effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val test1_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | val test1_expected_sha3_512:b: lbuffer uint8 64ul {recallable b}
let test1_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75;
0x6e; 0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c;
0x80; 0xa6; 0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c;
0x3a; 0xc5; 0x58; 0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86;
0x28; 0x1d; 0xcd; 0x26
])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test1_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [] | Hacl.Test.SHA3.test1_expected_sha3_512 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 64 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 135,
"start_col": 2,
"start_line": 126
} |
Prims.Tot | val test3_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | val test3_expected_sha3_512:b: lbuffer uint8 64ul {recallable b}
let test3_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8;
0x18; 0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91;
0x63; 0x6d; 0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7;
0x8c; 0x08; 0x63; 0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11;
0x39; 0xd6; 0xe7; 0x5e
])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test3_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [] | Hacl.Test.SHA3.test3_expected_sha3_512 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 64 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 248,
"start_col": 2,
"start_line": 239
} |
Prims.Tot | val test3_expected_sha3_384:b: lbuffer uint8 48ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | val test3_expected_sha3_384:b: lbuffer uint8 48ul {recallable b}
let test3_expected_sha3_384:b: lbuffer uint8 48ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49;
0x2e; 0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4;
0xad; 0x5a; 0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0;
0x65; 0x7c; 0x22
])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test3_expected_sha3_384:b: lbuffer uint8 48ul {recallable b} | [] | Hacl.Test.SHA3.test3_expected_sha3_384 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 48 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 236,
"start_col": 2,
"start_line": 228
} |
Prims.Tot | val test3_plaintext:b: lbuffer uint8 56ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l | val test3_plaintext:b: lbuffer uint8 56ul {recallable b}
let test3_plaintext:b: lbuffer uint8 56ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66;
0x67; 0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69;
0x6a; 0x6b; 0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c;
0x6d; 0x6e; 0x6f; 0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71
])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
// | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test3_plaintext:b: lbuffer uint8 56ul {recallable b} | [] | Hacl.Test.SHA3.test3_plaintext | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 56 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 205,
"start_col": 2,
"start_line": 196
} |
Prims.Tot | val test10_plaintext_shake256:b: lbuffer uint8 17ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test10_plaintext_shake256: b:lbuffer uint8 17ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xf9; 0xda; 0x78; 0xc8; 0x90; 0x84; 0x70; 0x40; 0x45; 0x4b; 0xa6; 0x42; 0x98; 0x82; 0xb0; 0x54;
0x09])
in
assert_norm (List.Tot.length l == 17);
createL_mglobal l | val test10_plaintext_shake256:b: lbuffer uint8 17ul {recallable b}
let test10_plaintext_shake256:b: lbuffer uint8 17ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0xf9; 0xda; 0x78; 0xc8; 0x90; 0x84; 0x70; 0x40; 0x45; 0x4b; 0xa6; 0x42; 0x98; 0x82; 0xb0;
0x54; 0x09
])
in
assert_norm (List.Tot.length l == 17);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
//
let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l
let test7_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7b; 0xb4; 0x33; 0x75; 0x2b; 0x98; 0xf9; 0x15; 0xbe; 0x51; 0x82; 0xbc; 0x1f; 0x09; 0x66; 0x48])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test8_SHAKE128
