seq' x B32.empty_bytes inline_for_extraction let parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ begin match k.parser_kind_high with | None -> False | Some max -> max < 4294967296 end }) (x: Seq.seq byte) : Tot (y: _ { y == parse p x }) = match k.parser_kind_high with | Some max -> if Seq.length x < max then match p32 (bytes_of_seq x) with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed) else begin [@inline_let] let max32 = U32.uint_to_t max in let res = p32 (bytes_of_seq (Seq.slice x 0 max)) in Classical.move_requires (parse_strong_prefix p x) (Seq.slice x 0 max); Classical.move_requires (parse_strong_prefix p (Seq.slice x 0 max)) x; parser_kind_prop_equiv k p; match res with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed) end [@"opaque_to_smt"] irreducible let rec seq_of_bytes' (x: bytes32) (accu: Seq.seq byte) : Tot (y: Seq.seq byte { y `Seq.equal` (accu `Seq.append` B32.reveal x) }) (decreases (B32.length x)) = if B32.len x = 0ul then accu else (seq_of_bytes' (B32.slice x 1ul (B32.len x)) (Seq.append accu (Seq.create 1 (B32.index x 0))) <: Seq.seq byte) [@"opaque_to_smt"] inline_for_extraction let seq_of_bytes (x: bytes32) : Tot (y: Seq.seq byte { y `Seq.equal` B32.reveal x }) = seq_of_bytes' x Seq.empty inline_for_extraction let serialize_tot_seq_of_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (s32: serializer32 s) (x: t)
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_tot_seq_of_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (s32: serializer32 s) (x: t) : Tot (y: _{y == serialize s x})
[]
LowParse.SLow.Base.serialize_tot_seq_of_serializer32
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
s32: LowParse.SLow.Base.serializer32 s -> x: t -> y: LowParse.Bytes.bytes{y == LowParse.Spec.Base.serialize s x}
{ "end_col": 22, "end_line": 462, "start_col": 2, "start_line": 462 }
Prims.Tot
val bytes_of_seq' (x: Seq.seq byte) (accu: bytes32{B32.length accu + Seq.length x < 4294967296}) : Tot (y: bytes32{(B32.reveal y) `Seq.equal` ((B32.reveal accu) `Seq.append` x)}) (decreases (Seq.length x))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bytes_of_seq' (x: Seq.seq byte) (accu: bytes32 { B32.length accu + Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` (B32.reveal accu `Seq.append` x) }) (decreases (Seq.length x)) = if Seq.length x = 0 then accu else bytes_of_seq' (Seq.tail x) (B32.append accu (B32.create 1ul (Seq.head x)))
val bytes_of_seq' (x: Seq.seq byte) (accu: bytes32{B32.length accu + Seq.length x < 4294967296}) : Tot (y: bytes32{(B32.reveal y) `Seq.equal` ((B32.reveal accu) `Seq.append` x)}) (decreases (Seq.length x)) let rec bytes_of_seq' (x: Seq.seq byte) (accu: bytes32{B32.length accu + Seq.length x < 4294967296}) : Tot (y: bytes32{(B32.reveal y) `Seq.equal` ((B32.reveal accu) `Seq.append` x)}) (decreases (Seq.length x)) =
false
null
false
if Seq.length x = 0 then accu else bytes_of_seq' (Seq.tail x) (B32.append accu (B32.create 1ul (Seq.head x)))
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "LowParse.SLow.Base.bytes32", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Bytes.length", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.bool", "LowParse.SLow.Base.bytes_of_seq'", "FStar.Seq.Properties.tail", "FStar.Bytes.append", "FStar.Bytes.create", "FStar.UInt32.__uint_to_t", "FStar.Seq.Properties.head", "FStar.Seq.Base.equal", "FStar.Bytes.byte", "FStar.Bytes.reveal", "FStar.Seq.Base.append" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2 ))) = parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2)) let serializer32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (s32: serializer32 s) (input1 input2: t) : Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) = assert (parse p (serialize s input1) == parse p (serialize s input2)) let parse32_size (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) (data: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (data, consumed))) (ensures ( k.parser_kind_low <= U32.v consumed /\ ( Some? k.parser_kind_high ==> ( let (Some hi) = k.parser_kind_high in U32.v consumed <= hi )))) = parser_kind_prop_equiv k p let parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low <= B32.length input )) (ensures ( Some? (p32 input) )) = parser_kind_prop_equiv k p inline_for_extraction let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) = 4294967295ul inline_for_extraction let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) = if U32.lt (U32.sub u32_max y) x then u32_max else U32.add x y let size32_postcond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (y: U32.t) : GTot Type0 = let sz = Seq.length (serialize s x) in if sz > U32.v u32_max then y == u32_max else U32.v y == sz [@unifier_hint_injective] inline_for_extraction let size32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (x: t) -> Tot (y: U32.t { size32_postcond s x y }) let size32_constant_precond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) : GTot Type0 = k.parser_kind_high == Some k.parser_kind_low /\ U32.v len32 == k.parser_kind_low inline_for_extraction let size32_constant (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) (u: unit { size32_constant_precond s len32 } ) : Tot (size32 s) = fun x -> [@inline_let] let (z: U32.t { size32_postcond s x z } ) = len32 in z inline_for_extraction let size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2)) = fun input -> s1' input (* Total parsers for sequences *) [@"opaque_to_smt"] irreducible let rec bytes_of_seq' (x: Seq.seq byte) (accu: bytes32 { B32.length accu + Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` (B32.reveal accu `Seq.append` x) })
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bytes_of_seq' (x: Seq.seq byte) (accu: bytes32{B32.length accu + Seq.length x < 4294967296}) : Tot (y: bytes32{(B32.reveal y) `Seq.equal` ((B32.reveal accu) `Seq.append` x)}) (decreases (Seq.length x))
[ "recursion" ]
LowParse.SLow.Base.bytes_of_seq'
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: FStar.Seq.Base.seq LowParse.Bytes.byte -> accu: LowParse.SLow.Base.bytes32{FStar.Bytes.length accu + FStar.Seq.Base.length x < 4294967296} -> Prims.Tot (y: LowParse.SLow.Base.bytes32 { FStar.Seq.Base.equal (FStar.Bytes.reveal y) (FStar.Seq.Base.append (FStar.Bytes.reveal accu) x) })
{ "end_col": 81, "end_line": 393, "start_col": 2, "start_line": 391 }
Prims.Pure
val add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y ))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) = if U32.lt (U32.sub u32_max y) x then u32_max else U32.add x y
val add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) =
false
null
false
if U32.lt (U32.sub u32_max y) x then u32_max else U32.add x y
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.lt", "FStar.UInt32.sub", "LowParse.SLow.Base.u32_max", "Prims.bool", "FStar.UInt32.add", "Prims.l_True", "Prims.op_GreaterThan", "Prims.op_Addition", "FStar.UInt32.v", "Prims.eq2", "Prims.int" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2 ))) = parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2)) let serializer32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (s32: serializer32 s) (input1 input2: t) : Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) = assert (parse p (serialize s input1) == parse p (serialize s input2)) let parse32_size (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) (data: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (data, consumed))) (ensures ( k.parser_kind_low <= U32.v consumed /\ ( Some? k.parser_kind_high ==> ( let (Some hi) = k.parser_kind_high in U32.v consumed <= hi )))) = parser_kind_prop_equiv k p let parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low <= B32.length input )) (ensures ( Some? (p32 input) )) = parser_kind_prop_equiv k p inline_for_extraction let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) = 4294967295ul inline_for_extraction let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y ))
[]
LowParse.SLow.Base.add_overflow
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 18, "end_line": 316, "start_col": 2, "start_line": 314 }
Prims.Tot
val serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input
val serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) =
false
null
false
fun input -> s1' input
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.serializer32", "Prims.squash", "Prims.l_and", "Prims.eq2", "Prims.l_Forall", "LowParse.Bytes.bytes", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.SLow.Base.bytes32", "LowParse.SLow.Base.serializer32_correct", "LowParse.Spec.Base.serialize_ext" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2))
[]
LowParse.SLow.Base.serialize32_ext
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p1: LowParse.Spec.Base.parser k1 t1 -> s1: LowParse.Spec.Base.serializer p1 -> s1': LowParse.SLow.Base.serializer32 s1 -> p2: LowParse.Spec.Base.parser k2 t2 -> u75: Prims.squash (t1 == t2 /\ (forall (input: LowParse.Bytes.bytes). LowParse.Spec.Base.parse p1 input == LowParse.Spec.Base.parse p2 input)) -> LowParse.SLow.Base.serializer32 (LowParse.Spec.Base.serialize_ext p1 s1 p2)
{ "end_col": 24, "end_line": 161, "start_col": 2, "start_line": 161 }
FStar.Pervasives.Lemma
val parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures (B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input
val parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures (B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed))) let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures (B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed))) =
false
null
true
parser32_then_serializer32 s p32 s32 input
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.parser32", "LowParse.SLow.Base.serializer32", "LowParse.SLow.Base.bytes32", "FStar.UInt32.t", "LowParse.SLow.Base.parser32_then_serializer32", "Prims.unit", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Prims.squash", "Prims.l_and", "FStar.UInt.uint_t", "FStar.Bytes.length", "FStar.UInt32.v", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.seq", "FStar.Bytes.byte", "FStar.Bytes.reveal", "FStar.Seq.Base.slice", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures (B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed)))
[]
LowParse.SLow.Base.parser32_then_serializer32'
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p32: LowParse.SLow.Base.parser32 p -> s32: LowParse.SLow.Base.serializer32 s -> input: LowParse.SLow.Base.bytes32 -> v: t -> consumed: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires p32 input == FStar.Pervasives.Native.Some (v, consumed)) (ensures FStar.Bytes.length (s32 v) == FStar.UInt32.v consumed /\ FStar.UInt32.v consumed <= FStar.Bytes.length input /\ FStar.Bytes.reveal (s32 v) == FStar.Seq.Base.slice (FStar.Bytes.reveal input) 0 (FStar.UInt32.v consumed))
{ "end_col": 44, "end_line": 218, "start_col": 2, "start_line": 218 }
Prims.Tot
val size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2)) = fun input -> s1' input
val size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2)) let size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2)) =
false
null
false
fun input -> s1' input
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.size32", "Prims.squash", "Prims.l_and", "Prims.eq2", "Prims.l_Forall", "LowParse.Bytes.bytes", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "FStar.UInt32.t", "LowParse.SLow.Base.size32_postcond", "LowParse.Spec.Base.serialize_ext" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2 ))) = parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2)) let serializer32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (s32: serializer32 s) (input1 input2: t) : Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) = assert (parse p (serialize s input1) == parse p (serialize s input2)) let parse32_size (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) (data: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (data, consumed))) (ensures ( k.parser_kind_low <= U32.v consumed /\ ( Some? k.parser_kind_high ==> ( let (Some hi) = k.parser_kind_high in U32.v consumed <= hi )))) = parser_kind_prop_equiv k p let parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low <= B32.length input )) (ensures ( Some? (p32 input) )) = parser_kind_prop_equiv k p inline_for_extraction let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) = 4294967295ul inline_for_extraction let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) = if U32.lt (U32.sub u32_max y) x then u32_max else U32.add x y let size32_postcond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (y: U32.t) : GTot Type0 = let sz = Seq.length (serialize s x) in if sz > U32.v u32_max then y == u32_max else U32.v y == sz [@unifier_hint_injective] inline_for_extraction let size32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (x: t) -> Tot (y: U32.t { size32_postcond s x y }) let size32_constant_precond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) : GTot Type0 = k.parser_kind_high == Some k.parser_kind_low /\ U32.v len32 == k.parser_kind_low inline_for_extraction let size32_constant (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) (u: unit { size32_constant_precond s len32 } ) : Tot (size32 s) = fun x -> [@inline_let] let (z: U32.t { size32_postcond s x z } ) = len32 in z inline_for_extraction let size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input)))
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes). parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2))
[]
LowParse.SLow.Base.size32_ext
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p1: LowParse.Spec.Base.parser k1 t1 -> s1: LowParse.Spec.Base.serializer p1 -> s1': LowParse.SLow.Base.size32 s1 -> p2: LowParse.Spec.Base.parser k2 t2 -> u159: Prims.squash (t1 == t2 /\ (forall (input: LowParse.Bytes.bytes). LowParse.Spec.Base.parse p1 input == LowParse.Spec.Base.parse p2 input)) -> LowParse.SLow.Base.size32 (LowParse.Spec.Base.serialize_ext p1 s1 p2)
{ "end_col": 24, "end_line": 380, "start_col": 2, "start_line": 380 }
FStar.Pervasives.Lemma
val parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures (let Some (v, consumed) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s
val parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures (let Some (v, consumed) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed)) let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures (let Some (v, consumed) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed)) =
false
null
true
serializer_correct_implies_complete p s
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.parser32", "LowParse.SLow.Base.serializer32", "LowParse.SLow.Base.bytes32", "LowParse.Spec.Base.serializer_correct_implies_complete", "Prims.unit", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.tuple2", "FStar.UInt32.t", "Prims.squash", "Prims.l_and", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.Bytes.length", "Prims.eq2", "FStar.Bytes.bytes", "LowParse.Bytes32.b32slice", "FStar.UInt32.__uint_to_t", "FStar.Pervasives.Native.option", "LowParse.SLow.Base.parser32_correct", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures (let Some (v, consumed) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed))
[]
LowParse.SLow.Base.parser32_then_serializer32
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
s: LowParse.Spec.Base.serializer p -> p32: LowParse.SLow.Base.parser32 p -> s32: LowParse.SLow.Base.serializer32 s -> input: LowParse.SLow.Base.bytes32 -> FStar.Pervasives.Lemma (requires Some? (p32 input)) (ensures (let _ = p32 input in (let FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ v consumed) = _ in FStar.UInt32.v consumed <= FStar.Bytes.length input /\ s32 v == LowParse.Bytes32.b32slice input 0ul consumed) <: Type0))
{ "end_col": 41, "end_line": 199, "start_col": 2, "start_line": 199 }
FStar.Pervasives.Lemma
val parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, _) = p1 in let Some (v2, _) = p2 in v1 == v2))) (ensures (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, consumed1) = p1 in let Some (v2, consumed2) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2)))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2 ))) = parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
val parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, _) = p1 in let Some (v2, _) = p2 in v1 == v2))) (ensures (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, consumed1) = p1 in let Some (v2, consumed2) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2))) let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, _) = p1 in let Some (v2, _) = p2 in v1 == v2))) (ensures (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, consumed1) = p1 in let Some (v2, consumed2) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2))) =
false
null
true
parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2))
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.SLow.Base.parser32", "LowParse.SLow.Base.bytes32", "Prims._assert", "LowParse.Spec.Base.injective_postcond", "FStar.Bytes.reveal", "Prims.unit", "LowParse.Spec.Base.injective_precond", "LowParse.Spec.Base.parser_kind_prop_equiv", "Prims.l_and", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.tuple2", "FStar.UInt32.t", "Prims.eq2", "Prims.logical", "FStar.Pervasives.Native.option", "LowParse.SLow.Base.parser32_correct", "Prims.squash", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.Bytes.length", "FStar.Bytes.bytes", "LowParse.Bytes32.b32slice", "FStar.UInt32.__uint_to_t", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, _) = p1 in let Some (v2, _) = p2 in v1 == v2))) (ensures (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let Some (v1, consumed1) = p1 in let Some (v2, consumed2) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2)))
[]
LowParse.SLow.Base.parser32_injective
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p32: LowParse.SLow.Base.parser32 p -> input1: LowParse.SLow.Base.bytes32 -> input2: LowParse.SLow.Base.bytes32 -> FStar.Pervasives.Lemma (requires (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let _ = p1 in (let FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ v1 _) = _ in let _ = p2 in (let FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ v2 _) = _ in v1 == v2) <: Prims.logical) <: Prims.logical))) (ensures (let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ (let _ = p1 in (let FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ v1 consumed1) = _ in let _ = p2 in (let FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ v2 consumed2) = _ in v1 == v2 /\ consumed1 == consumed2 /\ FStar.UInt32.v consumed1 <= FStar.Bytes.length input1 /\ FStar.UInt32.v consumed2 <= FStar.Bytes.length input2 /\ LowParse.Bytes32.b32slice input1 0ul consumed1 == LowParse.Bytes32.b32slice input2 0ul consumed2) <: Prims.logical) <: Prims.logical)))
{ "end_col": 71, "end_line": 251, "start_col": 2, "start_line": 249 }
Prims.Tot
val parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ (match k.parser_kind_high with | None -> False | Some max -> max < 4294967296) }) (x: Seq.seq byte) : Tot (y: _{y == parse p x})
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ begin match k.parser_kind_high with | None -> False | Some max -> max < 4294967296 end }) (x: Seq.seq byte) : Tot (y: _ { y == parse p x }) = match k.parser_kind_high with | Some max -> if Seq.length x < max then match p32 (bytes_of_seq x) with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed) else begin [@inline_let] let max32 = U32.uint_to_t max in let res = p32 (bytes_of_seq (Seq.slice x 0 max)) in Classical.move_requires (parse_strong_prefix p x) (Seq.slice x 0 max); Classical.move_requires (parse_strong_prefix p (Seq.slice x 0 max)) x; parser_kind_prop_equiv k p; match res with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed) end
val parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ (match k.parser_kind_high with | None -> False | Some max -> max < 4294967296) }) (x: Seq.seq byte) : Tot (y: _{y == parse p x}) let parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ (match k.parser_kind_high with | None -> False | Some max -> max < 4294967296) }) (x: Seq.seq byte) : Tot (y: _{y == parse p x}) =
false
null
false
match k.parser_kind_high with | Some max -> if Seq.length x < max then match p32 (bytes_of_seq x) with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed) else [@@ inline_let ]let max32 = U32.uint_to_t max in let res = p32 (bytes_of_seq (Seq.slice x 0 max)) in Classical.move_requires (parse_strong_prefix p x) (Seq.slice x 0 max); Classical.move_requires (parse_strong_prefix p (Seq.slice x 0 max)) x; parser_kind_prop_equiv k p; match res with | None -> None | Some (x, consumed) -> Some (x, U32.v consumed)
{ "checked_file": "LowParse.SLow.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Base.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.SLow.Base.parser32", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high", "Prims.l_False", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.logical", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "FStar.Seq.Base.length", "LowParse.SLow.Base.bytes_of_seq", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "FStar.UInt32.t", "FStar.Pervasives.Native.Mktuple2", "FStar.UInt32.v", "LowParse.Spec.Base.parse", "Prims.bool", "Prims.unit", "LowParse.Spec.Base.parser_kind_prop_equiv", "FStar.Classical.move_requires", "LowParse.Bytes.bytes", "FStar.Seq.Base.slice", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.equal", "LowParse.Spec.Base.parse_strong_prefix", "LowParse.SLow.Base.parser32_correct", "FStar.UInt32.uint_to_t" ]
[]