//
let test8_plaintext_shake128: b:lbuffer uint8 83ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73; 0xec;
0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2; 0x2b; 0x62;
0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e; 0xbe; 0x33; 0x39;
0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa; 0x0d; 0xdf; 0xbb; 0xdf;
0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63; 0xca; 0x8d; 0x8a; 0x35; 0xff;
0x2d; 0x2d; 0x01])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l
let test8_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x00; 0xff; 0x5e; 0xf0; 0xcd; 0x7f; 0x8f; 0x90; 0xad; 0x94; 0xb7; 0x97; 0xe9; 0xd4; 0xdd; 0x30])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test9_SHAKE256
//
let test9_plaintext_shake256: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test9_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x46; 0xb9; 0xdd; 0x2b; 0x0b; 0xa8; 0x8d; 0x13; 0x23; 0x3b; 0x3f; 0xeb; 0x74; 0x3e; 0xeb; 0x24;
0x3f; 0xcd; 0x52; 0xea; 0x62; 0xb8; 0x1b; 0x82; 0xb5; 0x0c; 0x27; 0x64; 0x6e; 0xd5; 0x76; 0x2f])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test10_SHAKE256
// | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test10_plaintext_shake256:b: lbuffer uint8 17ul {recallable b} | [] | Hacl.Test.SHA3.test10_plaintext_shake256 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 17 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 428,
"start_col": 2,
"start_line": 421
} |
Prims.Tot | val test10_expected_shake256:b: lbuffer uint8 32ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test10_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa8; 0x49; 0x83; 0xc9; 0xfe; 0x75; 0xad; 0x0d; 0xe1; 0x9e; 0x2c; 0x84; 0x20; 0xa7; 0xea; 0x85;
0xb2; 0x51; 0x02; 0x19; 0x56; 0x14; 0xdf; 0xa5; 0x34; 0x7d; 0xe6; 0x0a; 0x1c; 0xe1; 0x3b; 0x60])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | val test10_expected_shake256:b: lbuffer uint8 32ul {recallable b}
let test10_expected_shake256:b: lbuffer uint8 32ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0xa8; 0x49; 0x83; 0xc9; 0xfe; 0x75; 0xad; 0x0d; 0xe1; 0x9e; 0x2c; 0x84; 0x20; 0xa7; 0xea;
0x85; 0xb2; 0x51; 0x02; 0x19; 0x56; 0x14; 0xdf; 0xa5; 0x34; 0x7d; 0xe6; 0x0a; 0x1c; 0xe1;
0x3b; 0x60
])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
//
let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l
let test7_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7b; 0xb4; 0x33; 0x75; 0x2b; 0x98; 0xf9; 0x15; 0xbe; 0x51; 0x82; 0xbc; 0x1f; 0x09; 0x66; 0x48])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test8_SHAKE128
//
let test8_plaintext_shake128: b:lbuffer uint8 83ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73; 0xec;
0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2; 0x2b; 0x62;
0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e; 0xbe; 0x33; 0x39;
0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa; 0x0d; 0xdf; 0xbb; 0xdf;
0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63; 0xca; 0x8d; 0x8a; 0x35; 0xff;
0x2d; 0x2d; 0x01])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l
let test8_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x00; 0xff; 0x5e; 0xf0; 0xcd; 0x7f; 0x8f; 0x90; 0xad; 0x94; 0xb7; 0x97; 0xe9; 0xd4; 0xdd; 0x30])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test9_SHAKE256
//
let test9_plaintext_shake256: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test9_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x46; 0xb9; 0xdd; 0x2b; 0x0b; 0xa8; 0x8d; 0x13; 0x23; 0x3b; 0x3f; 0xeb; 0x74; 0x3e; 0xeb; 0x24;
0x3f; 0xcd; 0x52; 0xea; 0x62; 0xb8; 0x1b; 0x82; 0xb5; 0x0c; 0x27; 0x64; 0x6e; 0xd5; 0x76; 0x2f])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test10_SHAKE256
//
let test10_plaintext_shake256: b:lbuffer uint8 17ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xf9; 0xda; 0x78; 0xc8; 0x90; 0x84; 0x70; 0x40; 0x45; 0x4b; 0xa6; 0x42; 0x98; 0x82; 0xb0; 0x54;
0x09])
in