module LowParse.SLow.Base include LowParse.Spec.Base module B32 = LowParse.Bytes32 module U32 = FStar.UInt32 let bytes32 = B32.bytes let parser32_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option (t * U32.t)) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (hres, consumed) -> Some? gp /\ ( let (Some (hres' , consumed')) = gp in hres == hres' /\ U32.v consumed == (consumed' <: nat) ) [@unifier_hint_injective] inline_for_extraction let parser32 (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option (t * U32.t) { parser32_correct p input res } ) let parser32_consumes (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (Some? (p32 input) ==> (let (Some (_, consumed)) = p32 input in U32.v consumed <= B32.length input)) = () let parser32_consumes' (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (match p32 input with | Some (_, consumed) -> U32.v consumed <= B32.length input | _ -> True) = () inline_for_extraction let make_parser32 (#k: parser_kind) (#t: Type) (p: parser k t) (p32: (input: bytes32) -> Pure (option (t * U32.t)) (requires True) (ensures (fun res -> parser32_correct p input res))) : Tot (parser32 p) = (fun (input: bytes32) -> (p32 input <: (res: option (t * U32.t) { parser32_correct p input res } ))) inline_for_extraction let coerce_parser32 (t2: Type) (#k: parser_kind) (#t1: Type) (#p: parser k t1) (p32: parser32 p) (u: unit { t2 == t1 } ) : Tot (parser32 (coerce_parser t2 p)) = p32 let validator_correct (#k: parser_kind) (#t: Type) (p: parser k t) (input: bytes32) (res: option U32.t) : GTot Type0 = let gp = parse p (B32.reveal input) in match res with | None -> gp == None | Some (consumed) -> Some? gp /\ ( let (Some (_ , consumed')) = gp in U32.v consumed == (consumed' <: nat) ) let validator (#k: parser_kind) (#t: Type) (p: parser k t) : Tot Type = (input: bytes32) -> Tot (res: option U32.t { validator_correct p input res } ) let serializer32_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res == s input let serializer32_correct' (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : GTot Type0 = B32.reveal res `bytes_equal` s input [@unifier_hint_injective] inline_for_extraction let serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_correct_length (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (input: t) (res: bytes32) : Lemma (requires (serializer32_correct s input res)) (ensures ( let len = FStar.Bytes.length res in k.parser_kind_low <= len /\ ( match k.parser_kind_high with | Some max -> len <= max | _ -> True ))) [SMTPat (serializer32_correct s input res); SMTPat (FStar.Bytes.length res)] = serialize_length s input inline_for_extraction let serialize32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': serializer32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (serializer32 (serialize_ext p1 s1 p2)) = fun input -> s1' input inline_for_extraction let partial_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (input: t { Seq.length (s input) < 4294967296 } ) -> Tot (res: bytes32 { serializer32_correct s input res } ) let serializer32_then_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: t) : Lemma (p32 (s32 input) == Some (input, B32.len (s32 input))) = () let parser32_then_serializer32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) : Lemma (requires (Some? (p32 input))) (ensures ( let (Some (v, consumed)) = p32 input in U32.v consumed <= B32.length input /\ s32 v == B32.b32slice input 0ul consumed )) = serializer_correct_implies_complete p s let parser32_then_serializer32' (#k: parser_kind) (#t: Type) (#p: parser k t) (#s: serializer p) (p32: parser32 p) (s32: serializer32 s) (input: bytes32) (v: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (v, consumed))) (ensures ( B32.length (s32 v) == U32.v consumed /\ U32.v consumed <= B32.length input /\ B32.reveal (s32 v) == Seq.slice (B32.reveal input) 0 (U32.v consumed) )) = parser32_then_serializer32 s p32 s32 input let parser32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input1 input2: bytes32) : Lemma (requires ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, _)) = p1 in let (Some (v2, _)) = p2 in v1 == v2 ))) (ensures ( let p1 = p32 input1 in let p2 = p32 input2 in Some? p1 /\ Some? p2 /\ ( let (Some (v1, consumed1)) = p1 in let (Some (v2, consumed2)) = p2 in v1 == v2 /\ consumed1 == consumed2 /\ U32.v consumed1 <= B32.length input1 /\ U32.v consumed2 <= B32.length input2 /\ B32.b32slice input1 0ul consumed1 == B32.b32slice input2 0ul consumed2 ))) = parser_kind_prop_equiv k p; assert (injective_precond p (B32.reveal input1) (B32.reveal input2)); assert (injective_postcond p (B32.reveal input1) (B32.reveal input2)) let serializer32_injective (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (s32: serializer32 s) (input1 input2: t) : Lemma (requires (s32 input1 == s32 input2)) (ensures (input1 == input2)) = assert (parse p (serialize s input1) == parse p (serialize s input2)) let parse32_size (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) (data: t) (consumed: U32.t) : Lemma (requires (p32 input == Some (data, consumed))) (ensures ( k.parser_kind_low <= U32.v consumed /\ ( Some? k.parser_kind_high ==> ( let (Some hi) = k.parser_kind_high in U32.v consumed <= hi )))) = parser_kind_prop_equiv k p let parse32_total (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p) (input: bytes32) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low <= B32.length input )) (ensures ( Some? (p32 input) )) = parser_kind_prop_equiv k p inline_for_extraction let u32_max : (y: U32.t { forall (x: U32.t) . {:pattern (U32.v x)} U32.v x <= U32.v y } ) = 4294967295ul inline_for_extraction let add_overflow (x y: U32.t) : Pure U32.t (requires True) (ensures (fun z -> if U32.v x + U32.v y > U32.v u32_max then z == u32_max else U32.v z == U32.v x + U32.v y )) = if U32.lt (U32.sub u32_max y) x then u32_max else U32.add x y let size32_postcond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (y: U32.t) : GTot Type0 = let sz = Seq.length (serialize s x) in if sz > U32.v u32_max then y == u32_max else U32.v y == sz [@unifier_hint_injective] inline_for_extraction let size32 (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot Type = (x: t) -> Tot (y: U32.t { size32_postcond s x y }) let size32_constant_precond (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) : GTot Type0 = k.parser_kind_high == Some k.parser_kind_low /\ U32.v len32 == k.parser_kind_low inline_for_extraction let size32_constant (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (len32: U32.t) (u: unit { size32_constant_precond s len32 } ) : Tot (size32 s) = fun x -> [@inline_let] let (z: U32.t { size32_postcond s x z } ) = len32 in z inline_for_extraction let size32_ext (#k1: parser_kind) (#t1: Type) (p1: parser k1 t1) (s1: serializer p1) (s1': size32 s1) (#k2: parser_kind) (#t2: Type) (p2: parser k2 t2) (u: squash (t1 == t2 /\ (forall (input: bytes) . parse p1 input == parse p2 input))) : Tot (size32 (serialize_ext p1 s1 p2)) = fun input -> s1' input (* Total parsers for sequences *) [@"opaque_to_smt"] irreducible let rec bytes_of_seq' (x: Seq.seq byte) (accu: bytes32 { B32.length accu + Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` (B32.reveal accu `Seq.append` x) }) (decreases (Seq.length x)) = if Seq.length x = 0 then accu else bytes_of_seq' (Seq.tail x) (B32.append accu (B32.create 1ul (Seq.head x))) [@"opaque_to_smt"] inline_for_extraction let bytes_of_seq (x: Seq.seq byte { Seq.length x < 4294967296 }) : Tot (y: bytes32 { B32.reveal y `Seq.equal` x }) = bytes_of_seq' x B32.empty_bytes inline_for_extraction let parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ begin match k.parser_kind_high with | None -> False | Some max -> max < 4294967296 end }) (x: Seq.seq byte)
false
false
LowParse.SLow.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_tot_seq_of_parser32 (#k: parser_kind) (#t: Type) (#p: parser k t) (p32: parser32 p { k.parser_kind_subkind == Some ParserStrong /\ (match k.parser_kind_high with | None -> False | Some max -> max < 4294967296) }) (x: Seq.seq byte) : Tot (y: _{y == parse p x})
[]
LowParse.SLow.Base.parse_tot_seq_of_parser32
{ "file_name": "src/lowparse/LowParse.SLow.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p32: LowParse.SLow.Base.parser32 p { Mkparser_kind'?.parser_kind_subkind k == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\ (match Mkparser_kind'?.parser_kind_high k with | FStar.Pervasives.Native.None #_ -> Prims.l_False | FStar.Pervasives.Native.Some #_ max -> max < 4294967296) } -> x: FStar.Seq.Base.seq LowParse.Bytes.byte -> y: FStar.Pervasives.Native.option (t * LowParse.Spec.Base.consumed_length x) {y == LowParse.Spec.Base.parse p x}
{ "end_col": 7, "end_line": 433, "start_col": 2, "start_line": 416 }
Prims.Tot
val prime:pos
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let prime: pos = Scalar.prime
val prime:pos let prime:pos =
false
null
false
Scalar.prime
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Spec.Poly1305.prime" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false"
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val prime:pos
[]
Hacl.Spec.Poly1305.Lemmas.prime
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.pos
{ "end_col": 29, "end_line": 13, "start_col": 17, "start_line": 13 }
Prims.Tot
val pfelem_mul_cm:cm pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity
val pfelem_mul_cm:cm pfelem let pfelem_mul_cm:cm pfelem =
false
null
false
CM one ( *% ) mul_identity mul_associativity mul_commutativity
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "FStar.Algebra.CommMonoid.CM", "Hacl.Spec.Poly1305.Lemmas.pfelem", "Hacl.Spec.Poly1305.Lemmas.one", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "Hacl.Spec.Poly1305.Lemmas.mul_identity", "Hacl.Spec.Poly1305.Lemmas.mul_associativity", "Hacl.Spec.Poly1305.Lemmas.mul_commutativity" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr]
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pfelem_mul_cm:cm pfelem
[]
Hacl.Spec.Poly1305.Lemmas.pfelem_mul_cm
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.Algebra.CommMonoid.cm Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 64, "end_line": 83, "start_col": 2, "start_line": 83 }
Prims.Tot
val pfelem_add_cm:cm pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity
val pfelem_add_cm:cm pfelem let pfelem_add_cm:cm pfelem =
false
null
false
CM zero ( +% ) add_identity add_associativity add_commutativity
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "FStar.Algebra.CommMonoid.CM", "Hacl.Spec.Poly1305.Lemmas.pfelem", "Hacl.Spec.Poly1305.Lemmas.zero", "Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent", "Hacl.Spec.Poly1305.Lemmas.add_identity", "Hacl.Spec.Poly1305.Lemmas.add_associativity", "Hacl.Spec.Poly1305.Lemmas.add_commutativity" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr]
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pfelem_add_cm:cm pfelem
[]
Hacl.Spec.Poly1305.Lemmas.pfelem_add_cm
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.Algebra.CommMonoid.cm Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 65, "end_line": 79, "start_col": 2, "start_line": 79 }
FStar.Tactics.Effect.Tac
val poly_semiring: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly_semiring () : Tac unit = canon_semiring pfelem_cr; trefl()
val poly_semiring: Prims.unit -> Tac unit let poly_semiring () : Tac unit =
true
null
false
canon_semiring pfelem_cr; trefl ()
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.trefl", "FStar.Tactics.CanonCommSemiring.canon_semiring", "Hacl.Spec.Poly1305.Lemmas.pfelem", "Hacl.Spec.Poly1305.Lemmas.pfelem_cr" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; } val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a = assert_norm (forall x. zero *% x == zero) val add_opp (a:pfelem) : Lemma (a +% ~%a == zero) let add_opp a = FStar.Math.Lemmas.lemma_mod_add_distr a (-a) prime; FStar.Math.Lemmas.small_mod 0 prime [@canon_attr] let pfelem_cr : cr pfelem = CR pfelem_add_cm pfelem_mul_cm ( ~% ) add_opp mul_add_distr mul_zero_l open FStar.Tactics
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly_semiring: Prims.unit -> Tac unit
[]
Hacl.Spec.Poly1305.Lemmas.poly_semiring
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 67, "end_line": 124, "start_col": 34, "start_line": 124 }
Prims.Tot
val one:pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one : pfelem = normalize_term_spec prime; 1
val one:pfelem let one:pfelem =
false
null
false
normalize_term_spec prime; 1
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.normalize_term_spec", "Prims.pos", "Hacl.Spec.Poly1305.Lemmas.prime" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one:pfelem
[]
Hacl.Spec.Poly1305.Lemmas.one
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 47, "end_line": 21, "start_col": 19, "start_line": 21 }
Prims.Tot
val op_Tilde_Percent (a: pfelem) : pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( ~% ) (a:pfelem) : pfelem = (-a) % prime
val op_Tilde_Percent (a: pfelem) : pfelem let op_Tilde_Percent (a: pfelem) : pfelem =
false
null
false
(- a) % prime
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "Prims.op_Modulus", "Prims.op_Minus", "Hacl.Spec.Poly1305.Lemmas.prime" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Tilde_Percent (a: pfelem) : pfelem
[]
Hacl.Spec.Poly1305.Lemmas.op_Tilde_Percent
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 45, "end_line": 30, "start_col": 33, "start_line": 30 }
Prims.Tot
val op_Plus_Percent (a b: pfelem) : pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime
val op_Plus_Percent (a b: pfelem) : pfelem let op_Plus_Percent (a b: pfelem) : pfelem =
false
null
false
(a + b) % prime
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "Prims.op_Modulus", "Prims.op_Addition", "Hacl.Spec.Poly1305.Lemmas.prime" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Percent (a b: pfelem) : pfelem
[]
Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> b: Hacl.Spec.Poly1305.Lemmas.pfelem -> Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 50, "end_line": 24, "start_col": 35, "start_line": 24 }
Prims.Tot
val zero:pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zero : pfelem = 0
val zero:pfelem let zero:pfelem =
false
null
false
0
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime}
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero:pfelem
[]
Hacl.Spec.Poly1305.Lemmas.zero
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 21, "end_line": 18, "start_col": 20, "start_line": 18 }
Prims.Tot
val pfelem_cr:cr pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pfelem_cr : cr pfelem = CR pfelem_add_cm pfelem_mul_cm ( ~% ) add_opp mul_add_distr mul_zero_l
val pfelem_cr:cr pfelem let pfelem_cr:cr pfelem =
false
null
false
CR pfelem_add_cm pfelem_mul_cm ( ~% ) add_opp mul_add_distr mul_zero_l
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.CR", "Hacl.Spec.Poly1305.Lemmas.pfelem", "Hacl.Spec.Poly1305.Lemmas.pfelem_add_cm", "Hacl.Spec.Poly1305.Lemmas.pfelem_mul_cm", "Hacl.Spec.Poly1305.Lemmas.op_Tilde_Percent", "Hacl.Spec.Poly1305.Lemmas.add_opp", "Hacl.Spec.Poly1305.Lemmas.mul_add_distr", "Hacl.Spec.Poly1305.Lemmas.mul_zero_l" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; } val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a = assert_norm (forall x. zero *% x == zero) val add_opp (a:pfelem) : Lemma (a +% ~%a == zero) let add_opp a = FStar.Math.Lemmas.lemma_mod_add_distr a (-a) prime; FStar.Math.Lemmas.small_mod 0 prime [@canon_attr]
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pfelem_cr:cr pfelem
[]
Hacl.Spec.Poly1305.Lemmas.pfelem_cr
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.Tactics.CanonCommSemiring.cr Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 72, "end_line": 120, "start_col": 2, "start_line": 120 }
Prims.Tot
val op_Star_Percent (a b: pfelem) : pfelem
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime
val op_Star_Percent (a b: pfelem) : pfelem let op_Star_Percent (a b: pfelem) : pfelem =
false
null
false
(a * b) % prime
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Lemmas.prime" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Percent (a b: pfelem) : pfelem
[]
Hacl.Spec.Poly1305.Lemmas.op_Star_Percent
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> b: Hacl.Spec.Poly1305.Lemmas.pfelem -> Hacl.Spec.Poly1305.Lemmas.pfelem
{ "end_col": 50, "end_line": 27, "start_col": 35, "start_line": 27 }
Prims.Tot
val pfelem:eqtype
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pfelem : eqtype = a:nat{a < prime}
val pfelem:eqtype let pfelem:eqtype =
false
null
false
a: nat{a < prime}
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Poly1305.Lemmas.prime" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pfelem:eqtype
[]
Hacl.Spec.Poly1305.Lemmas.pfelem
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.eqtype
{ "end_col": 38, "end_line": 15, "start_col": 22, "start_line": 15 }
FStar.Pervasives.Lemma
val add_opp (a:pfelem) : Lemma (a +% ~%a == zero)
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_opp a = FStar.Math.Lemmas.lemma_mod_add_distr a (-a) prime; FStar.Math.Lemmas.small_mod 0 prime
val add_opp (a:pfelem) : Lemma (a +% ~%a == zero) let add_opp a =
false
null
true
FStar.Math.Lemmas.lemma_mod_add_distr a (- a) prime; FStar.Math.Lemmas.small_mod 0 prime
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Math.Lemmas.small_mod", "Hacl.Spec.Poly1305.Lemmas.prime", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_add_distr", "Prims.op_Minus" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; } val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a = assert_norm (forall x. zero *% x == zero) val add_opp (a:pfelem) : Lemma (a +% ~%a == zero)
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_opp (a:pfelem) : Lemma (a +% ~%a == zero)
[]
Hacl.Spec.Poly1305.Lemmas.add_opp
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures a +% ~%a == Hacl.Spec.Poly1305.Lemmas.zero)
{ "end_col": 37, "end_line": 116, "start_col": 2, "start_line": 115 }
FStar.Pervasives.Lemma
val mul_identity: a:pfelem -> Lemma (one *% a == a)
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_identity a = normalize_term_spec prime
val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a =
false
null
true
normalize_term_spec prime
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Pervasives.normalize_term_spec", "Prims.pos", "Hacl.Spec.Poly1305.Lemmas.prime", "Prims.unit" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_identity: a:pfelem -> Lemma (one *% a == a)
[]
Hacl.Spec.Poly1305.Lemmas.mul_identity
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Poly1305.Lemmas.one *% a == a)
{ "end_col": 46, "end_line": 36, "start_col": 21, "start_line": 36 }
FStar.Pervasives.Lemma
val add_identity: a:pfelem -> Lemma (zero +% a == a)
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_identity a = normalize_term_spec prime
val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a =
false
null
true
normalize_term_spec prime
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Pervasives.normalize_term_spec", "Prims.pos", "Hacl.Spec.Poly1305.Lemmas.prime", "Prims.unit" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_identity: a:pfelem -> Lemma (zero +% a == a)
[]
Hacl.Spec.Poly1305.Lemmas.add_identity
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Poly1305.Lemmas.zero +% a == a)
{ "end_col": 46, "end_line": 33, "start_col": 21, "start_line": 33 }
Prims.Tot
val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_zero_l a = assert_norm (forall x. zero *% x == zero)
val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a =
false
null
false
assert_norm (forall x. zero *% x == zero)
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Pervasives.assert_norm", "Prims.l_Forall", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "Hacl.Spec.Poly1305.Lemmas.zero", "Prims.unit" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; }
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm
[]
Hacl.Spec.Poly1305.Lemmas.mul_zero_l
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.Tactics.CanonCommSemiring.mult_zero_l_lemma Hacl.Spec.Poly1305.Lemmas.pfelem Hacl.Spec.Poly1305.Lemmas.pfelem_add_cm Hacl.Spec.Poly1305.Lemmas.pfelem_mul_cm
{ "end_col": 60, "end_line": 111, "start_col": 19, "start_line": 111 }
FStar.Pervasives.Lemma
val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); }
val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c =
false
null
true
normalize_term_spec prime; calc ( == ) { a +% b +% c; ( == ) { () } ((a + b) % prime + c) % prime; ( == ) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; ( == ) { () } (a + (b + c)) % prime; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); }
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Calc.calc_finish", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "Prims.op_Addition", "Hacl.Spec.Poly1305.Lemmas.prime", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Pervasives.normalize_term_spec", "Prims.pos" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c))
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c))
[]
Hacl.Spec.Poly1305.Lemmas.add_associativity
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> b: Hacl.Spec.Poly1305.Lemmas.pfelem -> c: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures a +% b +% c == a +% (b +% c))
{ "end_col": 3, "end_line": 52, "start_col": 2, "start_line": 41 }
FStar.Pervasives.Lemma
val poly_update_multi_lemma_load2_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> Lemma ( (((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r )
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly_update_multi_lemma_load2_simplify acc0 r c0 c1 = assert ( (((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r ) by (poly_semiring ())
val poly_update_multi_lemma_load2_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> Lemma ( (((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r ) let poly_update_multi_lemma_load2_simplify acc0 r c0 c1 =
false
null
true
FStar.Tactics.Effect.assert_by_tactic ((((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r) (fun _ -> (); (poly_semiring ()))
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent", "Prims.unit", "Hacl.Spec.Poly1305.Lemmas.poly_semiring" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; } val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a = assert_norm (forall x. zero *% x == zero) val add_opp (a:pfelem) : Lemma (a +% ~%a == zero) let add_opp a = FStar.Math.Lemmas.lemma_mod_add_distr a (-a) prime; FStar.Math.Lemmas.small_mod 0 prime [@canon_attr] let pfelem_cr : cr pfelem = CR pfelem_add_cm pfelem_mul_cm ( ~% ) add_opp mul_add_distr mul_zero_l open FStar.Tactics let poly_semiring () : Tac unit = canon_semiring pfelem_cr; trefl() /// Lemmas val poly_update_repeat_blocks_multi_lemma2_simplify: acc0:pfelem -> acc1:pfelem -> c0:pfelem -> c1:pfelem -> r:pfelem -> Lemma ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) let poly_update_repeat_blocks_multi_lemma2_simplify acc0 acc1 c0 c1 r = assert ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) by (poly_semiring ()) val poly_update_repeat_blocks_multi_lemma4_simplify: a0:pfelem -> a1:pfelem -> a2:pfelem -> a3:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> r:pfelem -> r2:pfelem{r2 == r *% r} -> r4:pfelem {r4 == r2 *% r2} -> Lemma (((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) ) let poly_update_repeat_blocks_multi_lemma4_simplify a0 a1 a2 a3 c0 c1 c2 c3 r r2 r4 = let r2 = r *% r in let r4 = r2 *% r2 in assert ( ((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) ) by (poly_semiring ()) val poly_update_multi_lemma_load2_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> Lemma ( (((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r )
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly_update_multi_lemma_load2_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> Lemma ( (((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r )
[]
Hacl.Spec.Poly1305.Lemmas.poly_update_multi_lemma_load2_simplify
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
acc0: Hacl.Spec.Poly1305.Lemmas.pfelem -> r: Hacl.Spec.Poly1305.Lemmas.pfelem -> c0: Hacl.Spec.Poly1305.Lemmas.pfelem -> c1: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures ((acc0 +% c0) *% r +% c1) *% r == (acc0 +% c0) *% (r *% r) +% c1 *% r)
{ "end_col": 23, "end_line": 178, "start_col": 2, "start_line": 175 }
FStar.Pervasives.Lemma
val poly_update_repeat_blocks_multi_lemma2_simplify: acc0:pfelem -> acc1:pfelem -> c0:pfelem -> c1:pfelem -> r:pfelem -> Lemma ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r )
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly_update_repeat_blocks_multi_lemma2_simplify acc0 acc1 c0 c1 r = assert ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) by (poly_semiring ())
val poly_update_repeat_blocks_multi_lemma2_simplify: acc0:pfelem -> acc1:pfelem -> c0:pfelem -> c1:pfelem -> r:pfelem -> Lemma ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) let poly_update_repeat_blocks_multi_lemma2_simplify acc0 acc1 c0 c1 r =
false
null
true
FStar.Tactics.Effect.assert_by_tactic ((acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r) (fun _ -> (); (poly_semiring ()))
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "Prims.unit", "Hacl.Spec.Poly1305.Lemmas.poly_semiring" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; } val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a = assert_norm (forall x. zero *% x == zero) val add_opp (a:pfelem) : Lemma (a +% ~%a == zero) let add_opp a = FStar.Math.Lemmas.lemma_mod_add_distr a (-a) prime; FStar.Math.Lemmas.small_mod 0 prime [@canon_attr] let pfelem_cr : cr pfelem = CR pfelem_add_cm pfelem_mul_cm ( ~% ) add_opp mul_add_distr mul_zero_l open FStar.Tactics let poly_semiring () : Tac unit = canon_semiring pfelem_cr; trefl() /// Lemmas val poly_update_repeat_blocks_multi_lemma2_simplify: acc0:pfelem -> acc1:pfelem -> c0:pfelem -> c1:pfelem -> r:pfelem -> Lemma ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r )
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly_update_repeat_blocks_multi_lemma2_simplify: acc0:pfelem -> acc1:pfelem -> c0:pfelem -> c1:pfelem -> r:pfelem -> Lemma ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r )
[]
Hacl.Spec.Poly1305.Lemmas.poly_update_repeat_blocks_multi_lemma2_simplify
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
acc0: Hacl.Spec.Poly1305.Lemmas.pfelem -> acc1: Hacl.Spec.Poly1305.Lemmas.pfelem -> c0: Hacl.Spec.Poly1305.Lemmas.pfelem -> c1: Hacl.Spec.Poly1305.Lemmas.pfelem -> r: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((acc0 *% (r *% r) +% acc1 *% r +% c0) *% r +% c1) *% r)
{ "end_col": 23, "end_line": 138, "start_col": 2, "start_line": 135 }
FStar.Pervasives.Lemma
val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); }
val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c =
false
null
true
calc ( == ) { a *% b *% c; ( == ) { () } (((a * b) % prime) * c) % prime; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; ( == ) { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; ( == ) { () } a *% (b *% c); }
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Calc.calc_finish", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Lemmas.prime", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.lemma_mod_mul_distr_r" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c))
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c))
[]
Hacl.Spec.Poly1305.Lemmas.mul_associativity
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Poly1305.Lemmas.pfelem -> b: Hacl.Spec.Poly1305.Lemmas.pfelem -> c: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures a *% b *% c == a *% (b *% c))
{ "end_col": 3, "end_line": 72, "start_col": 2, "start_line": 60 }
FStar.Pervasives.Lemma
val poly_update_multi_lemma_load4_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> Lemma ( (((((((acc0 +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r == ((((acc0 +% c0) *% ((r *% r) *% (r *% r))) +% (c1 *% ((r *% r) *% r))) +% (c2 *% (r *% r))) +% c3 *% r )
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly_update_multi_lemma_load4_simplify acc0 r c0 c1 c2 c3 = assert ( (((((((acc0 +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r == ((((acc0 +% c0) *% ((r *% r) *% (r *% r))) +% (c1 *% ((r *% r) *% r))) +% (c2 *% (r *% r))) +% c3 *% r ) by (poly_semiring ())
val poly_update_multi_lemma_load4_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> Lemma ( (((((((acc0 +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r == ((((acc0 +% c0) *% ((r *% r) *% (r *% r))) +% (c1 *% ((r *% r) *% r))) +% (c2 *% (r *% r))) +% c3 *% r ) let poly_update_multi_lemma_load4_simplify acc0 r c0 c1 c2 c3 =
false
null
true
FStar.Tactics.Effect.assert_by_tactic ((((((((acc0 +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r == ((((acc0 +% c0) *% ((r *% r) *% (r *% r))) +% (c1 *% ((r *% r) *% r))) +% (c2 *% (r *% r))) +% c3 *% r) (fun _ -> (); (poly_semiring ()))
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent", "Prims.unit", "Hacl.Spec.Poly1305.Lemmas.poly_semiring" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; } val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a = assert_norm (forall x. zero *% x == zero) val add_opp (a:pfelem) : Lemma (a +% ~%a == zero) let add_opp a = FStar.Math.Lemmas.lemma_mod_add_distr a (-a) prime; FStar.Math.Lemmas.small_mod 0 prime [@canon_attr] let pfelem_cr : cr pfelem = CR pfelem_add_cm pfelem_mul_cm ( ~% ) add_opp mul_add_distr mul_zero_l open FStar.Tactics let poly_semiring () : Tac unit = canon_semiring pfelem_cr; trefl() /// Lemmas val poly_update_repeat_blocks_multi_lemma2_simplify: acc0:pfelem -> acc1:pfelem -> c0:pfelem -> c1:pfelem -> r:pfelem -> Lemma ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) let poly_update_repeat_blocks_multi_lemma2_simplify acc0 acc1 c0 c1 r = assert ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) by (poly_semiring ()) val poly_update_repeat_blocks_multi_lemma4_simplify: a0:pfelem -> a1:pfelem -> a2:pfelem -> a3:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> r:pfelem -> r2:pfelem{r2 == r *% r} -> r4:pfelem {r4 == r2 *% r2} -> Lemma (((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) ) let poly_update_repeat_blocks_multi_lemma4_simplify a0 a1 a2 a3 c0 c1 c2 c3 r r2 r4 = let r2 = r *% r in let r4 = r2 *% r2 in assert ( ((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) ) by (poly_semiring ()) val poly_update_multi_lemma_load2_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> Lemma ( (((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r ) let poly_update_multi_lemma_load2_simplify acc0 r c0 c1 = assert ( (((acc0 +% c0) *% r) +% c1) *% r == ((acc0 +% c0) *% (r *% r)) +% c1 *% r ) by (poly_semiring ()) val poly_update_multi_lemma_load4_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> Lemma ( (((((((acc0 +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r == ((((acc0 +% c0) *% ((r *% r) *% (r *% r))) +% (c1 *% ((r *% r) *% r))) +% (c2 *% (r *% r))) +% c3 *% r )
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly_update_multi_lemma_load4_simplify: acc0:pfelem -> r:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> Lemma ( (((((((acc0 +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r == ((((acc0 +% c0) *% ((r *% r) *% (r *% r))) +% (c1 *% ((r *% r) *% r))) +% (c2 *% (r *% r))) +% c3 *% r )
[]
Hacl.Spec.Poly1305.Lemmas.poly_update_multi_lemma_load4_simplify
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
acc0: Hacl.Spec.Poly1305.Lemmas.pfelem -> r: Hacl.Spec.Poly1305.Lemmas.pfelem -> c0: Hacl.Spec.Poly1305.Lemmas.pfelem -> c1: Hacl.Spec.Poly1305.Lemmas.pfelem -> c2: Hacl.Spec.Poly1305.Lemmas.pfelem -> c3: Hacl.Spec.Poly1305.Lemmas.pfelem -> FStar.Pervasives.Lemma (ensures ((((acc0 +% c0) *% r +% c1) *% r +% c2) *% r +% c3) *% r == (acc0 +% c0) *% (r *% r *% (r *% r)) +% c1 *% (r *% r *% r) +% c2 *% (r *% r) +% c3 *% r)
{ "end_col": 23, "end_line": 191, "start_col": 2, "start_line": 187 }
Prims.Tot
val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; }
val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c =
false
null
false
normalize_term_spec prime; calc ( == ) { a *% (b +% c); ( == ) { () } (a * (b +% c)) % prime; ( == ) { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; ( == ) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; ( == ) { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; ( == ) { () } (a *% c + a * b) % prime; ( == ) { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; ( == ) { () } (a *% b + a *% c) % prime; ( == ) { () } a *% b +% a *% c; }
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "total" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "FStar.Calc.calc_finish", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "Prims.op_Addition", "Hacl.Spec.Poly1305.Lemmas.prime", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_add_distr", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.distributivity_add_right", "FStar.Pervasives.normalize_term_spec", "Prims.pos" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm
false
true
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm
[]
Hacl.Spec.Poly1305.Lemmas.mul_add_distr
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.Tactics.CanonCommSemiring.distribute_left_lemma Hacl.Spec.Poly1305.Lemmas.pfelem Hacl.Spec.Poly1305.Lemmas.pfelem_add_cm Hacl.Spec.Poly1305.Lemmas.pfelem_mul_cm
{ "end_col": 3, "end_line": 108, "start_col": 2, "start_line": 87 }
FStar.Pervasives.Lemma
val poly_update_repeat_blocks_multi_lemma4_simplify: a0:pfelem -> a1:pfelem -> a2:pfelem -> a3:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> r:pfelem -> r2:pfelem{r2 == r *% r} -> r4:pfelem {r4 == r2 *% r2} -> Lemma (((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) )
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Scalar" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly_update_repeat_blocks_multi_lemma4_simplify a0 a1 a2 a3 c0 c1 c2 c3 r r2 r4 = let r2 = r *% r in let r4 = r2 *% r2 in assert ( ((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) ) by (poly_semiring ())
val poly_update_repeat_blocks_multi_lemma4_simplify: a0:pfelem -> a1:pfelem -> a2:pfelem -> a3:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> r:pfelem -> r2:pfelem{r2 == r *% r} -> r4:pfelem {r4 == r2 *% r2} -> Lemma (((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) ) let poly_update_repeat_blocks_multi_lemma4_simplify a0 a1 a2 a3 c0 c1 c2 c3 r r2 r4 =
false
null
true
let r2 = r *% r in let r4 = r2 *% r2 in FStar.Tactics.Effect.assert_by_tactic (((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r)) (fun _ -> (); (poly_semiring ()))
{ "checked_file": "Hacl.Spec.Poly1305.Lemmas.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Poly1305.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Poly1305.Lemmas.pfelem", "Prims.eq2", "Hacl.Spec.Poly1305.Lemmas.op_Star_Percent", "FStar.Tactics.Effect.assert_by_tactic", "Hacl.Spec.Poly1305.Lemmas.op_Plus_Percent", "Prims.unit", "Hacl.Spec.Poly1305.Lemmas.poly_semiring" ]
[]
module Hacl.Spec.Poly1305.Lemmas open FStar.Mul module Scalar = Spec.Poly1305 open FStar.Algebra.CommMonoid open FStar.Tactics.CanonCommSemiring /// Semiring for Poly1305 #set-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0 --z3cliopt smt.arith.nl=false" let prime: pos = Scalar.prime let pfelem : eqtype = a:nat{a < prime} [@canon_attr] let zero : pfelem = 0 [@canon_attr] let one : pfelem = normalize_term_spec prime; 1 //[@(strict_on_arguments [0;1])] let ( +% ) (a b:pfelem) : pfelem = (a + b) % prime //[@(strict_on_arguments [0;1])] let ( *% ) (a b:pfelem) : pfelem = (a * b) % prime //[@(strict_on_arguments [0])] let ( ~% ) (a:pfelem) : pfelem = (-a) % prime val add_identity: a:pfelem -> Lemma (zero +% a == a) let add_identity a = normalize_term_spec prime val mul_identity: a:pfelem -> Lemma (one *% a == a) let mul_identity a = normalize_term_spec prime val add_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a +% b +% c == a +% (b +% c)) let add_associativity a b c = normalize_term_spec prime; calc (==) { a +% b +% c; == { } ((a + b) % prime + c) % prime; == { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c prime } ((a + b) + c) % prime; == { } (a + (b + c)) % prime; == { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) prime } a +% (b +% c); } val add_commutativity: a:pfelem -> b:pfelem -> Lemma (a +% b == b +% a) let add_commutativity a b = () val mul_associativity: a:pfelem -> b:pfelem -> c:pfelem -> Lemma (a *% b *% c == a *% (b *% c)) let mul_associativity a b c = calc (==) { a *% b *% c; == { } (((a * b) % prime) * c) % prime; == { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c prime } ((a * b) * c) % prime; == { Math.Lemmas.paren_mul_right a b c } (a * (b * c)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) prime } (a * ((b * c) % prime)) % prime; == { } a *% (b *% c); } val mul_commutativity: a:pfelem -> b:pfelem -> Lemma (a *% b == b *% a) let mul_commutativity a b = () [@canon_attr] let pfelem_add_cm : cm pfelem = CM zero ( +% ) add_identity add_associativity add_commutativity [@canon_attr] let pfelem_mul_cm : cm pfelem = CM one ( *% ) mul_identity mul_associativity mul_commutativity val mul_add_distr: distribute_left_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_add_distr a b c = normalize_term_spec prime; calc (==) { a *% (b +% c); == { } (a * (b +% c)) % prime; == { Math.Lemmas.lemma_mod_add_distr a (b + c) prime } (a * ((b + c) % prime)) % prime; == { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) prime } (a * (b + c)) % prime; == { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % prime; == { Math.Lemmas.lemma_mod_add_distr (a * b) (a * c) prime } (a * b + a *% c) % prime; == { } (a *% c + a * b) % prime; == { Math.Lemmas.lemma_mod_add_distr (a *% c) (a * b) prime } (a *% c + a *% b) % prime; == { } (a *% b + a *% c) % prime; == { } a *% b +% a *% c; } val mul_zero_l: mult_zero_l_lemma pfelem pfelem_add_cm pfelem_mul_cm let mul_zero_l a = assert_norm (forall x. zero *% x == zero) val add_opp (a:pfelem) : Lemma (a +% ~%a == zero) let add_opp a = FStar.Math.Lemmas.lemma_mod_add_distr a (-a) prime; FStar.Math.Lemmas.small_mod 0 prime [@canon_attr] let pfelem_cr : cr pfelem = CR pfelem_add_cm pfelem_mul_cm ( ~% ) add_opp mul_add_distr mul_zero_l open FStar.Tactics let poly_semiring () : Tac unit = canon_semiring pfelem_cr; trefl() /// Lemmas val poly_update_repeat_blocks_multi_lemma2_simplify: acc0:pfelem -> acc1:pfelem -> c0:pfelem -> c1:pfelem -> r:pfelem -> Lemma ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) let poly_update_repeat_blocks_multi_lemma2_simplify acc0 acc1 c0 c1 r = assert ( (acc0 *% (r *% r) +% c0) *% (r *% r) +% (acc1 *% (r *% r) +% c1) *% r == ((((acc0 *% (r *% r) +% acc1 *% r) +% c0) *% r) +% c1) *% r ) by (poly_semiring ()) val poly_update_repeat_blocks_multi_lemma4_simplify: a0:pfelem -> a1:pfelem -> a2:pfelem -> a3:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> r:pfelem -> r2:pfelem{r2 == r *% r} -> r4:pfelem {r4 == r2 *% r2} -> Lemma (((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +%
false
false
Hacl.Spec.Poly1305.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly_update_repeat_blocks_multi_lemma4_simplify: a0:pfelem -> a1:pfelem -> a2:pfelem -> a3:pfelem -> c0:pfelem -> c1:pfelem -> c2:pfelem -> c3:pfelem -> r:pfelem -> r2:pfelem{r2 == r *% r} -> r4:pfelem {r4 == r2 *% r2} -> Lemma (((a0 *% r4 +% c0) *% r4) +% ((a1 *% r4 +% c1) *% (r2 *% r)) +% ((a2 *% r4 +% c2) *% r2) +% ((a3 *% r4 +% c3) *% r) == (((((((((((a0 *% r4 +% (a1 *% (r2 *% r))) +% a2 *% r2) +% a3 *% r) +% c0) *% r) +% c1) *% r) +% c2) *% r) +% c3) *% r) )
[]
Hacl.Spec.Poly1305.Lemmas.poly_update_repeat_blocks_multi_lemma4_simplify
{ "file_name": "code/poly1305/Hacl.Spec.Poly1305.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Hacl.Spec.Poly1305.Lemmas.pfelem -> a1: Hacl.Spec.Poly1305.Lemmas.pfelem -> a2: Hacl.Spec.Poly1305.Lemmas.pfelem -> a3: Hacl.Spec.Poly1305.Lemmas.pfelem -> c0: Hacl.Spec.Poly1305.Lemmas.pfelem -> c1: Hacl.Spec.Poly1305.Lemmas.pfelem -> c2: Hacl.Spec.Poly1305.Lemmas.pfelem -> c3: Hacl.Spec.Poly1305.Lemmas.pfelem -> r: Hacl.Spec.Poly1305.Lemmas.pfelem -> r2: Hacl.Spec.Poly1305.Lemmas.pfelem{r2 == r *% r} -> r4: Hacl.Spec.Poly1305.Lemmas.pfelem{r4 == r2 *% r2} -> FStar.Pervasives.Lemma (ensures (a0 *% r4 +% c0) *% r4 +% (a1 *% r4 +% c1) *% (r2 *% r) +% (a2 *% r4 +% c2) *% r2 +% (a3 *% r4 +% c3) *% r == ((((a0 *% r4 +% a1 *% (r2 *% r) +% a2 *% r2 +% a3 *% r +% c0) *% r +% c1) *% r +% c2) *% r +% c3) *% r)
{ "end_col": 23, "end_line": 167, "start_col": 85, "start_line": 154 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n = 32
let n =
false
null
false
32
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n : Prims.int
[]
FStar.Int32.n
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.int
{ "end_col": 17, "end_line": 20, "start_col": 15, "start_line": 20 }
Prims.Tot
val gt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
val gt (a b: t) : Tot bool let gt (a b: t) : Tot bool =
false
null
false
gt #n (v a) (v b)
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.t", "FStar.Int.gt", "FStar.Int32.n", "FStar.Int32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *)
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt (a b: t) : Tot bool
[]
FStar.Int32.gt
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 49, "end_line": 115, "start_col": 32, "start_line": 115 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Percent_Hat = rem
let op_Percent_Hat =
false
null
false
rem
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.rem" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Percent_Hat : a: FStar.Int32.t -> b: FStar.Int32.t{FStar.Int32.v b <> 0} -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Percent_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t{FStar.Int32.v b <> 0} -> Prims.Pure FStar.Int32.t
{ "end_col": 31, "end_line": 125, "start_col": 28, "start_line": 125 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Less_Hat = shift_left
let op_Less_Less_Hat =
false
null
false
shift_left
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.shift_left" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Less_Hat : a: FStar.Int32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Less_Less_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 40, "end_line": 129, "start_col": 30, "start_line": 129 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Greater_Hat = shift_right
let op_Greater_Greater_Hat =
false
null
false
shift_right
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.shift_right" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Greater_Hat : a: FStar.Int32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Greater_Greater_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 47, "end_line": 130, "start_col": 36, "start_line": 130 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Hat = mul
let op_Star_Hat =
false
null
false
mul
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.mul" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Star_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 28, "end_line": 123, "start_col": 25, "start_line": 123 }
Prims.Tot
val lt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
val lt (a b: t) : Tot bool let lt (a b: t) : Tot bool =
false
null
false
lt #n (v a) (v b)
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.t", "FStar.Int.lt", "FStar.Int32.n", "FStar.Int32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt (a b: t) : Tot bool
[]
FStar.Int32.lt
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 49, "end_line": 117, "start_col": 32, "start_line": 117 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Hat = sub
let op_Subtraction_Hat =
false
null
false
sub
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.sub" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *)
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Subtraction_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 35, "end_line": 122, "start_col": 32, "start_line": 122 }
Prims.Tot
val gte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
val gte (a b: t) : Tot bool let gte (a b: t) : Tot bool =
false
null
false
gte #n (v a) (v b)
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.t", "FStar.Int.gte", "FStar.Int32.n", "FStar.Int32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte (a b: t) : Tot bool
[]
FStar.Int32.gte
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 51, "end_line": 116, "start_col": 33, "start_line": 116 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Amp_Hat = logand
let op_Amp_Hat =
false
null
false
logand
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.logand" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Amp_Hat : x: FStar.Int32.t -> y: FStar.Int32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Amp_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Int32.t -> y: FStar.Int32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 30, "end_line": 127, "start_col": 24, "start_line": 127 }
Prims.Tot
val eq (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
val eq (a b: t) : Tot bool let eq (a b: t) : Tot bool =
false
null
false
eq #n (v a) (v b)
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.t", "FStar.Int.eq", "FStar.Int32.n", "FStar.Int32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq (a b: t) : Tot bool
[]
FStar.Int32.eq
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 49, "end_line": 114, "start_col": 32, "start_line": 114 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Bar_Hat = logor
let op_Bar_Hat =
false
null
false
logor
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.logor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Bar_Hat : x: FStar.Int32.t -> y: FStar.Int32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Bar_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Int32.t -> y: FStar.Int32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 29, "end_line": 128, "start_col": 24, "start_line": 128 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Slash_Hat = div
let op_Slash_Hat =
false
null
false
div
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.div" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Slash_Hat : a: FStar.Int32.t -> b: FStar.Int32.t{FStar.Int32.v b <> 0} -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Slash_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t{FStar.Int32.v b <> 0} -> Prims.Pure FStar.Int32.t
{ "end_col": 29, "end_line": 124, "start_col": 26, "start_line": 124 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Hat = gt
let op_Greater_Hat =
false
null
false
gt
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.gt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
[]
FStar.Int32.op_Greater_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 30, "end_line": 133, "start_col": 28, "start_line": 133 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Hat_Hat = logxor
let op_Hat_Hat =
false
null
false
logxor