assert_norm (List.Tot.length l == 17);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test10_expected_shake256:b: lbuffer uint8 32ul {recallable b} | [] | Hacl.Test.SHA3.test10_expected_shake256 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 32 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 438,
"start_col": 2,
"start_line": 431
} |
Prims.Tot | val test4_expected_sha3_384:b: lbuffer uint8 48ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | val test4_expected_sha3_384:b: lbuffer uint8 48ul {recallable b}
let test4_expected_sha3_384:b: lbuffer uint8 48ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47;
0x91; 0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6;
0x25; 0xdc; 0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79;
0xaa; 0x7f; 0xc7
])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test4_expected_sha3_384:b: lbuffer uint8 48ul {recallable b} | [] | Hacl.Test.SHA3.test4_expected_sha3_384 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 48 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 297,
"start_col": 2,
"start_line": 289
} |
Prims.Tot | val test7_plaintext_shake128:b: lbuffer uint8 34ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l | val test7_plaintext_shake128:b: lbuffer uint8 34ul {recallable b}
let test7_plaintext_shake128:b: lbuffer uint8 34ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f;
0xf5; 0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f;
0xc3; 0x62; 0x00; 0x65
])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
// | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test7_plaintext_shake128:b: lbuffer uint8 34ul {recallable b} | [] | Hacl.Test.SHA3.test7_plaintext_shake128 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 34 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 361,
"start_col": 2,
"start_line": 353
} |
Prims.Tot | val test11_expected_shake256:b: lbuffer uint8 32ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test11_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7a; 0xbb; 0xa4; 0xe8; 0xb8; 0xdd; 0x76; 0x6b; 0xba; 0xbe; 0x98; 0xf8; 0xf1; 0x69; 0xcb; 0x62;
0x08; 0x67; 0x4d; 0xe1; 0x9a; 0x51; 0xd7; 0x3c; 0x92; 0xb7; 0xdc; 0x04; 0xa4; 0xb5; 0xee; 0x3d])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | val test11_expected_shake256:b: lbuffer uint8 32ul {recallable b}
let test11_expected_shake256:b: lbuffer uint8 32ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x7a; 0xbb; 0xa4; 0xe8; 0xb8; 0xdd; 0x76; 0x6b; 0xba; 0xbe; 0x98; 0xf8; 0xf1; 0x69; 0xcb;
0x62; 0x08; 0x67; 0x4d; 0xe1; 0x9a; 0x51; 0xd7; 0x3c; 0x92; 0xb7; 0xdc; 0x04; 0xa4; 0xb5;
0xee; 0x3d
])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
//
let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l
let test7_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7b; 0xb4; 0x33; 0x75; 0x2b; 0x98; 0xf9; 0x15; 0xbe; 0x51; 0x82; 0xbc; 0x1f; 0x09; 0x66; 0x48])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test8_SHAKE128
//
let test8_plaintext_shake128: b:lbuffer uint8 83ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73; 0xec;
0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2; 0x2b; 0x62;
0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e; 0xbe; 0x33; 0x39;
0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa; 0x0d; 0xdf; 0xbb; 0xdf;
0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63; 0xca; 0x8d; 0x8a; 0x35; 0xff;
0x2d; 0x2d; 0x01])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l
let test8_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x00; 0xff; 0x5e; 0xf0; 0xcd; 0x7f; 0x8f; 0x90; 0xad; 0x94; 0xb7; 0x97; 0xe9; 0xd4; 0xdd; 0x30])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test9_SHAKE256
//
let test9_plaintext_shake256: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test9_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x46; 0xb9; 0xdd; 0x2b; 0x0b; 0xa8; 0x8d; 0x13; 0x23; 0x3b; 0x3f; 0xeb; 0x74; 0x3e; 0xeb; 0x24;
0x3f; 0xcd; 0x52; 0xea; 0x62; 0xb8; 0x1b; 0x82; 0xb5; 0x0c; 0x27; 0x64; 0x6e; 0xd5; 0x76; 0x2f])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test10_SHAKE256