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.logxor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Hat_Hat : x: FStar.Int32.t -> y: FStar.Int32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Hat_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Int32.t -> y: FStar.Int32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 30, "end_line": 126, "start_col": 24, "start_line": 126 }
Prims.Tot
val lte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
val lte (a b: t) : Tot bool let lte (a b: t) : Tot bool =
false
null
false
lte #n (v a) (v b)
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.t", "FStar.Int.lte", "FStar.Int32.n", "FStar.Int32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte (a b: t) : Tot bool
[]
FStar.Int32.lte
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 51, "end_line": 118, "start_col": 33, "start_line": 118 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Equals_Hat = gte
let op_Greater_Equals_Hat =
false
null
false
gte
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.gte" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Equals_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
[]
FStar.Int32.op_Greater_Equals_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 38, "end_line": 134, "start_col": 35, "start_line": 134 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Equals_Hat = eq
let op_Equals_Hat =
false
null
false
eq
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.eq" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Equals_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
[]
FStar.Int32.op_Equals_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 29, "end_line": 132, "start_col": 27, "start_line": 132 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
let op_Greater_Greater_Greater_Hat =
false
null
false
shift_arithmetic_right
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.shift_arithmetic_right" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Greater_Greater_Hat : a: FStar.Int32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Greater_Greater_Greater_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 66, "end_line": 131, "start_col": 44, "start_line": 131 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Hat = lt
let op_Less_Hat =
false
null
false
lt
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.lt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
[]
FStar.Int32.op_Less_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 27, "end_line": 135, "start_col": 25, "start_line": 135 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Equals_Hat = lte
let op_Less_Equals_Hat =
false
null
false
lte
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.lte" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte
false
true
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Equals_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
[]
FStar.Int32.op_Less_Equals_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.bool
{ "end_col": 35, "end_line": 136, "start_col": 32, "start_line": 136 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Hat = add
let op_Plus_Hat =
false
null
false
add
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[]
[ "FStar.Int32.add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Hat : a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.Pure FStar.Int32.t
[]
FStar.Int32.op_Plus_Hat
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t -> b: FStar.Int32.t -> Prims.Pure FStar.Int32.t
{ "end_col": 28, "end_line": 121, "start_col": 25, "start_line": 121 }
Prims.Tot
val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)})
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ct_abs (a:t{min_int n < v a}) : Tot (b:t{v b = abs (v a)}) = let mask = a >>>^ UInt32.uint_to_t (n - 1) in if 0 <= v a then begin sign_bit_positive (v a); nth_lemma (v mask) (FStar.Int.zero _); logxor_lemma_1 (v a) end else begin sign_bit_negative (v a); nth_lemma (v mask) (ones _); logxor_lemma_2 (v a); lognot_negative (v a); UInt.lemma_lognot_value #n (to_uint (v a)) end; (a ^^ mask) -^ mask
val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)}) let ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)}) =
false
null
false
let mask = a >>>^ UInt32.uint_to_t (n - 1) in if 0 <= v a then (sign_bit_positive (v a); nth_lemma (v mask) (FStar.Int.zero _); logxor_lemma_1 (v a)) else (sign_bit_negative (v a); nth_lemma (v mask) (ones _); logxor_lemma_2 (v a); lognot_negative (v a); UInt.lemma_lognot_value #n (to_uint (v a))); (a ^^ mask) -^ mask
{ "checked_file": "FStar.Int32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int32.fsti" }
[ "total" ]
[ "FStar.Int32.t", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.min_int", "FStar.Int32.n", "FStar.Int32.v", "FStar.Int32.op_Subtraction_Hat", "FStar.Int32.op_Hat_Hat", "Prims.unit", "Prims.op_LessThanOrEqual", "FStar.Int.logxor_lemma_1", "FStar.Int.nth_lemma", "FStar.Int.zero", "FStar.Int.sign_bit_positive", "Prims.bool", "FStar.UInt.lemma_lognot_value", "FStar.Int.to_uint", "FStar.Int.lognot_negative", "FStar.Int.logxor_lemma_2", "FStar.Int.ones", "FStar.Int.sign_bit_negative", "FStar.Int32.op_Greater_Greater_Greater_Hat", "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.int", "Prims.abs" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte unfold let op_Less_Hat = lt unfold let op_Less_Equals_Hat = lte
false
false
FStar.Int32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)})
[]
FStar.Int32.ct_abs
{ "file_name": "ulib/FStar.Int32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int32.t{FStar.Int.min_int FStar.Int32.n < FStar.Int32.v a} -> b: FStar.Int32.t{FStar.Int32.v b = Prims.abs (FStar.Int32.v a)}
{ "end_col": 21, "end_line": 155, "start_col": 64, "start_line": 139 }
FStar.HyperStack.ST.Stack
val hsalsa20: out:lbuffer uint8 32ul -> key:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h n /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.hsalsa20 (as_seq h0 key) (as_seq h0 n))
[ { "abbrev": true, "full_module": "Hacl.Impl.Salsa20", "short_module": "Salsa20" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loop" }, { "abbrev": true, "full_module": "Spec.Salsa20", "short_module": "Spec" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Salsa20.Core32", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hsalsa20 out key n = push_frame(); let ctx = create 16ul (u32 0) in hsalsa20_init ctx key n; Salsa20.rounds ctx; let r0 = ctx.(0ul) in let r1 = ctx.(5ul) in let r2 = ctx.(10ul) in let r3 = ctx.(15ul) in let r4 = ctx.(6ul) in let r5 = ctx.(7ul) in let r6 = ctx.(8ul) in let r7 = ctx.(9ul) in [@inline_let] let res_l = [r0;r1;r2;r3;r4;r5;r6;r7] in assert_norm (List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le #U32 8ul out res; pop_frame()
val hsalsa20: out:lbuffer uint8 32ul -> key:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h n /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.hsalsa20 (as_seq h0 key) (as_seq h0 n)) let hsalsa20 out key n =
true
null
false
push_frame (); let ctx = create 16ul (u32 0) in hsalsa20_init ctx key n; Salsa20.rounds ctx; let r0 = ctx.(0ul) in let r1 = ctx.(5ul) in let r2 = ctx.(10ul) in let r3 = ctx.(15ul) in let r4 = ctx.(6ul) in let r5 = ctx.(7ul) in let r6 = ctx.(8ul) in let r7 = ctx.(9ul) in [@@ inline_let ]let res_l = [r0; r1; r2; r3; r4; r5; r6; r7] in assert_norm (List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le #U32 8ul out res; pop_frame ()
{ "checked_file": "Hacl.Impl.HSalsa20.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Salsa20.Core32.fst.checked", "Hacl.Impl.Salsa20.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HSalsa20.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.ByteBuffer.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.mk_int", "Lib.IntTypes.PUB", "FStar.Pervasives.normalize_term", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "FStar.List.Tot.Base.length", "Lib.Buffer.createL", "Lib.IntTypes.uint_t", "Lib.IntTypes.size", "Lib.IntTypes.size_nat", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.list", "Prims.Cons", "Prims.Nil", "Lib.Buffer.op_Array_Access", "Lib.IntTypes.uint32", "Hacl.Impl.Salsa20.rounds", "Hacl.Impl.HSalsa20.hsalsa20_init", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.u32", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.HSalsa20 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Salsa20.Core32 module ST = FStar.HyperStack.ST module Spec = Spec.Salsa20 module Loop = Lib.LoopCombinators module Salsa20 = Hacl.Impl.Salsa20 #set-options "--z3rlimit 100 --max_fuel 1 --max_ifuel 1" inline_for_extraction val hsalsa20_init: ctx:state -> k:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h ctx /\ live h k /\ live h n /\ disjoint ctx k /\ disjoint ctx n /\ as_seq h ctx == Lib.Sequence.create 16 (u32 0)) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ as_seq h1 ctx == Spec.hsalsa20_init (as_seq h0 k) (as_seq h0 n)) let hsalsa20_init ctx k n = let h0 = ST.get() in push_frame(); let k32 = create 8ul (u32 0) in let n32 = create 4ul (u32 0) in let h0' = ST.get() in uints_from_bytes_le k32 k; uints_from_bytes_le n32 n; let k0 = sub k32 0ul 4ul in let k1 = sub k32 4ul 4ul in ctx.(0ul) <- Spec.constant0; update_sub #MUT ctx 1ul 4ul k0; ctx.(5ul) <- Spec.constant1; update_sub #MUT ctx 6ul 4ul n32; ctx.(10ul) <- Spec.constant2; update_sub #MUT ctx 11ul 4ul k1; ctx.(15ul) <- Spec.constant3; let h1' = ST.get() in assert (modifies (loc ctx |+| loc k32 |+| loc n32) h0' h1'); pop_frame(); let h1 = ST.get() in assert (modifies (loc ctx) h0 h1) val hsalsa20: out:lbuffer uint8 32ul -> key:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h n /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.hsalsa20 (as_seq h0 key) (as_seq h0 n)) [@ CInline ]
false
false
Hacl.Impl.HSalsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hsalsa20: out:lbuffer uint8 32ul -> key:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h n /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.hsalsa20 (as_seq h0 key) (as_seq h0 n))
[]
Hacl.Impl.HSalsa20.hsalsa20
{ "file_name": "code/salsa20/Hacl.Impl.HSalsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 13, "end_line": 86, "start_col": 2, "start_line": 69 }
FStar.HyperStack.ST.Stack
val hsalsa20_init: ctx:state -> k:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h ctx /\ live h k /\ live h n /\ disjoint ctx k /\ disjoint ctx n /\ as_seq h ctx == Lib.Sequence.create 16 (u32 0)) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ as_seq h1 ctx == Spec.hsalsa20_init (as_seq h0 k) (as_seq h0 n))
[ { "abbrev": true, "full_module": "Hacl.Impl.Salsa20", "short_module": "Salsa20" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loop" }, { "abbrev": true, "full_module": "Spec.Salsa20", "short_module": "Spec" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Salsa20.Core32", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hsalsa20_init ctx k n = let h0 = ST.get() in push_frame(); let k32 = create 8ul (u32 0) in let n32 = create 4ul (u32 0) in let h0' = ST.get() in uints_from_bytes_le k32 k; uints_from_bytes_le n32 n; let k0 = sub k32 0ul 4ul in let k1 = sub k32 4ul 4ul in ctx.(0ul) <- Spec.constant0; update_sub #MUT ctx 1ul 4ul k0; ctx.(5ul) <- Spec.constant1; update_sub #MUT ctx 6ul 4ul n32; ctx.(10ul) <- Spec.constant2; update_sub #MUT ctx 11ul 4ul k1; ctx.(15ul) <- Spec.constant3; let h1' = ST.get() in assert (modifies (loc ctx |+| loc k32 |+| loc n32) h0' h1'); pop_frame(); let h1 = ST.get() in assert (modifies (loc ctx) h0 h1)
val hsalsa20_init: ctx:state -> k:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h ctx /\ live h k /\ live h n /\ disjoint ctx k /\ disjoint ctx n /\ as_seq h ctx == Lib.Sequence.create 16 (u32 0)) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ as_seq h1 ctx == Spec.hsalsa20_init (as_seq h0 k) (as_seq h0 n)) let hsalsa20_init ctx k n =
true
null
false
let h0 = ST.get () in push_frame (); let k32 = create 8ul (u32 0) in let n32 = create 4ul (u32 0) in let h0' = ST.get () in uints_from_bytes_le k32 k; uints_from_bytes_le n32 n; let k0 = sub k32 0ul 4ul in let k1 = sub k32 4ul 4ul in ctx.(0ul) <- Spec.constant0; update_sub #MUT ctx 1ul 4ul k0; ctx.(5ul) <- Spec.constant1; update_sub #MUT ctx 6ul 4ul n32; ctx.(10ul) <- Spec.constant2; update_sub #MUT ctx 11ul 4ul k1; ctx.(15ul) <- Spec.constant3; let h1' = ST.get () in assert (modifies (loc ctx |+| loc k32 |+| loc n32) h0' h1'); pop_frame (); let h1 = ST.get () in assert (modifies (loc ctx) h0 h1)
{ "checked_file": "Hacl.Impl.HSalsa20.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Salsa20.Core32.fst.checked", "Hacl.Impl.Salsa20.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HSalsa20.fst" }
[]
[ "Hacl.Impl.Salsa20.Core32.state", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Prims._assert", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Buffer.MUT", "Lib.IntTypes.uint32", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.HyperStack.ST.pop_frame", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.IntTypes.uint_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Buffer.op_Array_Assignment", "Spec.Salsa20.constant3", "Lib.Buffer.update_sub", "Spec.Salsa20.constant2", "Spec.Salsa20.constant1", "Spec.Salsa20.constant0", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.ByteBuffer.uints_from_bytes_le", "Lib.Buffer.create", "Lib.IntTypes.u32", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.HSalsa20 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Salsa20.Core32 module ST = FStar.HyperStack.ST module Spec = Spec.Salsa20 module Loop = Lib.LoopCombinators module Salsa20 = Hacl.Impl.Salsa20 #set-options "--z3rlimit 100 --max_fuel 1 --max_ifuel 1" inline_for_extraction val hsalsa20_init: ctx:state -> k:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h ctx /\ live h k /\ live h n /\ disjoint ctx k /\ disjoint ctx n /\ as_seq h ctx == Lib.Sequence.create 16 (u32 0)) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ as_seq h1 ctx == Spec.hsalsa20_init (as_seq h0 k) (as_seq h0 n))
false
false
Hacl.Impl.HSalsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hsalsa20_init: ctx:state -> k:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h ctx /\ live h k /\ live h n /\ disjoint ctx k /\ disjoint ctx n /\ as_seq h ctx == Lib.Sequence.create 16 (u32 0)) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ as_seq h1 ctx == Spec.hsalsa20_init (as_seq h0 k) (as_seq h0 n))
[]
Hacl.Impl.HSalsa20.hsalsa20_init
{ "file_name": "code/salsa20/Hacl.Impl.HSalsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ctx: Hacl.Impl.Salsa20.Core32.state -> k: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 35, "end_line": 55, "start_col": 27, "start_line": 34 }
Prims.GTot
val list_as_vprop_singleton (g:env) (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q]))
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_as_vprop_singleton g (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) = VE_Ctxt _ p tm_emp q tm_emp d (VE_Refl _ tm_emp)
val list_as_vprop_singleton (g:env) (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) let list_as_vprop_singleton g (p: term) (q: term) (d: vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) =
false
null
false
VE_Ctxt _ p tm_emp q tm_emp d (VE_Refl _ tm_emp)
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "sometrivial" ]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Typing.vprop_equiv", "Pulse.Typing.VE_Ctxt", "Pulse.Syntax.Base.tm_emp", "Pulse.Typing.VE_Refl", "Pulse.Typing.Combinators.list_as_vprop", "Prims.Cons", "Prims.Nil" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _ let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app')) let list_as_vprop_singleton g (p q:term) (d:vprop_equiv g p q)
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_as_vprop_singleton (g:env) (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q]))
[]
Pulse.Checker.VPropEquiv.list_as_vprop_singleton
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> p: Pulse.Syntax.Base.term -> q: Pulse.Syntax.Base.term -> d: Pulse.Typing.vprop_equiv g p q -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop [p]) (Pulse.Typing.Combinators.list_as_vprop [q]))
{ "end_col": 52, "end_line": 60, "start_col": 4, "start_line": 60 }
Prims.Tot
val ve_unit_r (g:env) (p:term) : vprop_equiv g (tm_star p tm_emp) p
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _)
val ve_unit_r (g:env) (p:term) : vprop_equiv g (tm_star p tm_emp) p let ve_unit_r g (p: term) : vprop_equiv g (tm_star p tm_emp) p =
false
null
false
VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _)
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "total" ]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Typing.VE_Trans", "Pulse.Syntax.Base.tm_star", "Pulse.Syntax.Base.tm_emp", "Pulse.Typing.VE_Comm", "Pulse.Typing.VE_Unit", "Pulse.Typing.vprop_equiv" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ve_unit_r (g:env) (p:term) : vprop_equiv g (tm_star p tm_emp) p
[]
Pulse.Checker.VPropEquiv.ve_unit_r
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> p: Pulse.Syntax.Base.term -> Pulse.Typing.vprop_equiv g (Pulse.Syntax.Base.tm_star p Pulse.Syntax.Base.tm_emp) p
{ "end_col": 48, "end_line": 7, "start_col": 2, "start_line": 7 }
Prims.GTot
val list_as_vprop_comm (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0)))
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2
val list_as_vprop_comm (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) let list_as_vprop_comm g (vp0: list term) (vp1: list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) =
false
null
false
let d1:_ = list_as_vprop_append g vp0 vp1 in let d2:_ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1:_ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "sometrivial" ]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.VE_Trans", "Pulse.Typing.Combinators.list_as_vprop", "FStar.List.Tot.Base.op_At", "Pulse.Syntax.Base.tm_star", "Pulse.Typing.vprop_equiv", "Pulse.Typing.VE_Comm", "Pulse.Typing.VE_Sym", "Pulse.Checker.VPropEquiv.list_as_vprop_append" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1))
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_as_vprop_comm (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0)))
[]
Pulse.Checker.VPropEquiv.list_as_vprop_comm
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> vp0: Prims.list Pulse.Syntax.Base.term -> vp1: Prims.list Pulse.Syntax.Base.term -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop (vp0 @ vp1)) (Pulse.Typing.Combinators.list_as_vprop (vp1 @ vp0)))
{ "end_col": 26, "end_line": 38, "start_col": 3, "start_line": 35 }
Prims.GTot
val list_as_vprop_ctx (g:env) (vp0 vp0' vp1 vp1':list term) (_:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (_:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1')))
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app'))
val list_as_vprop_ctx (g:env) (vp0 vp0' vp1 vp1':list term) (_:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (_:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) let list_as_vprop_ctx g (vp0: list term) (vp0': list term) (vp1: list term) (vp1': list term) (d0: vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1: vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) =
false
null
false
let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app'))
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "sometrivial" ]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.vprop_equiv", "Pulse.Typing.Combinators.list_as_vprop", "Pulse.Typing.VE_Trans", "FStar.List.Tot.Base.op_At", "Pulse.Syntax.Base.tm_star", "Pulse.Typing.VE_Sym", "Pulse.Typing.VE_Ctxt", "Pulse.Checker.VPropEquiv.list_as_vprop_append" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _ let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1')))
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_as_vprop_ctx (g:env) (vp0 vp0' vp1 vp1':list term) (_:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (_:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1')))
[]
Pulse.Checker.VPropEquiv.list_as_vprop_ctx
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> vp0: Prims.list Pulse.Syntax.Base.term -> vp0': Prims.list Pulse.Syntax.Base.term -> vp1: Prims.list Pulse.Syntax.Base.term -> vp1': Prims.list Pulse.Syntax.Base.term -> d0: Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop vp0) (Pulse.Typing.Combinators.list_as_vprop vp0') -> d1: Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop vp1) (Pulse.Typing.Combinators.list_as_vprop vp1') -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop (vp0 @ vp1)) (Pulse.Typing.Combinators.list_as_vprop (vp0' @ vp1')))
{ "end_col": 80, "end_line": 54, "start_col": 3, "start_line": 51 }
Prims.GTot
val vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))))
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))) = let d : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop (([q] @ l0) @ l2)) = list_as_vprop_ctx g (l0 @ [q]) ([q] @ l0) l2 l2 (list_as_vprop_comm g l0 [q]) (VE_Refl _ _) in let d' : vprop_equiv g (list_as_vprop (([q] @ l0) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = List.Tot.append_assoc [q] l0 l2; VE_Refl _ _ in let d : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = VE_Trans _ _ _ _ d d' in let d_q_p = VE_Sym _ _ _ d_p_q in let d' : vprop_equiv g (list_as_vprop [q]) (list_as_vprop [p]) = list_as_vprop_singleton _ _ _ d_q_p in let d' : vprop_equiv g (list_as_vprop ([q] @ (l0 @ l2))) (list_as_vprop ([p] @ (l0 @ l2))) = list_as_vprop_ctx g [q] [p] (l0 @ l2) _ d' (VE_Refl _ _) in VE_Trans _ _ _ _ d d'
val vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2)))) let vprop_equiv_swap_equiv (g: _) (l0 l2: list term) (p q: term) (d_p_q: vprop_equiv g p q) : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))) =
false
null
false
let d:vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop (([q] @ l0) @ l2)) = list_as_vprop_ctx g (l0 @ [q]) ([q] @ l0) l2 l2 (list_as_vprop_comm g l0 [q]) (VE_Refl _ _) in let d':vprop_equiv g (list_as_vprop (([q] @ l0) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = List.Tot.append_assoc [q] l0 l2; VE_Refl _ _ in let d:vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = VE_Trans _ _ _ _ d d' in let d_q_p = VE_Sym _ _ _ d_p_q in let d':vprop_equiv g (list_as_vprop [q]) (list_as_vprop [p]) = list_as_vprop_singleton _ _ _ d_q_p in let d':vprop_equiv g (list_as_vprop ([q] @ (l0 @ l2))) (list_as_vprop ([p] @ (l0 @ l2))) = list_as_vprop_ctx g [q] [p] (l0 @ l2) _ d' (VE_Refl _ _) in VE_Trans _ _ _ _ d d'
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "sometrivial" ]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.vprop_equiv", "Pulse.Typing.VE_Trans", "Pulse.Typing.Combinators.list_as_vprop", "FStar.List.Tot.Base.op_At", "Prims.Cons", "Prims.Nil", "Pulse.Checker.VPropEquiv.list_as_vprop_ctx", "Pulse.Typing.VE_Refl", "Pulse.Checker.VPropEquiv.list_as_vprop_singleton", "Pulse.Typing.VE_Sym", "Prims.unit", "FStar.List.Tot.Properties.append_assoc", "Pulse.Checker.VPropEquiv.list_as_vprop_comm" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _ let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app')) let list_as_vprop_singleton g (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) = VE_Ctxt _ p tm_emp q tm_emp d (VE_Refl _ tm_emp) let rec vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp)) (decreases vp) = match vp.t with | Tm_Emp -> VE_Refl _ _ | Tm_Star vp0 vp1 -> let eq0 = vprop_list_equiv g vp0 in let eq1 = vprop_list_equiv g vp1 in let app_eq : vprop_equiv _ (canon_vprop vp) (tm_star (canon_vprop vp0) (canon_vprop vp1)) = list_as_vprop_append g (vprop_as_list vp0) (vprop_as_list vp1) in let step : vprop_equiv _ vp (tm_star (canon_vprop vp0) (canon_vprop vp1)) = VE_Ctxt _ _ _ _ _ eq0 eq1 in VE_Trans _ _ _ _ step (VE_Sym _ _ _ app_eq) | _ -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g vp tm_emp) (VE_Unit _ vp)) let vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2))
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))))
[]
Pulse.Checker.VPropEquiv.vprop_equiv_swap_equiv
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> l0: Prims.list Pulse.Syntax.Base.term -> l2: Prims.list Pulse.Syntax.Base.term -> p: Pulse.Syntax.Base.term -> q: Pulse.Syntax.Base.term -> d_p_q: Pulse.Typing.vprop_equiv g p q -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop ((l0 @ [q]) @ l2)) (Pulse.Typing.Combinators.list_as_vprop ([p] @ l0 @ l2)))
{ "end_col": 25, "end_line": 108, "start_col": 3, "start_line": 90 }
Prims.GTot
val list_as_vprop_assoc (g:env) (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2)))
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _
val list_as_vprop_assoc (g:env) (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) let list_as_vprop_assoc g (vp0: list term) (vp1: list term) (vp2: list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) =
false
null
false
List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "sometrivial" ]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.VE_Refl", "Pulse.Typing.Combinators.list_as_vprop", "FStar.List.Tot.Base.op_At", "Prims.unit", "FStar.List.Tot.Properties.append_assoc", "Pulse.Typing.vprop_equiv" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2)))
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_as_vprop_assoc (g:env) (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2)))
[]
Pulse.Checker.VPropEquiv.list_as_vprop_assoc
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> vp0: Prims.list Pulse.Syntax.Base.term -> vp1: Prims.list Pulse.Syntax.Base.term -> vp2: Prims.list Pulse.Syntax.Base.term -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop (vp0 @ vp1 @ vp2)) (Pulse.Typing.Combinators.list_as_vprop ((vp0 @ vp1) @ vp2)))
{ "end_col": 15, "end_line": 44, "start_col": 4, "start_line": 43 }
Prims.Tot
val vprop_equiv_split_frame (g:_) (ctxt req:term) (frame:list term) (d:vprop_equiv g (list_as_vprop (vprop_as_list req @ frame)) (list_as_vprop (vprop_as_list ctxt))) : vprop_equiv g (tm_star req (list_as_vprop frame)) ctxt
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vprop_equiv_split_frame (g:_) (ctxt req:term) (frame:list term) (veq:vprop_equiv g (list_as_vprop (vprop_as_list req @ frame)) (list_as_vprop (vprop_as_list ctxt))) : vprop_equiv g (tm_star req (list_as_vprop frame)) ctxt = let ctxt_l = vprop_as_list ctxt in let req_l = vprop_as_list req in let veq : vprop_equiv g (list_as_vprop (req_l @ frame)) (list_as_vprop ctxt_l) = veq in let d1 : vprop_equiv _ (tm_star (canon_vprop req) (list_as_vprop frame)) (list_as_vprop (req_l @ frame)) = VE_Sym _ _ _ (list_as_vprop_append g req_l frame) in let d1 : vprop_equiv _ (tm_star req (list_as_vprop frame)) (list_as_vprop (req_l @ frame)) = VE_Trans _ _ _ _ (VE_Ctxt _ _ _ _ _ (vprop_list_equiv g req) (VE_Refl _ _)) d1 in let d : vprop_equiv _ (tm_star req (list_as_vprop frame)) (canon_vprop ctxt) = VE_Trans _ _ _ _ d1 veq in let d : vprop_equiv _ (tm_star req (list_as_vprop frame)) ctxt = VE_Trans _ _ _ _ d (VE_Sym _ _ _ (vprop_list_equiv g ctxt)) in d
val vprop_equiv_split_frame (g:_) (ctxt req:term) (frame:list term) (d:vprop_equiv g (list_as_vprop (vprop_as_list req @ frame)) (list_as_vprop (vprop_as_list ctxt))) : vprop_equiv g (tm_star req (list_as_vprop frame)) ctxt let vprop_equiv_split_frame (g: _) (ctxt req: term) (frame: list term) (veq: vprop_equiv g (list_as_vprop (vprop_as_list req @ frame)) (list_as_vprop (vprop_as_list ctxt))) : vprop_equiv g (tm_star req (list_as_vprop frame)) ctxt =
false
null
false
let ctxt_l = vprop_as_list ctxt in let req_l = vprop_as_list req in let veq:vprop_equiv g (list_as_vprop (req_l @ frame)) (list_as_vprop ctxt_l) = veq in let d1:vprop_equiv _ (tm_star (canon_vprop req) (list_as_vprop frame)) (list_as_vprop (req_l @ frame)) = VE_Sym _ _ _ (list_as_vprop_append g req_l frame) in let d1:vprop_equiv _ (tm_star req (list_as_vprop frame)) (list_as_vprop (req_l @ frame)) = VE_Trans _ _ _ _ (VE_Ctxt _ _ _ _ _ (vprop_list_equiv g req) (VE_Refl _ _)) d1 in let d:vprop_equiv _ (tm_star req (list_as_vprop frame)) (canon_vprop ctxt) = VE_Trans _ _ _ _ d1 veq in let d:vprop_equiv _ (tm_star req (list_as_vprop frame)) ctxt = VE_Trans _ _ _ _ d (VE_Sym _ _ _ (vprop_list_equiv g ctxt)) in d
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "total" ]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Prims.list", "Pulse.Typing.vprop_equiv", "Pulse.Typing.Combinators.list_as_vprop", "FStar.List.Tot.Base.op_At", "Pulse.Typing.Combinators.vprop_as_list", "Pulse.Syntax.Base.tm_star", "Pulse.Typing.VE_Trans", "Pulse.Checker.VPropEquiv.canon_vprop", "Pulse.Typing.VE_Sym", "Pulse.Checker.VPropEquiv.vprop_list_equiv", "Pulse.Typing.VE_Ctxt", "Pulse.Typing.VE_Refl", "Pulse.Checker.VPropEquiv.list_as_vprop_append" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _ let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app')) let list_as_vprop_singleton g (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) = VE_Ctxt _ p tm_emp q tm_emp d (VE_Refl _ tm_emp) let rec vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp)) (decreases vp) = match vp.t with | Tm_Emp -> VE_Refl _ _ | Tm_Star vp0 vp1 -> let eq0 = vprop_list_equiv g vp0 in let eq1 = vprop_list_equiv g vp1 in let app_eq : vprop_equiv _ (canon_vprop vp) (tm_star (canon_vprop vp0) (canon_vprop vp1)) = list_as_vprop_append g (vprop_as_list vp0) (vprop_as_list vp1) in let step : vprop_equiv _ vp (tm_star (canon_vprop vp0) (canon_vprop vp1)) = VE_Ctxt _ _ _ _ _ eq0 eq1 in VE_Trans _ _ _ _ step (VE_Sym _ _ _ app_eq) | _ -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g vp tm_emp) (VE_Unit _ vp)) let vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))) = let d : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop (([q] @ l0) @ l2)) = list_as_vprop_ctx g (l0 @ [q]) ([q] @ l0) l2 l2 (list_as_vprop_comm g l0 [q]) (VE_Refl _ _) in let d' : vprop_equiv g (list_as_vprop (([q] @ l0) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = List.Tot.append_assoc [q] l0 l2; VE_Refl _ _ in let d : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = VE_Trans _ _ _ _ d d' in let d_q_p = VE_Sym _ _ _ d_p_q in let d' : vprop_equiv g (list_as_vprop [q]) (list_as_vprop [p]) = list_as_vprop_singleton _ _ _ d_q_p in let d' : vprop_equiv g (list_as_vprop ([q] @ (l0 @ l2))) (list_as_vprop ([p] @ (l0 @ l2))) = list_as_vprop_ctx g [q] [p] (l0 @ l2) _ d' (VE_Refl _ _) in VE_Trans _ _ _ _ d d' let vprop_equiv_split_frame (g:_) (ctxt req:term) (frame:list term) (veq:vprop_equiv g (list_as_vprop (vprop_as_list req @ frame)) (list_as_vprop (vprop_as_list ctxt)))
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vprop_equiv_split_frame (g:_) (ctxt req:term) (frame:list term) (d:vprop_equiv g (list_as_vprop (vprop_as_list req @ frame)) (list_as_vprop (vprop_as_list ctxt))) : vprop_equiv g (tm_star req (list_as_vprop frame)) ctxt
[]
Pulse.Checker.VPropEquiv.vprop_equiv_split_frame
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> ctxt: Pulse.Syntax.Base.term -> req: Pulse.Syntax.Base.term -> frame: Prims.list Pulse.Syntax.Base.term -> d: Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop (Pulse.Typing.Combinators.vprop_as_list req @ frame) ) (Pulse.Typing.Combinators.list_as_vprop (Pulse.Typing.Combinators.vprop_as_list ctxt)) -> Pulse.Typing.vprop_equiv g (Pulse.Syntax.Base.tm_star req (Pulse.Typing.Combinators.list_as_vprop frame)) ctxt
{ "end_col": 5, "end_line": 137, "start_col": 3, "start_line": 115 }
Prims.GTot
val list_as_vprop_append (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1)))
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d
val list_as_vprop_append (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) let rec list_as_vprop_append g (vp0: list term) (vp1: list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) =
false
null
false
match vp0 with | [] -> let v:vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd :: tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d:vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d:vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "", "sometrivial" ]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.vprop_equiv", "Pulse.Typing.Combinators.list_as_vprop", "Pulse.Syntax.Base.tm_star", "Pulse.Syntax.Base.tm_emp", "Pulse.Typing.VE_Sym", "Pulse.Typing.VE_Unit", "FStar.List.Tot.Base.op_At", "Pulse.Typing.VE_Trans", "Pulse.Typing.VE_Assoc", "Pulse.Typing.VE_Ctxt", "Pulse.Typing.VE_Refl", "Pulse.Checker.VPropEquiv.list_as_vprop_append" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1)))
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_as_vprop_append (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1)))
[ "recursion" ]
Pulse.Checker.VPropEquiv.list_as_vprop_append
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> vp0: Prims.list Pulse.Syntax.Base.term -> vp1: Prims.list Pulse.Syntax.Base.term -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop (vp0 @ vp1)) (Pulse.Syntax.Base.tm_star (Pulse.Typing.Combinators.list_as_vprop vp0) (Pulse.Typing.Combinators.list_as_vprop vp1)))
{ "end_col": 7, "end_line": 29, "start_col": 4, "start_line": 14 }
Prims.GTot
val vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp))
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp)) (decreases vp) = match vp.t with | Tm_Emp -> VE_Refl _ _ | Tm_Star vp0 vp1 -> let eq0 = vprop_list_equiv g vp0 in let eq1 = vprop_list_equiv g vp1 in let app_eq : vprop_equiv _ (canon_vprop vp) (tm_star (canon_vprop vp0) (canon_vprop vp1)) = list_as_vprop_append g (vprop_as_list vp0) (vprop_as_list vp1) in let step : vprop_equiv _ vp (tm_star (canon_vprop vp0) (canon_vprop vp1)) = VE_Ctxt _ _ _ _ _ eq0 eq1 in VE_Trans _ _ _ _ step (VE_Sym _ _ _ app_eq) | _ -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g vp tm_emp) (VE_Unit _ vp))
val vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp)) let rec vprop_list_equiv (g: env) (vp: term) : GTot (vprop_equiv g vp (canon_vprop vp)) (decreases vp) =
false
null
false
match vp.t with | Tm_Emp -> VE_Refl _ _ | Tm_Star vp0 vp1 -> let eq0 = vprop_list_equiv g vp0 in let eq1 = vprop_list_equiv g vp1 in let app_eq:vprop_equiv _ (canon_vprop vp) (tm_star (canon_vprop vp0) (canon_vprop vp1)) = list_as_vprop_append g (vprop_as_list vp0) (vprop_as_list vp1) in let step:vprop_equiv _ vp (tm_star (canon_vprop vp0) (canon_vprop vp1)) = VE_Ctxt _ _ _ _ _ eq0 eq1 in VE_Trans _ _ _ _ step (VE_Sym _ _ _ app_eq) | _ -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g vp tm_emp) (VE_Unit _ vp))
{ "checked_file": "Pulse.Checker.VPropEquiv.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ "", "sometrivial" ]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Syntax.Base.__proj__Mkterm__item__t", "Pulse.Typing.VE_Refl", "Pulse.Typing.VE_Trans", "Pulse.Syntax.Base.tm_star", "Pulse.Checker.VPropEquiv.canon_vprop", "Pulse.Typing.VE_Sym", "Pulse.Typing.vprop_equiv", "Pulse.Typing.VE_Ctxt", "Pulse.Checker.VPropEquiv.list_as_vprop_append", "Pulse.Typing.Combinators.vprop_as_list", "Pulse.Checker.VPropEquiv.vprop_list_equiv", "Pulse.Syntax.Base.term'", "Pulse.Syntax.Base.tm_emp", "Pulse.Typing.VE_Comm", "Pulse.Typing.VE_Unit" ]
[]
module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _ let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app')) let list_as_vprop_singleton g (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) = VE_Ctxt _ p tm_emp q tm_emp d (VE_Refl _ tm_emp) let rec vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp))
false
false
Pulse.Checker.VPropEquiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp))
[ "recursion" ]
Pulse.Checker.VPropEquiv.vprop_list_equiv
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
g: Pulse.Typing.Env.env -> vp: Pulse.Syntax.Base.term -> Prims.GTot (Pulse.Typing.vprop_equiv g vp (Pulse.Checker.VPropEquiv.canon_vprop vp))
{ "end_col": 63, "end_line": 83, "start_col": 4, "start_line": 66 }
Prims.Tot
val width_chacha20 (s: field_spec) : Hacl.Spec.Chacha20.Vec.lanes
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8
val width_chacha20 (s: field_spec) : Hacl.Spec.Chacha20.Vec.lanes let width_chacha20 (s: field_spec) : Hacl.Spec.Chacha20.Vec.lanes =
false
null
false
match s with | M32 -> 1 | M128 -> 4 | M256 -> 8
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ "total" ]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Spec.Chacha20.Vec.lanes" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract
false
true
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val width_chacha20 (s: field_spec) : Hacl.Spec.Chacha20.Vec.lanes
[]
Hacl.Impl.Chacha20Poly1305.width_chacha20
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Hacl.Impl.Poly1305.Fields.field_spec -> Hacl.Spec.Chacha20.Vec.lanes
{ "end_col": 13, "end_line": 111, "start_col": 2, "start_line": 108 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad))
let poly1305_do_core_st (w: field_spec) =
false
null
false
k: lbuffer uint8 32ul -> aadlen: size_t -> aad: lbuffer uint8 aadlen -> mlen: size_t -> m: lbuffer uint8 mlen -> out: lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad))
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ "total" ]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.lseq", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Spec.Chacha20Poly1305.poly1305_do" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract
false
true
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly1305_do_core_st : w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
[]
Hacl.Impl.Chacha20Poly1305.poly1305_do_core_st
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
{ "end_col": 82, "end_line": 91, "start_col": 4, "start_line": 79 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_encrypt_st (w:field_spec) = key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> alen:size_t -> aad:lbuffer uint8 alen -> len:size_t -> input:lbuffer uint8 len -> output:lbuffer uint8 len -> tag:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint input output /\ disjoint aad output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 output) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 input) (as_seq h0 aad))
let aead_encrypt_st (w: field_spec) =
false
null
false
key: lbuffer uint8 32ul -> nonce: lbuffer uint8 12ul -> alen: size_t -> aad: lbuffer uint8 alen -> len: size_t -> input: lbuffer uint8 len -> output: lbuffer uint8 len -> tag: lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint input output /\ disjoint aad output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 output) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 input) (as_seq h0 aad))
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ "total" ]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies2", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.append", "Lib.Buffer.as_seq", "Spec.Chacha20Poly1305.aead_encrypt" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ] let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame() inline_for_extraction noextract
false
true
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_encrypt_st : w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
[]
Hacl.Impl.Chacha20Poly1305.aead_encrypt_st
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
{ "end_col": 90, "end_line": 164, "start_col": 4, "start_line": 146 }
Prims.Tot
val aead_encrypt: #w:field_spec -> aead_encrypt_st w
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_encrypt #w k n aadlen aad mlen m cipher mac = chacha20_encrypt #w mlen cipher m k n 1ul; derive_key_poly1305_do #w k n aadlen aad mlen cipher mac
val aead_encrypt: #w:field_spec -> aead_encrypt_st w let aead_encrypt #w k n aadlen aad mlen m cipher mac =
false
null
false
chacha20_encrypt #w mlen cipher m k n 1ul; derive_key_poly1305_do #w k n aadlen aad mlen cipher mac
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ "total" ]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Hacl.Impl.Chacha20Poly1305.derive_key_poly1305_do", "Prims.unit", "Hacl.Impl.Chacha20Poly1305.chacha20_encrypt" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ] let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame() inline_for_extraction noextract let aead_encrypt_st (w:field_spec) = key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> alen:size_t -> aad:lbuffer uint8 alen -> len:size_t -> input:lbuffer uint8 len -> output:lbuffer uint8 len -> tag:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint input output /\ disjoint aad output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 output) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 input) (as_seq h0 aad)) noextract val aead_encrypt: #w:field_spec -> aead_encrypt_st w [@ Meta.Attribute.specialize ]
false
false
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_encrypt: #w:field_spec -> aead_encrypt_st w
[]
Hacl.Impl.Chacha20Poly1305.aead_encrypt
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Chacha20Poly1305.aead_encrypt_st w
{ "end_col": 58, "end_line": 172, "start_col": 2, "start_line": 171 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_decrypt_st (w:field_spec) = key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> alen:size_t -> aad:lbuffer uint8 alen -> len:size_t -> input:lbuffer uint8 len -> output:lbuffer uint8 len -> mac:lbuffer uint8 16ul -> Stack UInt32.t (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h mac /\ eq_or_disjoint input output) (ensures fun h0 z h1 -> modifies1 input h0 h1 /\ (let plain = Spec.aead_decrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 output) (as_seq h0 mac) (as_seq h0 aad) in match z with | 0ul -> Some? plain /\ as_seq h1 input == Some?.v plain // decryption succeeded | 1ul -> None? plain | _ -> false) // decryption failed )
let aead_decrypt_st (w: field_spec) =
false
null
false
key: lbuffer uint8 32ul -> nonce: lbuffer uint8 12ul -> alen: size_t -> aad: lbuffer uint8 alen -> len: size_t -> input: lbuffer uint8 len -> output: lbuffer uint8 len -> mac: lbuffer uint8 16ul -> Stack UInt32.t (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h mac /\ eq_or_disjoint input output) (ensures fun h0 z h1 -> modifies1 input h0 h1 /\ (let plain = Spec.aead_decrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 output) (as_seq h0 mac) (as_seq h0 aad) in match z with | 0ul -> Some? plain /\ as_seq h1 input == Some?.v plain | 1ul -> None? plain | _ -> false))
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ "total" ]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies1", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Lib.ByteSequence.lbytes", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.as_seq", "Prims.eq2", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.uu___is_None", "Prims.logical", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Chacha20Poly1305.aead_decrypt" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ] let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame() inline_for_extraction noextract let aead_encrypt_st (w:field_spec) = key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> alen:size_t -> aad:lbuffer uint8 alen -> len:size_t -> input:lbuffer uint8 len -> output:lbuffer uint8 len -> tag:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint input output /\ disjoint aad output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 output) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 input) (as_seq h0 aad)) noextract val aead_encrypt: #w:field_spec -> aead_encrypt_st w [@ Meta.Attribute.specialize ] let aead_encrypt #w k n aadlen aad mlen m cipher mac = chacha20_encrypt #w mlen cipher m k n 1ul; derive_key_poly1305_do #w k n aadlen aad mlen cipher mac inline_for_extraction noextract
false
true
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_decrypt_st : w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
[]
Hacl.Impl.Chacha20Poly1305.aead_decrypt_st
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
{ "end_col": 3, "end_line": 197, "start_col": 4, "start_line": 178 }
Prims.Tot
val poly1305_do: #w:field_spec -> poly1305_do_core_st w
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame()
val poly1305_do: #w:field_spec -> poly1305_do_core_st w let poly1305_do #w k aadlen aad mlen m out =
false
null
false
push_frame (); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame ()
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ "total" ]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Poly1305.poly1305_finish", "Hacl.Impl.Chacha20Poly1305.poly1305_do_", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.u8", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "Lib.IntTypes.add", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.op_Plus_Bang", "Hacl.Impl.Poly1305.Fields.nlimb", "Hacl.Impl.Poly1305.Fields.precomplen", "Hacl.Impl.Poly1305.Fields.limb_zero", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize]
false
false
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly1305_do: #w:field_spec -> poly1305_do_core_st w
[]
Hacl.Impl.Chacha20Poly1305.poly1305_do
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Chacha20Poly1305.poly1305_do_core_st w
{ "end_col": 13, "end_line": 103, "start_col": 2, "start_line": 98 }
FStar.HyperStack.ST.Stack
val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad)))
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame()
val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) let derive_key_poly1305_do #w k n aadlen aad mlen m out =
true
null
false
push_frame (); let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame ()
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Chacha20Poly1305.poly1305_do", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Hacl.Impl.Chacha20Poly1305.chacha20_encrypt", "Lib.Buffer.create", "Lib.IntTypes.u8", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ]
false
false
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad)))
[]
Hacl.Impl.Chacha20Poly1305.derive_key_poly1305_do
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 12ul -> aadlen: Lib.IntTypes.size_t -> aad: Lib.Buffer.lbuffer Lib.IntTypes.uint8 aadlen -> mlen: Lib.IntTypes.size_t -> m: Lib.Buffer.lbuffer Lib.IntTypes.uint8 mlen -> out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 13, "end_line": 142, "start_col": 2, "start_line": 135 }