//
let test10_plaintext_shake256: b:lbuffer uint8 17ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xf9; 0xda; 0x78; 0xc8; 0x90; 0x84; 0x70; 0x40; 0x45; 0x4b; 0xa6; 0x42; 0x98; 0x82; 0xb0; 0x54;
0x09])
in
assert_norm (List.Tot.length l == 17);
createL_mglobal l
let test10_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa8; 0x49; 0x83; 0xc9; 0xfe; 0x75; 0xad; 0x0d; 0xe1; 0x9e; 0x2c; 0x84; 0x20; 0xa7; 0xea; 0x85;
0xb2; 0x51; 0x02; 0x19; 0x56; 0x14; 0xdf; 0xa5; 0x34; 0x7d; 0xe6; 0x0a; 0x1c; 0xe1; 0x3b; 0x60])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test11_SHAKE256
//
let test11_plaintext_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xef; 0x89; 0x6c; 0xdc; 0xb3; 0x63; 0xa6; 0x15; 0x91; 0x78; 0xa1; 0xbb; 0x1c; 0x99; 0x39; 0x46;
0xc5; 0x04; 0x02; 0x09; 0x5c; 0xda; 0xea; 0x4f; 0xd4; 0xd4; 0x19; 0xaa; 0x47; 0x32; 0x1c; 0x88])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test11_expected_shake256:b: lbuffer uint8 32ul {recallable b} | [] | Hacl.Test.SHA3.test11_expected_shake256 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 32 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 461,
"start_col": 2,
"start_line": 454
} |
Prims.Tot | val test2_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | val test2_expected_sha3_512:b: lbuffer uint8 64ul {recallable b}
let test2_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09;
0x6e; 0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2;
0x71; 0x2e; 0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47;
0xe3; 0x93; 0x40; 0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27;
0x4e; 0xec; 0x53; 0xf0
])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test2_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [] | Hacl.Test.SHA3.test2_expected_sha3_512 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 64 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 190,
"start_col": 2,
"start_line": 181
} |
Prims.Tot | val test12_expected_shake256:b: lbuffer uint8 32ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test12_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x64; 0x2f; 0x3f; 0x23; 0x5a; 0xc7; 0xe3; 0xd4; 0x34; 0x06; 0x3b; 0x5f; 0xc9; 0x21; 0x5f; 0xc3;
0xf0; 0xe5; 0x91; 0xe2; 0xe7; 0xfd; 0x17; 0x66; 0x8d; 0x1a; 0x0c; 0x87; 0x46; 0x87; 0x35; 0xc2])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | val test12_expected_shake256:b: lbuffer uint8 32ul {recallable b}
let test12_expected_shake256:b: lbuffer uint8 32ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x64; 0x2f; 0x3f; 0x23; 0x5a; 0xc7; 0xe3; 0xd4; 0x34; 0x06; 0x3b; 0x5f; 0xc9; 0x21; 0x5f;
0xc3; 0xf0; 0xe5; 0x91; 0xe2; 0xe7; 0xfd; 0x17; 0x66; 0x8d; 0x1a; 0x0c; 0x87; 0x46; 0x87;
0x35; 0xc2
])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
//
let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l
let test7_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7b; 0xb4; 0x33; 0x75; 0x2b; 0x98; 0xf9; 0x15; 0xbe; 0x51; 0x82; 0xbc; 0x1f; 0x09; 0x66; 0x48])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test8_SHAKE128
//
let test8_plaintext_shake128: b:lbuffer uint8 83ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73; 0xec;
0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2; 0x2b; 0x62;
0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e; 0xbe; 0x33; 0x39;
0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa; 0x0d; 0xdf; 0xbb; 0xdf;
0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63; 0xca; 0x8d; 0x8a; 0x35; 0xff;
0x2d; 0x2d; 0x01])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l
let test8_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x00; 0xff; 0x5e; 0xf0; 0xcd; 0x7f; 0x8f; 0x90; 0xad; 0x94; 0xb7; 0x97; 0xe9; 0xd4; 0xdd; 0x30])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test9_SHAKE256
//
let test9_plaintext_shake256: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test9_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x46; 0xb9; 0xdd; 0x2b; 0x0b; 0xa8; 0x8d; 0x13; 0x23; 0x3b; 0x3f; 0xeb; 0x74; 0x3e; 0xeb; 0x24;
0x3f; 0xcd; 0x52; 0xea; 0x62; 0xb8; 0x1b; 0x82; 0xb5; 0x0c; 0x27; 0x64; 0x6e; 0xd5; 0x76; 0x2f])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test10_SHAKE256
//
let test10_plaintext_shake256: b:lbuffer uint8 17ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xf9; 0xda; 0x78; 0xc8; 0x90; 0x84; 0x70; 0x40; 0x45; 0x4b; 0xa6; 0x42; 0x98; 0x82; 0xb0; 0x54;
0x09])
in
assert_norm (List.Tot.length l == 17);
createL_mglobal l
let test10_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa8; 0x49; 0x83; 0xc9; 0xfe; 0x75; 0xad; 0x0d; 0xe1; 0x9e; 0x2c; 0x84; 0x20; 0xa7; 0xea; 0x85;
0xb2; 0x51; 0x02; 0x19; 0x56; 0x14; 0xdf; 0xa5; 0x34; 0x7d; 0xe6; 0x0a; 0x1c; 0xe1; 0x3b; 0x60])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test11_SHAKE256
//
let test11_plaintext_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xef; 0x89; 0x6c; 0xdc; 0xb3; 0x63; 0xa6; 0x15; 0x91; 0x78; 0xa1; 0xbb; 0x1c; 0x99; 0x39; 0x46;
0xc5; 0x04; 0x02; 0x09; 0x5c; 0xda; 0xea; 0x4f; 0xd4; 0xd4; 0x19; 0xaa; 0x47; 0x32; 0x1c; 0x88])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test11_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7a; 0xbb; 0xa4; 0xe8; 0xb8; 0xdd; 0x76; 0x6b; 0xba; 0xbe; 0x98; 0xf8; 0xf1; 0x69; 0xcb; 0x62;
0x08; 0x67; 0x4d; 0xe1; 0x9a; 0x51; 0xd7; 0x3c; 0x92; 0xb7; 0xdc; 0x04; 0xa4; 0xb5; 0xee; 0x3d])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test12_SHAKE256
//
let test12_plaintext_shake256: b:lbuffer uint8 78ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xde; 0x70; 0x1f; 0x10; 0xad; 0x39; 0x61; 0xb0; 0xda; 0xcc; 0x96; 0x87; 0x3a; 0x3c; 0xd5; 0x58;
0x55; 0x81; 0x88; 0xff; 0x69; 0x6d; 0x85; 0x01; 0xb2; 0xe2; 0x7b; 0x67; 0xe9; 0x41; 0x90; 0xcd;
0x0b; 0x25; 0x48; 0xb6; 0x5b; 0x52; 0xa9; 0x22; 0xaa; 0xe8; 0x9d; 0x63; 0xd6; 0xdd; 0x97; 0x2c;
0x91; 0xa9; 0x79; 0xeb; 0x63; 0x43; 0xb6; 0x58; 0xf2; 0x4d; 0xb3; 0x4e; 0x82; 0x8b; 0x74; 0xdb;
0xb8; 0x9a; 0x74; 0x93; 0xa3; 0xdf; 0xd4; 0x29; 0xfd; 0xbd; 0xb8; 0x40; 0xad; 0x0b])
in
assert_norm (List.Tot.length l == 78);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test12_expected_shake256:b: lbuffer uint8 32ul {recallable b} | [] | Hacl.Test.SHA3.test12_expected_shake256 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 32 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 487,
"start_col": 2,
"start_line": 480
} |
Prims.Tot | val test4_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | val test4_expected_sha3_512:b: lbuffer uint8 64ul {recallable b}
let test4_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78;
0xf9; 0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18;
0xa4; 0xfa; 0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8;
0x2e; 0x21; 0x89; 0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55;
0xf2; 0x1d; 0xd1; 0x85
])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test4_expected_sha3_512:b: lbuffer uint8 64ul {recallable b} | [] | Hacl.Test.SHA3.test4_expected_sha3_512 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 64 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 309,
"start_col": 2,
"start_line": 300
} |
Prims.Tot | val test12_plaintext_shake256:b: lbuffer uint8 78ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test12_plaintext_shake256: b:lbuffer uint8 78ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xde; 0x70; 0x1f; 0x10; 0xad; 0x39; 0x61; 0xb0; 0xda; 0xcc; 0x96; 0x87; 0x3a; 0x3c; 0xd5; 0x58;
0x55; 0x81; 0x88; 0xff; 0x69; 0x6d; 0x85; 0x01; 0xb2; 0xe2; 0x7b; 0x67; 0xe9; 0x41; 0x90; 0xcd;
0x0b; 0x25; 0x48; 0xb6; 0x5b; 0x52; 0xa9; 0x22; 0xaa; 0xe8; 0x9d; 0x63; 0xd6; 0xdd; 0x97; 0x2c;
0x91; 0xa9; 0x79; 0xeb; 0x63; 0x43; 0xb6; 0x58; 0xf2; 0x4d; 0xb3; 0x4e; 0x82; 0x8b; 0x74; 0xdb;
0xb8; 0x9a; 0x74; 0x93; 0xa3; 0xdf; 0xd4; 0x29; 0xfd; 0xbd; 0xb8; 0x40; 0xad; 0x0b])
in
assert_norm (List.Tot.length l == 78);
createL_mglobal l | val test12_plaintext_shake256:b: lbuffer uint8 78ul {recallable b}
let test12_plaintext_shake256:b: lbuffer uint8 78ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0xde; 0x70; 0x1f; 0x10; 0xad; 0x39; 0x61; 0xb0; 0xda; 0xcc; 0x96; 0x87; 0x3a; 0x3c; 0xd5;