Prims.Tot
val aead_decrypt: #w:field_spec -> aead_decrypt_st w
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_decrypt #w k n aadlen aad mlen m cipher mac = push_frame(); let h0 = ST.get() in // Create a buffer to store the temporary mac let computed_mac = create 16ul (u8 0) in // Compute the expected mac using Poly1305 derive_key_poly1305_do #w k n aadlen aad mlen cipher computed_mac; let h1 = ST.get() in let res = if lbytes_eq computed_mac mac then ( assert (BSeq.lbytes_eq (as_seq h1 computed_mac) (as_seq h1 mac)); // If the computed mac matches the mac given, decrypt the ciphertext and return 0 chacha20_encrypt #w mlen m cipher k n 1ul; 0ul ) else 1ul // Macs do not agree, do not decrypt in pop_frame(); res
val aead_decrypt: #w:field_spec -> aead_decrypt_st w let aead_decrypt #w k n aadlen aad mlen m cipher mac =
false
null
false
push_frame (); let h0 = ST.get () in let computed_mac = create 16ul (u8 0) in derive_key_poly1305_do #w k n aadlen aad mlen cipher computed_mac; let h1 = ST.get () in let res = if lbytes_eq computed_mac mac then (assert (BSeq.lbytes_eq (as_seq h1 computed_mac) (as_seq h1 mac)); chacha20_encrypt #w mlen m cipher k n 1ul; 0ul) else 1ul in pop_frame (); res
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ "total" ]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "FStar.UInt32.t", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Chacha20Poly1305.chacha20_encrypt", "Prims._assert", "Prims.b2t", "Lib.ByteSequence.lbytes_eq", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Prims.bool", "Lib.ByteBuffer.lbytes_eq", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Chacha20Poly1305.derive_key_poly1305_do", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "Lib.Buffer.create", "Lib.IntTypes.u8", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ] let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame() inline_for_extraction noextract let aead_encrypt_st (w:field_spec) = key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> alen:size_t -> aad:lbuffer uint8 alen -> len:size_t -> input:lbuffer uint8 len -> output:lbuffer uint8 len -> tag:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint input output /\ disjoint aad output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 output) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 input) (as_seq h0 aad)) noextract val aead_encrypt: #w:field_spec -> aead_encrypt_st w [@ Meta.Attribute.specialize ] let aead_encrypt #w k n aadlen aad mlen m cipher mac = chacha20_encrypt #w mlen cipher m k n 1ul; derive_key_poly1305_do #w k n aadlen aad mlen cipher mac inline_for_extraction noextract let aead_decrypt_st (w:field_spec) = key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> alen:size_t -> aad:lbuffer uint8 alen -> len:size_t -> input:lbuffer uint8 len -> output:lbuffer uint8 len -> mac:lbuffer uint8 16ul -> Stack UInt32.t (requires fun h -> live h key /\ live h nonce /\ live h aad /\ live h input /\ live h output /\ live h mac /\ eq_or_disjoint input output) (ensures fun h0 z h1 -> modifies1 input h0 h1 /\ (let plain = Spec.aead_decrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 output) (as_seq h0 mac) (as_seq h0 aad) in match z with | 0ul -> Some? plain /\ as_seq h1 input == Some?.v plain // decryption succeeded | 1ul -> None? plain | _ -> false) // decryption failed ) noextract val aead_decrypt: #w:field_spec -> aead_decrypt_st w [@ Meta.Attribute.specialize ]
false
false
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_decrypt: #w:field_spec -> aead_decrypt_st w
[]
Hacl.Impl.Chacha20Poly1305.aead_decrypt
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Chacha20Poly1305.aead_decrypt_st w
{ "end_col": 5, "end_line": 221, "start_col": 2, "start_line": 205 }
FStar.HyperStack.ST.Stack
val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx))
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block
val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) let poly1305_do_ #w k aadlen aad mlen m ctx block =
true
null
false
Poly.poly1305_init ctx k; if (aadlen <> 0ul) then (poly1305_padded ctx aadlen aad); if (mlen <> 0ul) then (poly1305_padded ctx mlen m); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block
{ "checked_file": "Hacl.Impl.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Hacl.Impl.Poly1305.poly1305_ctx", "Hacl.Impl.Poly1305.poly1305_update1", "Prims.unit", "Hacl.Impl.Poly1305.reveal_ctx_inv", "Lib.Sequence.lemma_concat2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.uint_to_bytes_le", "Lib.IntTypes.U64", "Lib.IntTypes.to_u64", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Lib.Sequence.eq_intro", "Lib.Sequence.sub", "Lib.IntTypes.v", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.update_sub_f", "Lib.Sequence.lseq", "Lib.ByteBuffer.uint_to_bytes_le", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.mk_int", "Lib.Buffer.sub", "Prims.op_disEquality", "FStar.UInt32.t", "Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded", "Prims.bool", "Hacl.Impl.Poly1305.poly1305_init" ]
[]
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_]
false
false
Hacl.Impl.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx))
[]
Hacl.Impl.Chacha20Poly1305.poly1305_do_
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> aadlen: Lib.IntTypes.size_t -> aad: Lib.Buffer.lbuffer Lib.IntTypes.uint8 aadlen -> mlen: Lib.IntTypes.size_t -> m: Lib.Buffer.lbuffer Lib.IntTypes.uint8 mlen -> ctx: Hacl.Impl.Poly1305.poly1305_ctx w -> block: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 33, "end_line": 73, "start_col": 2, "start_line": 50 }
Prims.Tot
val size_tag:size_nat
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_tag : size_nat = size_block
val size_tag:size_nat let size_tag:size_nat =
false
null
false
size_block
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[ "Spec.Chacha20Poly1305.size_block" ]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants let size_key : size_nat = 32 (* in bytes *) let size_nonce : size_nat = 12 (* in bytes *)
false
false
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_tag:size_nat
[]
Spec.Chacha20Poly1305.size_tag
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat{n <= Prims.pow2 32 - 1}
{ "end_col": 36, "end_line": 18, "start_col": 26, "start_line": 18 }
Prims.Tot
val size_block:size_nat
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_block : size_nat = Poly.size_block
val size_block:size_nat let size_block:size_nat =
false
null
false
Poly.size_block
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[ "Spec.Poly1305.size_block" ]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants let size_key : size_nat = 32 (* in bytes *)
false
false
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_block:size_nat
[]
Spec.Chacha20Poly1305.size_block
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat{n <= Prims.pow2 32 - 1}
{ "end_col": 43, "end_line": 17, "start_col": 28, "start_line": 17 }
Prims.Tot
val size_key:size_nat
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_key : size_nat = 32
val size_key:size_nat let size_key:size_nat =
false
null
false
32
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants
false
false
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_key:size_nat
[]
Spec.Chacha20Poly1305.size_key
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat{n <= Prims.pow2 32 - 1}
{ "end_col": 30, "end_line": 15, "start_col": 28, "start_line": 15 }
Prims.Tot
val size_nonce:size_nat
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_nonce : size_nat = 12
val size_nonce:size_nat let size_nonce:size_nat =
false
null
false
12
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants
false
false
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_nonce:size_nat
[]
Spec.Chacha20Poly1305.size_nonce
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat{n <= Prims.pow2 32 - 1}
{ "end_col": 30, "end_line": 16, "start_col": 28, "start_line": 16 }
Prims.Tot
val poly1305_padded: r_elem:Poly.felem -> text:bytes -> acc:Poly.felem -> Tot Poly.felem
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly1305_padded r_elem text acc = let len = length text in let n = len / Poly.size_block in let r = len % Poly.size_block in let blocks = Seq.slice text 0 (n * Poly.size_block) in let rem = Seq.slice text (n * Poly.size_block) len in let acc = Poly.poly1305_update blocks acc r_elem in let tmp = create Poly.size_block (u8 0) in let tmp = update_sub tmp 0 r rem in // Only run the padded block if the initial text needed padding let acc = if r > 0 then Poly.poly1305_update1 r_elem Poly.size_block tmp acc else acc in acc
val poly1305_padded: r_elem:Poly.felem -> text:bytes -> acc:Poly.felem -> Tot Poly.felem let poly1305_padded r_elem text acc =
false
null
false
let len = length text in let n = len / Poly.size_block in let r = len % Poly.size_block in let blocks = Seq.slice text 0 (n * Poly.size_block) in let rem = Seq.slice text (n * Poly.size_block) len in let acc = Poly.poly1305_update blocks acc r_elem in let tmp = create Poly.size_block (u8 0) in let tmp = update_sub tmp 0 r rem in let acc = if r > 0 then Poly.poly1305_update1 r_elem Poly.size_block tmp acc else acc in acc
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[ "Spec.Poly1305.felem", "Lib.ByteSequence.bytes", "Prims.op_GreaterThan", "Spec.Poly1305.poly1305_update1", "Spec.Poly1305.size_block", "Prims.bool", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "Lib.IntTypes.uint_t", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "Spec.Poly1305.poly1305_update", "FStar.Seq.Base.slice", "FStar.Mul.op_Star", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Lib.Sequence.length" ]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants let size_key : size_nat = 32 (* in bytes *) let size_nonce : size_nat = 12 (* in bytes *) let size_block : size_nat = Poly.size_block let size_tag : size_nat = size_block /// Types type key = lbytes size_key type nonce = lbytes size_nonce type tag = lbytes size_tag /// Specification val poly1305_padded: r_elem:Poly.felem -> text:bytes -> acc:Poly.felem ->
false
true
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly1305_padded: r_elem:Poly.felem -> text:bytes -> acc:Poly.felem -> Tot Poly.felem
[]
Spec.Chacha20Poly1305.poly1305_padded
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r_elem: Spec.Poly1305.felem -> text: Lib.ByteSequence.bytes -> acc: Spec.Poly1305.felem -> Spec.Poly1305.felem
{ "end_col": 5, "end_line": 45, "start_col": 37, "start_line": 33 }
Prims.Tot
val poly1305_do: k:Poly.key -> m:bytes{length m <= maxint U64} -> aad:bytes{length aad <= maxint U64} -> Tot Poly.tag
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly1305_do k m aad = let acc, r = Poly.poly1305_init k in let acc = if (length aad <> 0) then poly1305_padded r aad acc else acc in let acc = if (length m <> 0) then poly1305_padded r m acc else acc in let aad_len8 = uint_to_bytes_le #U64 (u64 (length aad)) in let ciphertext_len8 = uint_to_bytes_le #U64 (u64 (length m)) in let block = aad_len8 @| ciphertext_len8 in let acc = Poly.poly1305_update1 r 16 block acc in Poly.poly1305_finish k acc
val poly1305_do: k:Poly.key -> m:bytes{length m <= maxint U64} -> aad:bytes{length aad <= maxint U64} -> Tot Poly.tag let poly1305_do k m aad =
false
null
false
let acc, r = Poly.poly1305_init k in let acc = if (length aad <> 0) then poly1305_padded r aad acc else acc in let acc = if (length m <> 0) then poly1305_padded r m acc else acc in let aad_len8 = uint_to_bytes_le #U64 (u64 (length aad)) in let ciphertext_len8 = uint_to_bytes_le #U64 (u64 (length m)) in let block = aad_len8 @| ciphertext_len8 in let acc = Poly.poly1305_update1 r 16 block acc in Poly.poly1305_finish k acc
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[ "Spec.Poly1305.key", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "Spec.Poly1305.felem", "Spec.Poly1305.poly1305_finish", "Spec.Poly1305.poly1305_update1", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.op_Addition", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.Sequence.op_At_Bar", "Lib.IntTypes.numbytes", "Lib.ByteSequence.uint_to_bytes_le", "Lib.IntTypes.u64", "Prims.op_disEquality", "Prims.int", "Spec.Chacha20Poly1305.poly1305_padded", "Prims.bool", "Spec.Poly1305.tag", "FStar.Pervasives.Native.tuple2", "Spec.Poly1305.poly1305_init" ]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants let size_key : size_nat = 32 (* in bytes *) let size_nonce : size_nat = 12 (* in bytes *) let size_block : size_nat = Poly.size_block let size_tag : size_nat = size_block /// Types type key = lbytes size_key type nonce = lbytes size_nonce type tag = lbytes size_tag /// Specification val poly1305_padded: r_elem:Poly.felem -> text:bytes -> acc:Poly.felem -> Tot Poly.felem let poly1305_padded r_elem text acc = let len = length text in let n = len / Poly.size_block in let r = len % Poly.size_block in let blocks = Seq.slice text 0 (n * Poly.size_block) in let rem = Seq.slice text (n * Poly.size_block) len in let acc = Poly.poly1305_update blocks acc r_elem in let tmp = create Poly.size_block (u8 0) in let tmp = update_sub tmp 0 r rem in // Only run the padded block if the initial text needed padding let acc = if r > 0 then Poly.poly1305_update1 r_elem Poly.size_block tmp acc else acc in acc val poly1305_do: k:Poly.key -> m:bytes{length m <= maxint U64} -> aad:bytes{length aad <= maxint U64} ->
false
false
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly1305_do: k:Poly.key -> m:bytes{length m <= maxint U64} -> aad:bytes{length aad <= maxint U64} -> Tot Poly.tag
[]
Spec.Chacha20Poly1305.poly1305_do
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Poly1305.key -> m: Lib.ByteSequence.bytes{Lib.Sequence.length m <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> aad: Lib.ByteSequence.bytes{Lib.Sequence.length aad <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> Spec.Poly1305.tag
{ "end_col": 28, "end_line": 60, "start_col": 25, "start_line": 52 }
Prims.Tot
val aead_encrypt: k:key -> n:nonce -> m:bytes{length m <= max_size_t} -> aad:bytes{length aad <= maxint U64} -> Tot (res:bytes{length res == length m + Poly.size_block})
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_encrypt k n m aad = let cipher = Spec.Chacha20.chacha20_encrypt_bytes k n 1 m in let key0:lbytes 64 = Spec.Chacha20.chacha20_encrypt_bytes k n 0 (create 64 (u8 0)) in let poly_k = sub key0 0 32 in let mac = poly1305_do poly_k cipher aad in Seq.append cipher mac
val aead_encrypt: k:key -> n:nonce -> m:bytes{length m <= max_size_t} -> aad:bytes{length aad <= maxint U64} -> Tot (res:bytes{length res == length m + Poly.size_block}) let aead_encrypt k n m aad =
false
null
false
let cipher = Spec.Chacha20.chacha20_encrypt_bytes k n 1 m in let key0:lbytes 64 = Spec.Chacha20.chacha20_encrypt_bytes k n 0 (create 64 (u8 0)) in let poly_k = sub key0 0 32 in let mac = poly1305_do poly_k cipher aad in Seq.append cipher mac
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[ "Spec.Chacha20Poly1305.key", "Spec.Chacha20Poly1305.nonce", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.max_size_t", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "FStar.Seq.Base.append", "Spec.Poly1305.tag", "Spec.Chacha20Poly1305.poly1305_do", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.nat", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Spec.Chacha20.chacha20_encrypt_bytes", "Lib.Sequence.create", "Lib.IntTypes.u8", "Lib.Sequence.seq", "Prims.int", "Spec.Poly1305.size_block" ]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants let size_key : size_nat = 32 (* in bytes *) let size_nonce : size_nat = 12 (* in bytes *) let size_block : size_nat = Poly.size_block let size_tag : size_nat = size_block /// Types type key = lbytes size_key type nonce = lbytes size_nonce type tag = lbytes size_tag /// Specification val poly1305_padded: r_elem:Poly.felem -> text:bytes -> acc:Poly.felem -> Tot Poly.felem let poly1305_padded r_elem text acc = let len = length text in let n = len / Poly.size_block in let r = len % Poly.size_block in let blocks = Seq.slice text 0 (n * Poly.size_block) in let rem = Seq.slice text (n * Poly.size_block) len in let acc = Poly.poly1305_update blocks acc r_elem in let tmp = create Poly.size_block (u8 0) in let tmp = update_sub tmp 0 r rem in // Only run the padded block if the initial text needed padding let acc = if r > 0 then Poly.poly1305_update1 r_elem Poly.size_block tmp acc else acc in acc val poly1305_do: k:Poly.key -> m:bytes{length m <= maxint U64} -> aad:bytes{length aad <= maxint U64} -> Tot Poly.tag let poly1305_do k m aad = let acc, r = Poly.poly1305_init k in let acc = if (length aad <> 0) then poly1305_padded r aad acc else acc in let acc = if (length m <> 0) then poly1305_padded r m acc else acc in let aad_len8 = uint_to_bytes_le #U64 (u64 (length aad)) in let ciphertext_len8 = uint_to_bytes_le #U64 (u64 (length m)) in let block = aad_len8 @| ciphertext_len8 in let acc = Poly.poly1305_update1 r 16 block acc in Poly.poly1305_finish k acc val aead_encrypt: k:key -> n:nonce -> m:bytes{length m <= max_size_t} -> aad:bytes{length aad <= maxint U64} ->
false
false
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_encrypt: k:key -> n:nonce -> m:bytes{length m <= max_size_t} -> aad:bytes{length aad <= maxint U64} -> Tot (res:bytes{length res == length m + Poly.size_block})
[]
Spec.Chacha20Poly1305.aead_encrypt
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Chacha20Poly1305.key -> n: Spec.Chacha20Poly1305.nonce -> m: Lib.ByteSequence.bytes{Lib.Sequence.length m <= Lib.IntTypes.max_size_t} -> aad: Lib.ByteSequence.bytes{Lib.Sequence.length aad <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> res: Lib.ByteSequence.bytes {Lib.Sequence.length res == Lib.Sequence.length m + Spec.Poly1305.size_block}
{ "end_col": 23, "end_line": 73, "start_col": 28, "start_line": 68 }
Prims.Tot
val aead_decrypt: k:key -> n:nonce -> c:bytes{length c <= max_size_t} -> mac:tag -> aad:bytes{length aad <= maxint U64} -> Tot (option (lbytes (length c)))
[ { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "Poly" }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_decrypt k n cipher mac aad = let key0:lbytes 64 = Spec.Chacha20.chacha20_encrypt_bytes k n 0 (create 64 (u8 0)) in let poly_k = sub key0 0 32 in let computed_mac = poly1305_do poly_k cipher aad in if lbytes_eq computed_mac mac then let plain = Spec.Chacha20.chacha20_encrypt_bytes k n 1 cipher in Some plain else None
val aead_decrypt: k:key -> n:nonce -> c:bytes{length c <= max_size_t} -> mac:tag -> aad:bytes{length aad <= maxint U64} -> Tot (option (lbytes (length c))) let aead_decrypt k n cipher mac aad =
false
null
false
let key0:lbytes 64 = Spec.Chacha20.chacha20_encrypt_bytes k n 0 (create 64 (u8 0)) in let poly_k = sub key0 0 32 in let computed_mac = poly1305_do poly_k cipher aad in if lbytes_eq computed_mac mac then let plain = Spec.Chacha20.chacha20_encrypt_bytes k n 1 cipher in Some plain else None
{ "checked_file": "Spec.Chacha20Poly1305.fst.checked", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20Poly1305.fst" }
[ "total" ]
[ "Spec.Chacha20Poly1305.key", "Spec.Chacha20Poly1305.nonce", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.max_size_t", "Spec.Chacha20Poly1305.tag", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "Lib.ByteSequence.lbytes_eq", "Spec.Poly1305.size_block", "FStar.Pervasives.Native.Some", "Lib.ByteSequence.lbytes", "Lib.Sequence.seq", "Lib.IntTypes.int_t", "Prims.eq2", "Prims.nat", "Spec.Chacha20.chacha20_encrypt_bytes", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Spec.Poly1305.tag", "Spec.Chacha20Poly1305.poly1305_do", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Lib.Sequence.create", "Lib.IntTypes.u8" ]
[]
module Spec.Chacha20Poly1305 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence module Poly = Spec.Poly1305 (* RFC7539: https://tools.ietf.org/html/rfc7539#section-2.8 *) #set-options "--max_fuel 0 --z3rlimit 30" /// Constants let size_key : size_nat = 32 (* in bytes *) let size_nonce : size_nat = 12 (* in bytes *) let size_block : size_nat = Poly.size_block let size_tag : size_nat = size_block /// Types type key = lbytes size_key type nonce = lbytes size_nonce type tag = lbytes size_tag /// Specification val poly1305_padded: r_elem:Poly.felem -> text:bytes -> acc:Poly.felem -> Tot Poly.felem let poly1305_padded r_elem text acc = let len = length text in let n = len / Poly.size_block in let r = len % Poly.size_block in let blocks = Seq.slice text 0 (n * Poly.size_block) in let rem = Seq.slice text (n * Poly.size_block) len in let acc = Poly.poly1305_update blocks acc r_elem in let tmp = create Poly.size_block (u8 0) in let tmp = update_sub tmp 0 r rem in // Only run the padded block if the initial text needed padding let acc = if r > 0 then Poly.poly1305_update1 r_elem Poly.size_block tmp acc else acc in acc val poly1305_do: k:Poly.key -> m:bytes{length m <= maxint U64} -> aad:bytes{length aad <= maxint U64} -> Tot Poly.tag let poly1305_do k m aad = let acc, r = Poly.poly1305_init k in let acc = if (length aad <> 0) then poly1305_padded r aad acc else acc in let acc = if (length m <> 0) then poly1305_padded r m acc else acc in let aad_len8 = uint_to_bytes_le #U64 (u64 (length aad)) in let ciphertext_len8 = uint_to_bytes_le #U64 (u64 (length m)) in let block = aad_len8 @| ciphertext_len8 in let acc = Poly.poly1305_update1 r 16 block acc in Poly.poly1305_finish k acc val aead_encrypt: k:key -> n:nonce -> m:bytes{length m <= max_size_t} -> aad:bytes{length aad <= maxint U64} -> Tot (res:bytes{length res == length m + Poly.size_block}) let aead_encrypt k n m aad = let cipher = Spec.Chacha20.chacha20_encrypt_bytes k n 1 m in let key0:lbytes 64 = Spec.Chacha20.chacha20_encrypt_bytes k n 0 (create 64 (u8 0)) in let poly_k = sub key0 0 32 in let mac = poly1305_do poly_k cipher aad in Seq.append cipher mac val aead_decrypt: k:key -> n:nonce -> c:bytes{length c <= max_size_t} -> mac:tag -> aad:bytes{length aad <= maxint U64} ->
false
false
Spec.Chacha20Poly1305.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_decrypt: k:key -> n:nonce -> c:bytes{length c <= max_size_t} -> mac:tag -> aad:bytes{length aad <= maxint U64} -> Tot (option (lbytes (length c)))
[]
Spec.Chacha20Poly1305.aead_decrypt
{ "file_name": "specs/Spec.Chacha20Poly1305.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Chacha20Poly1305.key -> n: Spec.Chacha20Poly1305.nonce -> c: Lib.ByteSequence.bytes{Lib.Sequence.length c <= Lib.IntTypes.max_size_t} -> mac: Spec.Chacha20Poly1305.tag -> aad: Lib.ByteSequence.bytes{Lib.Sequence.length aad <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> FStar.Pervasives.Native.option (Lib.ByteSequence.lbytes (Lib.Sequence.length c))
{ "end_col": 11, "end_line": 89, "start_col": 37, "start_line": 82 }
FStar.Pervasives.Lemma
val lemma_fmul_simplify (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (requires ( let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4) /\ d10 = d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48)) (ensures (r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208) % S.prime = (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul_simplify r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7; lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8; lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4
val lemma_fmul_simplify (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (requires ( let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4) /\ d10 = d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48)) (ensures (r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208) % S.prime = (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime) let lemma_fmul_simplify r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 =
false
null
true
let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7; lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8; lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "Hacl.Spec.K256.Field52.Lemmas4.lemma_fmul_ab", "Prims.unit", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210_mod_prime", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Addition" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r)) let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; } val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 = let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc (==) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; (==) { simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - d4 / pow2 52 * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - d4 / pow2 52 * r + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc (==) { //t3 * pow2 156 + d4 * pow2 208; (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 208; (==) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + r * pow2 12 * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + r * (sum8 / pow2 64) * pow2 12) * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + r * (sum8 / pow2 64) * pow2 64) * pow2 156; (==) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4 val lemma_mul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156)) let lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in calc (==) { (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * b_sum; (==) { ML.lemma_distr5 a0 (a1 * pow52) (a2 * pow104) (a3 * pow156) (a4 * pow208) b_sum } a0 * b_sum + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52 a0 b0 b1 b2 b3 b4 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a1 b0 b1 b2 b3 b4 52 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a2 b0 b1 b2 b3 b4 104 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a3 b0 b1 b2 b3 b4 156 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a4 b0 b1 b2 b3 b4 208 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a0 * b1) (a1 * b0) (pow2 52) } sum0 + sum1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b2) (a1 * b1) (a2 * b0) 0 0 (pow2 104) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b3) (a1 * b2) (a2 * b1) (a3 * b0) 0 (pow2 156) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b4) (a1 * b3) (a2 * b2) (a3 * b1) (a4 * b0) (pow2 208) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + a1 * b4 * pow2 260 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a1 * b4) (a2 * b3) (a3 * b2) (a4 * b1) 0 (pow2 260) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + a2 * b4 * pow2 312 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a2 * b4) (a3 * b3) (a4 * b2) 0 0 (pow2 312) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + a3 * b4 * pow2 364 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a3 * b4) (a4 * b3) (pow2 364) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + sum7 * pow2 364 + sum8 * pow2 416; (==) { ML.lemma_distr5_pow52_mul_pow 1 sum5 sum6 sum7 sum8 0 260 } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156); } val lemma_fmul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let r = 0x1000003D10 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime = (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let a_sum = a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in let tmp0 = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 in let tmp1 = sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156 in calc (==) { a_sum * b_sum % S.prime; (==) { lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 } (tmp0 + pow2 260 * tmp1) % S.prime; (==) { Math.Lemmas.pow2_plus 256 4; Math.Lemmas.paren_mul_right (pow2 256) (pow2 4) tmp1 } (tmp0 + pow2 256 * (pow2 4 * tmp1)) % S.prime; (==) { LD.lemma_a_plus_b_mul_pow256 tmp0 (pow2 4 * tmp1) } (tmp0 + 0x1000003D1 * (pow2 4 * tmp1)) % S.prime; (==) { Math.Lemmas.paren_mul_right 0x1000003D1 (pow2 4) tmp1; assert_norm (0x1000003D1 * pow2 4 = r) } (tmp0 + r * tmp1) % S.prime; (==) { ML.lemma_distr5_pow52 r sum5 sum6 sum7 sum8 0 } (sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum5 + r * sum6 * pow2 52 + r * sum7 * pow2 104 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum7 * pow2 104 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum3 (r * sum8) (pow2 156) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime; } val lemma_fmul_simplify (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (requires ( let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4) /\ d10 = d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48)) (ensures (r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208) % S.prime = (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime)
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul_simplify (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (requires ( let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4) /\ d10 = d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48)) (ensures (r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208) % S.prime = (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime)
[]
Hacl.Spec.K256.Field52.Lemmas4.lemma_fmul_simplify
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r0: Prims.nat -> r1: Prims.nat -> r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c3: Prims.nat -> c6: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d8: Prims.nat -> d10: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> a0: Prims.nat -> a1: Prims.nat -> a2: Prims.nat -> a3: Prims.nat -> a4: Prims.nat -> b0: Prims.nat -> b1: Prims.nat -> b2: Prims.nat -> b3: Prims.nat -> b4: Prims.nat -> FStar.Pervasives.Lemma (requires (let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % Prims.pow2 64)) / Prims.pow2 52 + sum4 + (r * Prims.pow2 12) * (sum8 / Prims.pow2 64) /\ t3 = (sum3 + r * (sum8 % Prims.pow2 64)) % Prims.pow2 52 /\ d8 = (d4 / Prims.pow2 52 + sum5) / Prims.pow2 52 + sum6 /\ c3 = sum0 + (d4 % Prims.pow2 52 / Prims.pow2 48 + ((d4 / Prims.pow2 52 + sum5) % Prims.pow2 52) * Prims.pow2 4) * (r / Prims.pow2 4) /\ d10 = d8 / Prims.pow2 52 + sum7 /\ r0 = c3 % Prims.pow2 52 /\ c6 = c3 / Prims.pow2 52 + sum1 + (d8 % Prims.pow2 52) * r /\ d11 = d10 / Prims.pow2 64 /\ r1 = c6 % Prims.pow2 52 /\ c9 = c6 / Prims.pow2 52 + sum2 + r * (d10 % Prims.pow2 64) /\ r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) ) (ensures (r0 + r1 * Hacl.Spec.K256.Field52.Definitions.pow52 + r2 * Hacl.Spec.K256.Field52.Definitions.pow104 + r3 * Hacl.Spec.K256.Field52.Definitions.pow156 + r4 * Hacl.Spec.K256.Field52.Definitions.pow208) % Spec.K256.PointOps.prime = (a0 + a1 * Hacl.Spec.K256.Field52.Definitions.pow52 + a2 * Hacl.Spec.K256.Field52.Definitions.pow104 + a3 * Hacl.Spec.K256.Field52.Definitions.pow156 + a4 * Hacl.Spec.K256.Field52.Definitions.pow208) * (b0 + b1 * Hacl.Spec.K256.Field52.Definitions.pow52 + b2 * Hacl.Spec.K256.Field52.Definitions.pow104 + b3 * Hacl.Spec.K256.Field52.Definitions.pow156 + b4 * Hacl.Spec.K256.Field52.Definitions.pow208) % Spec.K256.PointOps.prime)
{ "end_col": 45, "end_line": 399, "start_col": 100, "start_line": 385 }
FStar.Pervasives.Lemma
val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; }
val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r =
false
null
true
let k = d4 % pow2 48 in calc ( == ) { (r4 * pow2 52 + r3) * pow2 52 + r2; ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; ( == ) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + (r * pow2 12) * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; ( == ) { ML.lemma_distr_eucl c9 ((r * pow2 12) * d11 + t3 + k * pow2 52) } c9 + ((r * pow2 12) * d11 + t3 + k * pow2 52) * pow2 52; ( == ) { ML.lemma_distr_pow ((r * pow2 12) * d11 + t3) k 52 52 } c9 + ((r * pow2 12) * d11 + t3) * pow2 52 + k * pow2 104; ( == ) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + ((r * d11) * pow2 12 + t3) * pow2 52 + k * pow2 104; ( == ) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + (r * d11) * pow2 64 + t3 * pow2 52 + k * pow2 104; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "Hacl.Spec.K256.MathLemmas.lemma_swap_mul3" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104)
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104)
[]
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r432
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> FStar.Pervasives.Lemma (requires r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) (ensures (r4 * Prims.pow2 52 + r3) * Prims.pow2 52 + r2 = c9 + (r * d11) * Prims.pow2 64 + t3 * Prims.pow2 52 + (d4 % Prims.pow2 48) * Prims.pow2 104)
{ "end_col": 5, "end_line": 40, "start_col": 48, "start_line": 24 }
FStar.Pervasives.Lemma
val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; }
val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r)) let simplify_c3 d4 r sum5 =
false
null
true
let k = (d4 / pow2 52 + sum5) % pow2 52 in calc ( == ) { ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); ( == ) { (Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4) } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + ((k - d4 / pow2 52) * pow2 4) * (r / pow2 4); ( == ) { (Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4)) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.op_Division", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "Prims.squash", "FStar.Math.Lemmas.euclidean_division_definition", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.div_exact_r", "FStar.Math.Lemmas.paren_mul_right" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r))
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r))
[]
Hacl.Spec.K256.Field52.Lemmas4.simplify_c3
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
d4: Prims.nat -> r: Prims.nat -> sum5: Prims.nat -> FStar.Pervasives.Lemma (requires r % Prims.pow2 4 = 0) (ensures (let k = (d4 / Prims.pow2 52 + sum5) % Prims.pow2 52 in (d4 % Prims.pow2 52 / Prims.pow2 48 + k * Prims.pow2 4) * (r / Prims.pow2 4) == (d4 / Prims.pow2 48) * (r / Prims.pow2 4) + (k - d4 / Prims.pow2 52) * r))
{ "end_col": 3, "end_line": 142, "start_col": 27, "start_line": 125 }
FStar.Pervasives.Lemma
val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; }
val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 =
false
null
true
let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc ( == ) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; ( == ) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + (r * d11) * pow2 64 + tmp1) * pow2 52 + r1; ( == ) { () } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + (r * d11) * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; ( == ) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; ( == ) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + (r * d10) * pow2 52 + tmp1 * pow2 52; ( == ) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + (r * d10) * pow2 52 + t3 * pow2 104 + k * pow2 156; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r432", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl", "FStar.Math.Lemmas.distributivity_add_left", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow_pow" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156)
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156)
[]
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r4321
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r1: Prims.nat -> r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c6: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d10: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> sum2: Prims.nat -> FStar.Pervasives.Lemma (requires d11 = d10 / Prims.pow2 64 /\ r1 = c6 % Prims.pow2 52 /\ c9 = c6 / Prims.pow2 52 + sum2 + r * (d10 % Prims.pow2 64) /\ r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) (ensures ((r4 * Prims.pow2 52 + r3) * Prims.pow2 52 + r2) * Prims.pow2 52 + r1 = c6 + sum2 * Prims.pow2 52 + (r * d10) * Prims.pow2 52 + t3 * Prims.pow2 104 + (d4 % Prims.pow2 48) * Prims.pow2 156)
{ "end_col": 5, "end_line": 73, "start_col": 64, "start_line": 53 }
FStar.Pervasives.Lemma
val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; }
val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 =
false
null
true
let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc ( == ) { (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; ( == ) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; ( == ) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc ( == ) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; ( == ) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; ( == ) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + (d8 % pow2 52) * r + (r * (d8 / pow2 52 + sum7)) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; ( == ) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + (r * sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; ( == ) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + (r * sum7) * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + (r * sum7) * pow2 52 + tmp1) * pow2 52; ( == ) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + (r * sum7) * pow2 104; ( == ) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + (r * sum7) * pow2 104; ( == ) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.pow52", "Hacl.Spec.K256.Field52.Definitions.pow104", "Hacl.Spec.K256.Field52.Definitions.pow156", "Hacl.Spec.K256.Field52.Definitions.pow208", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_as_nat_horner", "Prims.squash", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r4321", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul_add", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "FStar.Math.Lemmas.distributivity_add_left", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow_pow" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208)
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208)
[]
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r0: Prims.nat -> r1: Prims.nat -> r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c3: Prims.nat -> c6: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d8: Prims.nat -> d10: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> sum1: Prims.nat -> sum2: Prims.nat -> sum7: Prims.nat -> FStar.Pervasives.Lemma (requires d10 == d8 / Prims.pow2 52 + sum7 /\ r0 = c3 % Prims.pow2 52 /\ c6 = c3 / Prims.pow2 52 + sum1 + (d8 % Prims.pow2 52) * r /\ d11 = d10 / Prims.pow2 64 /\ r1 = c6 % Prims.pow2 52 /\ c9 = c6 / Prims.pow2 52 + sum2 + r * (d10 % Prims.pow2 64) /\ r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) (ensures r0 + r1 * Hacl.Spec.K256.Field52.Definitions.pow52 + r2 * Hacl.Spec.K256.Field52.Definitions.pow104 + r3 * Hacl.Spec.K256.Field52.Definitions.pow156 + r4 * Hacl.Spec.K256.Field52.Definitions.pow208 = c3 + (sum1 + r * d8) * Prims.pow2 52 + (sum2 + r * sum7) * Prims.pow2 104 + t3 * Prims.pow2 156 + (d4 % Prims.pow2 48) * Prims.pow2 208)
{ "end_col": 5, "end_line": 116, "start_col": 84, "start_line": 88 }
FStar.Pervasives.Lemma
val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 = let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc (==) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; (==) { simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - d4 / pow2 52 * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - d4 / pow2 52 * r + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc (==) { //t3 * pow2 156 + d4 * pow2 208; (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 208; (==) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + r * pow2 12 * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + r * (sum8 / pow2 64) * pow2 12) * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + r * (sum8 / pow2 64) * pow2 64) * pow2 156; (==) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4
val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 =
false
null
true
let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc ( == ) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; ( == ) { (simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1)) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + (r * (tmp1 / pow2 52 + sum6)) * pow2 52; ( == ) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - (d4 / pow2 52) * r + sum1 * pow2 52 + (r * (tmp1 / pow2 52 + sum6)) * pow2 52; ( == ) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - (d4 / pow2 52) * r + sum1 * pow2 52 + (r * sum6) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + (r * sum6) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc ( == ) { (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + (r * pow2 12) * (sum8 / pow2 64)) * pow2 208; ( == ) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + (r * pow2 12) * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + (r * pow2 12) * (sum8 / pow2 64)) * pow2 52) * pow2 156; ( == ) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + (r * pow2 12) * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + (r * pow2 12) * (sum8 / pow2 64)) * pow2 52) * pow2 156; ( == ) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + (r * (sum8 / pow2 64)) * pow2 12) * pow2 52) * pow2 156; ( == ) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + (r * (sum8 / pow2 64)) * pow2 64) * pow2 156; ( == ) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; ( == ) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "Hacl.Spec.K256.Field52.Definitions.Lemmas.as_nat_mod_prime", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul_add", "Hacl.Spec.K256.MathLemmas.lemma_swap_mul3", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul", "Prims.op_Subtraction", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas4.simplify_c3", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.distributivity_add_right" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r)) let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; } val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
[]
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210_mod_prime
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c3: Prims.nat -> d4: Prims.nat -> d8: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> sum0: Prims.nat -> sum1: Prims.nat -> sum2: Prims.nat -> sum3: Prims.nat -> sum4: Prims.nat -> sum5: Prims.nat -> sum6: Prims.nat -> sum7: Prims.nat -> sum8: Prims.nat -> FStar.Pervasives.Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % Prims.pow2 64)) / Prims.pow2 52 + sum4 + (r * Prims.pow2 12) * (sum8 / Prims.pow2 64) /\ t3 = (sum3 + r * (sum8 % Prims.pow2 64)) % Prims.pow2 52 /\ d8 = (d4 / Prims.pow2 52 + sum5) / Prims.pow2 52 + sum6 /\ c3 = sum0 + (d4 % Prims.pow2 52 / Prims.pow2 48 + ((d4 / Prims.pow2 52 + sum5) % Prims.pow2 52) * Prims.pow2 4) * (r / Prims.pow2 4)) (ensures (c3 + (sum1 + r * d8) * Prims.pow2 52 + (sum2 + r * sum7) * Prims.pow2 104 + t3 * Prims.pow2 156 + (d4 % Prims.pow2 48) * Prims.pow2 208) % Spec.K256.PointOps.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * Prims.pow2 52 + (sum2 + r * sum7) * Prims.pow2 104 + (sum3 + r * sum8) * Prims.pow2 156 + sum4 * Prims.pow2 208) % Spec.K256.PointOps.prime)
{ "end_col": 81, "end_line": 196, "start_col": 91, "start_line": 158 }
FStar.Pervasives.Lemma
val lemma_fmul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let r = 0x1000003D10 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime = (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let a_sum = a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in let tmp0 = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 in let tmp1 = sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156 in calc (==) { a_sum * b_sum % S.prime; (==) { lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 } (tmp0 + pow2 260 * tmp1) % S.prime; (==) { Math.Lemmas.pow2_plus 256 4; Math.Lemmas.paren_mul_right (pow2 256) (pow2 4) tmp1 } (tmp0 + pow2 256 * (pow2 4 * tmp1)) % S.prime; (==) { LD.lemma_a_plus_b_mul_pow256 tmp0 (pow2 4 * tmp1) } (tmp0 + 0x1000003D1 * (pow2 4 * tmp1)) % S.prime; (==) { Math.Lemmas.paren_mul_right 0x1000003D1 (pow2 4) tmp1; assert_norm (0x1000003D1 * pow2 4 = r) } (tmp0 + r * tmp1) % S.prime; (==) { ML.lemma_distr5_pow52 r sum5 sum6 sum7 sum8 0 } (sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum5 + r * sum6 * pow2 52 + r * sum7 * pow2 104 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum7 * pow2 104 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum3 (r * sum8) (pow2 156) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime; }
val lemma_fmul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let r = 0x1000003D10 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime = (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 =
false
null
true