0x58; 0x55; 0x81; 0x88; 0xff; 0x69; 0x6d; 0x85; 0x01; 0xb2; 0xe2; 0x7b; 0x67; 0xe9; 0x41;
0x90; 0xcd; 0x0b; 0x25; 0x48; 0xb6; 0x5b; 0x52; 0xa9; 0x22; 0xaa; 0xe8; 0x9d; 0x63; 0xd6;
0xdd; 0x97; 0x2c; 0x91; 0xa9; 0x79; 0xeb; 0x63; 0x43; 0xb6; 0x58; 0xf2; 0x4d; 0xb3; 0x4e;
0x82; 0x8b; 0x74; 0xdb; 0xb8; 0x9a; 0x74; 0x93; 0xa3; 0xdf; 0xd4; 0x29; 0xfd; 0xbd; 0xb8;
0x40; 0xad; 0x0b
])
in
assert_norm (List.Tot.length l == 78);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
//
let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l
let test7_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7b; 0xb4; 0x33; 0x75; 0x2b; 0x98; 0xf9; 0x15; 0xbe; 0x51; 0x82; 0xbc; 0x1f; 0x09; 0x66; 0x48])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test8_SHAKE128
//
let test8_plaintext_shake128: b:lbuffer uint8 83ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73; 0xec;
0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2; 0x2b; 0x62;
0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e; 0xbe; 0x33; 0x39;
0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa; 0x0d; 0xdf; 0xbb; 0xdf;
0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63; 0xca; 0x8d; 0x8a; 0x35; 0xff;
0x2d; 0x2d; 0x01])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l
let test8_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x00; 0xff; 0x5e; 0xf0; 0xcd; 0x7f; 0x8f; 0x90; 0xad; 0x94; 0xb7; 0x97; 0xe9; 0xd4; 0xdd; 0x30])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test9_SHAKE256
//
let test9_plaintext_shake256: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test9_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x46; 0xb9; 0xdd; 0x2b; 0x0b; 0xa8; 0x8d; 0x13; 0x23; 0x3b; 0x3f; 0xeb; 0x74; 0x3e; 0xeb; 0x24;
0x3f; 0xcd; 0x52; 0xea; 0x62; 0xb8; 0x1b; 0x82; 0xb5; 0x0c; 0x27; 0x64; 0x6e; 0xd5; 0x76; 0x2f])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test10_SHAKE256
//
let test10_plaintext_shake256: b:lbuffer uint8 17ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xf9; 0xda; 0x78; 0xc8; 0x90; 0x84; 0x70; 0x40; 0x45; 0x4b; 0xa6; 0x42; 0x98; 0x82; 0xb0; 0x54;
0x09])
in
assert_norm (List.Tot.length l == 17);
createL_mglobal l
let test10_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa8; 0x49; 0x83; 0xc9; 0xfe; 0x75; 0xad; 0x0d; 0xe1; 0x9e; 0x2c; 0x84; 0x20; 0xa7; 0xea; 0x85;
0xb2; 0x51; 0x02; 0x19; 0x56; 0x14; 0xdf; 0xa5; 0x34; 0x7d; 0xe6; 0x0a; 0x1c; 0xe1; 0x3b; 0x60])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test11_SHAKE256
//
let test11_plaintext_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xef; 0x89; 0x6c; 0xdc; 0xb3; 0x63; 0xa6; 0x15; 0x91; 0x78; 0xa1; 0xbb; 0x1c; 0x99; 0x39; 0x46;
0xc5; 0x04; 0x02; 0x09; 0x5c; 0xda; 0xea; 0x4f; 0xd4; 0xd4; 0x19; 0xaa; 0x47; 0x32; 0x1c; 0x88])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test11_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7a; 0xbb; 0xa4; 0xe8; 0xb8; 0xdd; 0x76; 0x6b; 0xba; 0xbe; 0x98; 0xf8; 0xf1; 0x69; 0xcb; 0x62;
0x08; 0x67; 0x4d; 0xe1; 0x9a; 0x51; 0xd7; 0x3c; 0x92; 0xb7; 0xdc; 0x04; 0xa4; 0xb5; 0xee; 0x3d])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test12_SHAKE256
// | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test12_plaintext_shake256:b: lbuffer uint8 78ul {recallable b} | [] | Hacl.Test.SHA3.test12_plaintext_shake256 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 78 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 477,
"start_col": 2,
"start_line": 467
} |
FStar.HyperStack.ST.Stack | val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1) | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame () | val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected = | true | null | false | push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame () | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [] | [
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"C.exit",
"FStar.Int32.__int_to_t",
"Prims.bool",
"Prims.op_Negation",
"Lib.PrintBuffer.result_compare_display",
"Lib.Buffer.to_const",
"Lib.Buffer.MUT",