let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let a_sum = a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in let tmp0 = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 in let tmp1 = sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156 in calc ( == ) { a_sum * b_sum % S.prime; ( == ) { lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 } (tmp0 + pow2 260 * tmp1) % S.prime; ( == ) { (Math.Lemmas.pow2_plus 256 4; Math.Lemmas.paren_mul_right (pow2 256) (pow2 4) tmp1) } (tmp0 + pow2 256 * (pow2 4 * tmp1)) % S.prime; ( == ) { LD.lemma_a_plus_b_mul_pow256 tmp0 (pow2 4 * tmp1) } (tmp0 + 0x1000003D1 * (pow2 4 * tmp1)) % S.prime; ( == ) { (Math.Lemmas.paren_mul_right 0x1000003D1 (pow2 4) tmp1; assert_norm (0x1000003D1 * pow2 4 = r)) } (tmp0 + r * tmp1) % S.prime; ( == ) { ML.lemma_distr5_pow52 r sum5 sum6 sum7 sum8 0 } (sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum5 + (r * sum6) * pow2 52 + (r * sum7) * pow2 104 + (r * sum8) * pow2 156) % S.prime; ( == ) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + (r * sum7) * pow2 104 + (r * sum8) * pow2 156) % S.prime; ( == ) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + (r * sum8) * pow2 156) % S.prime; ( == ) { Math.Lemmas.distributivity_add_left sum3 (r * sum8) (pow2 156) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Spec.K256.PointOps.prime", "Prims.op_Addition", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas4.lemma_mul_ab", "Prims.squash", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.pow2_plus", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_a_plus_b_mul_pow256", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52", "FStar.Math.Lemmas.distributivity_add_left", "Hacl.Spec.K256.Field52.Definitions.pow52", "Hacl.Spec.K256.Field52.Definitions.pow104", "Hacl.Spec.K256.Field52.Definitions.pow156", "Hacl.Spec.K256.Field52.Definitions.pow208" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r)) let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; } val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 = let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc (==) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; (==) { simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - d4 / pow2 52 * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - d4 / pow2 52 * r + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc (==) { //t3 * pow2 156 + d4 * pow2 208; (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 208; (==) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + r * pow2 12 * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + r * (sum8 / pow2 64) * pow2 12) * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + r * (sum8 / pow2 64) * pow2 64) * pow2 156; (==) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4 val lemma_mul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156)) let lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in calc (==) { (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * b_sum; (==) { ML.lemma_distr5 a0 (a1 * pow52) (a2 * pow104) (a3 * pow156) (a4 * pow208) b_sum } a0 * b_sum + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52 a0 b0 b1 b2 b3 b4 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a1 b0 b1 b2 b3 b4 52 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a2 b0 b1 b2 b3 b4 104 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a3 b0 b1 b2 b3 b4 156 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a4 b0 b1 b2 b3 b4 208 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a0 * b1) (a1 * b0) (pow2 52) } sum0 + sum1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b2) (a1 * b1) (a2 * b0) 0 0 (pow2 104) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b3) (a1 * b2) (a2 * b1) (a3 * b0) 0 (pow2 156) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b4) (a1 * b3) (a2 * b2) (a3 * b1) (a4 * b0) (pow2 208) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + a1 * b4 * pow2 260 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a1 * b4) (a2 * b3) (a3 * b2) (a4 * b1) 0 (pow2 260) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + a2 * b4 * pow2 312 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a2 * b4) (a3 * b3) (a4 * b2) 0 0 (pow2 312) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + a3 * b4 * pow2 364 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a3 * b4) (a4 * b3) (pow2 364) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + sum7 * pow2 364 + sum8 * pow2 416; (==) { ML.lemma_distr5_pow52_mul_pow 1 sum5 sum6 sum7 sum8 0 260 } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156); } val lemma_fmul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let r = 0x1000003D10 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime = (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let r = 0x1000003D10 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime = (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
[]
Hacl.Spec.K256.Field52.Lemmas4.lemma_fmul_ab
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Prims.nat -> a1: Prims.nat -> a2: Prims.nat -> a3: Prims.nat -> a4: Prims.nat -> b0: Prims.nat -> b1: Prims.nat -> b2: Prims.nat -> b3: Prims.nat -> b4: Prims.nat -> FStar.Pervasives.Lemma (ensures (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let r = 0x1000003D10 in (a0 + a1 * Hacl.Spec.K256.Field52.Definitions.pow52 + a2 * Hacl.Spec.K256.Field52.Definitions.pow104 + a3 * Hacl.Spec.K256.Field52.Definitions.pow156 + a4 * Hacl.Spec.K256.Field52.Definitions.pow208) * (b0 + b1 * Hacl.Spec.K256.Field52.Definitions.pow52 + b2 * Hacl.Spec.K256.Field52.Definitions.pow104 + b3 * Hacl.Spec.K256.Field52.Definitions.pow156 + b4 * Hacl.Spec.K256.Field52.Definitions.pow208) % Spec.K256.PointOps.prime = (sum0 + sum5 * r + (sum1 + sum6 * r) * Prims.pow2 52 + (sum2 + r * sum7) * Prims.pow2 104 + (sum3 + r * sum8) * Prims.pow2 156 + sum4 * Prims.pow2 208) % Spec.K256.PointOps.prime))
{ "end_col": 5, "end_line": 353, "start_col": 49, "start_line": 314 }
FStar.Pervasives.Lemma
val lemma_mul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in calc (==) { (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * b_sum; (==) { ML.lemma_distr5 a0 (a1 * pow52) (a2 * pow104) (a3 * pow156) (a4 * pow208) b_sum } a0 * b_sum + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52 a0 b0 b1 b2 b3 b4 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a1 b0 b1 b2 b3 b4 52 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a2 b0 b1 b2 b3 b4 104 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a3 b0 b1 b2 b3 b4 156 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a4 b0 b1 b2 b3 b4 208 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a0 * b1) (a1 * b0) (pow2 52) } sum0 + sum1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b2) (a1 * b1) (a2 * b0) 0 0 (pow2 104) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b3) (a1 * b2) (a2 * b1) (a3 * b0) 0 (pow2 156) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b4) (a1 * b3) (a2 * b2) (a3 * b1) (a4 * b0) (pow2 208) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + a1 * b4 * pow2 260 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a1 * b4) (a2 * b3) (a3 * b2) (a4 * b1) 0 (pow2 260) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + a2 * b4 * pow2 312 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a2 * b4) (a3 * b3) (a4 * b2) 0 0 (pow2 312) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + a3 * b4 * pow2 364 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a3 * b4) (a4 * b3) (pow2 364) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + sum7 * pow2 364 + sum8 * pow2 416; (==) { ML.lemma_distr5_pow52_mul_pow 1 sum5 sum6 sum7 sum8 0 260 } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156); }
val lemma_mul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156)) let lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 =
false
null
true
let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in calc ( == ) { (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * b_sum; ( == ) { ML.lemma_distr5 a0 (a1 * pow52) (a2 * pow104) (a3 * pow156) (a4 * pow208) b_sum } a0 * b_sum + (a1 * pow52) * b_sum + (a2 * pow104) * b_sum + (a3 * pow156) * b_sum + (a4 * pow208) * b_sum; ( == ) { ML.lemma_distr5_pow52 a0 b0 b1 b2 b3 b4 } sum0 + (a0 * b1) * pow2 52 + (a0 * b2) * pow2 104 + (a0 * b3) * pow2 156 + (a0 * b4) * pow2 208 + (a1 * pow52) * b_sum + (a2 * pow104) * b_sum + (a3 * pow156) * b_sum + (a4 * pow208) * b_sum; ( == ) { ML.lemma_distr5_pow52_mul_pow a1 b0 b1 b2 b3 b4 52 } sum0 + (a0 * b1) * pow2 52 + (a0 * b2) * pow2 104 + (a0 * b3) * pow2 156 + (a0 * b4) * pow2 208 + (a1 * b0) * pow2 52 + (a1 * b1) * pow2 104 + (a1 * b2) * pow2 156 + (a1 * b3) * pow2 208 + (a1 * b4) * pow2 260 + (a2 * pow104) * b_sum + (a3 * pow156) * b_sum + (a4 * pow208) * b_sum; ( == ) { ML.lemma_distr5_pow52_mul_pow a2 b0 b1 b2 b3 b4 104 } sum0 + (a0 * b1) * pow2 52 + (a0 * b2) * pow2 104 + (a0 * b3) * pow2 156 + (a0 * b4) * pow2 208 + (a1 * b0) * pow2 52 + (a1 * b1) * pow2 104 + (a1 * b2) * pow2 156 + (a1 * b3) * pow2 208 + (a1 * b4) * pow2 260 + (a2 * b0) * pow2 104 + (a2 * b1) * pow2 156 + (a2 * b2) * pow2 208 + (a2 * b3) * pow2 260 + (a2 * b4) * pow2 312 + (a3 * pow156) * b_sum + (a4 * pow208) * b_sum; ( == ) { ML.lemma_distr5_pow52_mul_pow a3 b0 b1 b2 b3 b4 156 } sum0 + (a0 * b1) * pow2 52 + (a0 * b2) * pow2 104 + (a0 * b3) * pow2 156 + (a0 * b4) * pow2 208 + (a1 * b0) * pow2 52 + (a1 * b1) * pow2 104 + (a1 * b2) * pow2 156 + (a1 * b3) * pow2 208 + (a1 * b4) * pow2 260 + (a2 * b0) * pow2 104 + (a2 * b1) * pow2 156 + (a2 * b2) * pow2 208 + (a2 * b3) * pow2 260 + (a2 * b4) * pow2 312 + (a3 * b0) * pow2 156 + (a3 * b1) * pow2 208 + (a3 * b2) * pow2 260 + (a3 * b3) * pow2 312 + (a3 * b4) * pow2 364 + (a4 * pow208) * b_sum; ( == ) { ML.lemma_distr5_pow52_mul_pow a4 b0 b1 b2 b3 b4 208 } sum0 + (a0 * b1) * pow2 52 + (a0 * b2) * pow2 104 + (a0 * b3) * pow2 156 + (a0 * b4) * pow2 208 + (a1 * b0) * pow2 52 + (a1 * b1) * pow2 104 + (a1 * b2) * pow2 156 + (a1 * b3) * pow2 208 + (a1 * b4) * pow2 260 + (a2 * b0) * pow2 104 + (a2 * b1) * pow2 156 + (a2 * b2) * pow2 208 + (a2 * b3) * pow2 260 + (a2 * b4) * pow2 312 + (a3 * b0) * pow2 156 + (a3 * b1) * pow2 208 + (a3 * b2) * pow2 260 + (a3 * b3) * pow2 312 + (a3 * b4) * pow2 364 + (a4 * b0) * pow2 208 + (a4 * b1) * pow2 260 + (a4 * b2) * pow2 312 + (a4 * b3) * pow2 364 + (a4 * b4) * pow2 416; ( == ) { Math.Lemmas.distributivity_add_left (a0 * b1) (a1 * b0) (pow2 52) } sum0 + sum1 * pow2 52 + (a0 * b2) * pow2 104 + (a0 * b3) * pow2 156 + (a0 * b4) * pow2 208 + (a1 * b1) * pow2 104 + (a1 * b2) * pow2 156 + (a1 * b3) * pow2 208 + (a1 * b4) * pow2 260 + (a2 * b0) * pow2 104 + (a2 * b1) * pow2 156 + (a2 * b2) * pow2 208 + (a2 * b3) * pow2 260 + (a2 * b4) * pow2 312 + (a3 * b0) * pow2 156 + (a3 * b1) * pow2 208 + (a3 * b2) * pow2 260 + (a3 * b3) * pow2 312 + (a3 * b4) * pow2 364 + (a4 * b0) * pow2 208 + (a4 * b1) * pow2 260 + (a4 * b2) * pow2 312 + (a4 * b3) * pow2 364 + (a4 * b4) * pow2 416; ( == ) { ML.lemma_distr5 (a0 * b2) (a1 * b1) (a2 * b0) 0 0 (pow2 104) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + (a0 * b3) * pow2 156 + (a0 * b4) * pow2 208 + (a1 * b2) * pow2 156 + (a1 * b3) * pow2 208 + (a1 * b4) * pow2 260 + (a2 * b1) * pow2 156 + (a2 * b2) * pow2 208 + (a2 * b3) * pow2 260 + (a2 * b4) * pow2 312 + (a3 * b0) * pow2 156 + (a3 * b1) * pow2 208 + (a3 * b2) * pow2 260 + (a3 * b3) * pow2 312 + (a3 * b4) * pow2 364 + (a4 * b0) * pow2 208 + (a4 * b1) * pow2 260 + (a4 * b2) * pow2 312 + (a4 * b3) * pow2 364 + (a4 * b4) * pow2 416; ( == ) { ML.lemma_distr5 (a0 * b3) (a1 * b2) (a2 * b1) (a3 * b0) 0 (pow2 156) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + (a0 * b4) * pow2 208 + (a1 * b3) * pow2 208 + (a1 * b4) * pow2 260 + (a2 * b2) * pow2 208 + (a2 * b3) * pow2 260 + (a2 * b4) * pow2 312 + (a3 * b1) * pow2 208 + (a3 * b2) * pow2 260 + (a3 * b3) * pow2 312 + (a3 * b4) * pow2 364 + (a4 * b0) * pow2 208 + (a4 * b1) * pow2 260 + (a4 * b2) * pow2 312 + (a4 * b3) * pow2 364 + (a4 * b4) * pow2 416; ( == ) { ML.lemma_distr5 (a0 * b4) (a1 * b3) (a2 * b2) (a3 * b1) (a4 * b0) (pow2 208) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + (a1 * b4) * pow2 260 + (a2 * b3) * pow2 260 + (a2 * b4) * pow2 312 + (a3 * b2) * pow2 260 + (a3 * b3) * pow2 312 + (a3 * b4) * pow2 364 + (a4 * b1) * pow2 260 + (a4 * b2) * pow2 312 + (a4 * b3) * pow2 364 + (a4 * b4) * pow2 416; ( == ) { ML.lemma_distr5 (a1 * b4) (a2 * b3) (a3 * b2) (a4 * b1) 0 (pow2 260) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + (a2 * b4) * pow2 312 + (a3 * b3) * pow2 312 + (a3 * b4) * pow2 364 + (a4 * b2) * pow2 312 + (a4 * b3) * pow2 364 + (a4 * b4) * pow2 416; ( == ) { ML.lemma_distr5 (a2 * b4) (a3 * b3) (a4 * b2) 0 0 (pow2 312) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + (a3 * b4) * pow2 364 + (a4 * b3) * pow2 364 + (a4 * b4) * pow2 416; ( == ) { Math.Lemmas.distributivity_add_left (a3 * b4) (a4 * b3) (pow2 364) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + sum7 * pow2 364 + sum8 * pow2 416; ( == ) { ML.lemma_distr5_pow52_mul_pow 1 sum5 sum6 sum7 sum8 0 260 } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156); }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Hacl.Spec.K256.Field52.Definitions.pow52", "Hacl.Spec.K256.Field52.Definitions.pow104", "Hacl.Spec.K256.Field52.Definitions.pow156", "Hacl.Spec.K256.Field52.Definitions.pow208", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_distr5", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52", "Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52_mul_pow", "FStar.Math.Lemmas.distributivity_add_left" ]
[]
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r)) let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; } val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 = let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc (==) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; (==) { simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - d4 / pow2 52 * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - d4 / pow2 52 * r + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc (==) { //t3 * pow2 156 + d4 * pow2 208; (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 208; (==) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + r * pow2 12 * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + r * (sum8 / pow2 64) * pow2 12) * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + r * (sum8 / pow2 64) * pow2 64) * pow2 156; (==) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4 val lemma_mul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156))
false
false
Hacl.Spec.K256.Field52.Lemmas4.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156))
[]
Hacl.Spec.K256.Field52.Lemmas4.lemma_mul_ab
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Prims.nat -> a1: Prims.nat -> a2: Prims.nat -> a3: Prims.nat -> a4: Prims.nat -> b0: Prims.nat -> b1: Prims.nat -> b2: Prims.nat -> b3: Prims.nat -> b4: Prims.nat -> FStar.Pervasives.Lemma (ensures (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * Hacl.Spec.K256.Field52.Definitions.pow52 + a2 * Hacl.Spec.K256.Field52.Definitions.pow104 + a3 * Hacl.Spec.K256.Field52.Definitions.pow156 + a4 * Hacl.Spec.K256.Field52.Definitions.pow208) * (b0 + b1 * Hacl.Spec.K256.Field52.Definitions.pow52 + b2 * Hacl.Spec.K256.Field52.Definitions.pow104 + b3 * Hacl.Spec.K256.Field52.Definitions.pow156 + b4 * Hacl.Spec.K256.Field52.Definitions.pow208) = sum0 + sum1 * Prims.pow2 52 + sum2 * Prims.pow2 104 + sum3 * Prims.pow2 156 + sum4 * Prims.pow2 208 + Prims.pow2 260 * (sum5 + sum6 * Prims.pow2 52 + sum7 * Prims.pow2 104 + sum8 * Prims.pow2 156)))
{ "end_col": 5, "end_line": 294, "start_col": 48, "start_line": 215 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_state_all (a:Type) (wp:st_wp a) (p:all_post a) = wp (fun a -> p (V a))
let lift_state_all (a: Type) (wp: st_wp a) (p: all_post a) =
false
null
false
wp (fun a -> p (V a))
{ "checked_file": "FStar.HyperStack.All.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ "total" ]
[ "FStar.HyperStack.ST.st_wp", "FStar.HyperStack.All.all_post", "FStar.Pervasives.V", "FStar.Monotonic.HyperStack.mem", "Prims.l_True", "FStar.Pervasives.st_pre_h" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem let all_post' (a:Type) (pre:Type) = all_post_h' HyperStack.mem a pre let all_post (a:Type) = all_post_h HyperStack.mem a let all_wp (a:Type) = all_wp_h HyperStack.mem a new_effect ALL = ALL_h HyperStack.mem
false
false
FStar.HyperStack.All.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_state_all : a: Type -> wp: FStar.HyperStack.ST.st_wp a -> p: FStar.HyperStack.All.all_post a -> FStar.Pervasives.st_pre_h FStar.Monotonic.HyperStack.mem
[]
FStar.HyperStack.All.lift_state_all
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp: FStar.HyperStack.ST.st_wp a -> p: FStar.HyperStack.All.all_post a -> FStar.Pervasives.st_pre_h FStar.Monotonic.HyperStack.mem
{ "end_col": 87, "end_line": 25, "start_col": 66, "start_line": 25 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let all_wp (a:Type) = all_wp_h HyperStack.mem a
let all_wp (a: Type) =
false
null
false
all_wp_h HyperStack.mem a
{ "checked_file": "FStar.HyperStack.All.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ "total" ]
[ "FStar.Pervasives.all_wp_h", "FStar.Monotonic.HyperStack.mem" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem let all_post' (a:Type) (pre:Type) = all_post_h' HyperStack.mem a pre
false
true
FStar.HyperStack.All.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val all_wp : a: Type -> Type
[]
FStar.HyperStack.All.all_wp
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> Type
{ "end_col": 47, "end_line": 22, "start_col": 22, "start_line": 22 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let all_pre = all_pre_h HyperStack.mem
let all_pre =
false
null
false
all_pre_h HyperStack.mem
{ "checked_file": "FStar.HyperStack.All.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ "total" ]
[ "FStar.Pervasives.all_pre_h", "FStar.Monotonic.HyperStack.mem" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST
false
true
FStar.HyperStack.All.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val all_pre : Type
[]
FStar.HyperStack.All.all_pre
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type
{ "end_col": 38, "end_line": 19, "start_col": 14, "start_line": 19 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let all_post' (a:Type) (pre:Type) = all_post_h' HyperStack.mem a pre
let all_post' (a pre: Type) =
false
null
false
all_post_h' HyperStack.mem a pre
{ "checked_file": "FStar.HyperStack.All.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ "total" ]
[ "FStar.Pervasives.all_post_h'", "FStar.Monotonic.HyperStack.mem" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST
false
true
FStar.HyperStack.All.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val all_post' : a: Type -> pre: Type -> Type
[]
FStar.HyperStack.All.all_post'
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> pre: Type -> Type
{ "end_col": 68, "end_line": 20, "start_col": 36, "start_line": 20 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let all_post (a:Type) = all_post_h HyperStack.mem a
let all_post (a: Type) =
false
null
false
all_post_h HyperStack.mem a
{ "checked_file": "FStar.HyperStack.All.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ "total" ]
[ "FStar.Pervasives.all_post_h", "FStar.Monotonic.HyperStack.mem" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem
false
true
FStar.HyperStack.All.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val all_post : a: Type -> Type
[]
FStar.HyperStack.All.all_post
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> Type
{ "end_col": 52, "end_line": 21, "start_col": 25, "start_line": 21 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_exn_all (a:Type) (wp:ex_wp a) (p:all_post a) (h:HyperStack.mem) = wp (fun ra -> p ra h)
let lift_exn_all (a: Type) (wp: ex_wp a) (p: all_post a) (h: HyperStack.mem) =
false
null
false
wp (fun ra -> p ra h)
{ "checked_file": "FStar.HyperStack.All.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ "total" ]
[ "FStar.Pervasives.ex_wp", "FStar.HyperStack.All.all_post", "FStar.Monotonic.HyperStack.mem", "FStar.Pervasives.result", "Prims.l_True", "FStar.Pervasives.ex_pre" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem let all_post' (a:Type) (pre:Type) = all_post_h' HyperStack.mem a pre let all_post (a:Type) = all_post_h HyperStack.mem a let all_wp (a:Type) = all_wp_h HyperStack.mem a new_effect ALL = ALL_h HyperStack.mem unfold let lift_state_all (a:Type) (wp:st_wp a) (p:all_post a) = wp (fun a -> p (V a)) sub_effect STATE ~> ALL = lift_state_all
false
false
FStar.HyperStack.All.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_exn_all : a: Type -> wp: FStar.Pervasives.ex_wp a -> p: FStar.HyperStack.All.all_post a -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.ex_pre
[]
FStar.HyperStack.All.lift_exn_all
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp: FStar.Pervasives.ex_wp a -> p: FStar.HyperStack.All.all_post a -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.ex_pre
{ "end_col": 105, "end_line": 28, "start_col": 84, "start_line": 28 }
Prims.GTot
val addr_of (#a: Type0) (arr: array a) : GTot nat
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let addr_of (#a:Type0) (arr:array a) : GTot nat = addr_of (as_ref arr)
val addr_of (#a: Type0) (arr: array a) : GTot nat let addr_of (#a: Type0) (arr: array a) : GTot nat =
false
null
false
addr_of (as_ref arr)
{ "checked_file": "FStar.Array.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ "sometrivial" ]
[ "FStar.Array.array", "FStar.Ref.addr_of", "FStar.Seq.Base.seq", "FStar.Array.as_ref", "Prims.nat" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s) let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s) let unused_in (#a:Type0) (arr:array a) (h:heap) : Type0 = Heap.unused_in (as_ref arr) h let heap_upd (#a:Type0) (h:heap) (r:array a) (v:seq a) : GTot heap = Heap.upd h (as_ref r) v
false
false
FStar.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addr_of (#a: Type0) (arr: array a) : GTot nat
[]
FStar.Array.addr_of
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
arr: FStar.Array.array a -> Prims.GTot Prims.nat
{ "end_col": 70, "end_line": 43, "start_col": 50, "start_line": 43 }
Prims.Tot
val unused_in (#a: Type0) (arr: array a) (h: heap) : Type0
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unused_in (#a:Type0) (arr:array a) (h:heap) : Type0 = Heap.unused_in (as_ref arr) h
val unused_in (#a: Type0) (arr: array a) (h: heap) : Type0 let unused_in (#a: Type0) (arr: array a) (h: heap) : Type0 =
false
null
false
Heap.unused_in (as_ref arr) h
{ "checked_file": "FStar.Array.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ "total" ]
[ "FStar.Array.array", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.Heap.unused_in", "FStar.Seq.Base.seq", "FStar.Heap.trivial_preorder", "FStar.Array.as_ref" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s) let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s)
false
false
FStar.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unused_in (#a: Type0) (arr: array a) (h: heap) : Type0
[]
FStar.Array.unused_in
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
arr: FStar.Array.array a -> h: FStar.Monotonic.Heap.heap -> Type0
{ "end_col": 87, "end_line": 39, "start_col": 58, "start_line": 39 }
Prims.Tot
val contains (#a: Type0) (h: heap) (s: array a) : Type0
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s)
val contains (#a: Type0) (h: heap) (s: array a) : Type0 let contains (#a: Type0) (h: heap) (s: array a) : Type0 =
false
null
false
Heap.contains h (as_ref s)
{ "checked_file": "FStar.Array.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ "total" ]
[ "FStar.Monotonic.Heap.heap", "FStar.Array.array", "FStar.Monotonic.Heap.contains", "FStar.Seq.Base.seq", "FStar.Heap.trivial_preorder", "FStar.Array.as_ref" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s)
false
false
FStar.Array.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val contains (#a: Type0) (h: heap) (s: array a) : Type0
[]
FStar.Array.contains
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.Heap.heap -> s: FStar.Array.array a -> Type0
{ "end_col": 81, "end_line": 37, "start_col": 55, "start_line": 37 }