"Hacl.SHA3.shake128_hacl",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1) | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1) | [] | Hacl.Test.SHA3.test_shake128 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
msg_len: Lib.IntTypes.size_t ->
msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len ->
out_len: Lib.IntTypes.size_t{Lib.IntTypes.v out_len > 0} ->
expected: Lib.Buffer.lbuffer Lib.IntTypes.uint8 out_len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 59,
"start_col": 2,
"start_line": 55
} |
FStar.HyperStack.ST.Stack | val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1) | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame () | val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected = | true | null | false | push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame () | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [] | [
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"C.exit",
"FStar.Int32.__int_to_t",
"Prims.bool",
"Prims.op_Negation",
"Lib.PrintBuffer.result_compare_display",
"Lib.Buffer.to_const",
"Lib.Buffer.MUT",
"Hacl.SHA3.shake256_hacl",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1) | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1) | [] | Hacl.Test.SHA3.test_shake256 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
msg_len: Lib.IntTypes.size_t ->
msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len ->
out_len: Lib.IntTypes.size_t{Lib.IntTypes.v out_len > 0} ->
expected: Lib.Buffer.lbuffer Lib.IntTypes.uint8 out_len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 76,
"start_col": 2,
"start_line": 72
} |
Prims.Tot | val test8_plaintext_shake128:b: lbuffer uint8 83ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test8_plaintext_shake128: b:lbuffer uint8 83ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73; 0xec;
0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2; 0x2b; 0x62;
0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e; 0xbe; 0x33; 0x39;
0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa; 0x0d; 0xdf; 0xbb; 0xdf;
0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63; 0xca; 0x8d; 0x8a; 0x35; 0xff;
0x2d; 0x2d; 0x01])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l | val test8_plaintext_shake128:b: lbuffer uint8 83ul {recallable b}
let test8_plaintext_shake128:b: lbuffer uint8 83ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73;
0xec; 0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2;
0x2b; 0x62; 0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e;
0xbe; 0x33; 0x39; 0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa;
0x0d; 0xdf; 0xbb; 0xdf; 0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63;
0xca; 0x8d; 0x8a; 0x35; 0xff; 0x2d; 0x2d; 0x01
])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
//
let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l
let test7_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7b; 0xb4; 0x33; 0x75; 0x2b; 0x98; 0xf9; 0x15; 0xbe; 0x51; 0x82; 0xbc; 0x1f; 0x09; 0x66; 0x48])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test8_SHAKE128
// | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test8_plaintext_shake128:b: lbuffer uint8 83ul {recallable b} | [] | Hacl.Test.SHA3.test8_plaintext_shake128 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 83 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 387,
"start_col": 2,
"start_line": 376
} |
Prims.Tot | val test4_plaintext:b: lbuffer uint8 112ul {recallable b} | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l | val test4_plaintext:b: lbuffer uint8 112ul {recallable b}
let test4_plaintext:b: lbuffer uint8 112ul {recallable b} = | false | null | false | [@@ inline_let ]let l:list uint8 =
normalize_term (List.Tot.map u8
[
0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68;
0x69; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x6a; 0x6b; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a;
0x6b; 0x6c; 0x6d; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b;
0x6c; 0x6d; 0x6e; 0x6f; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d;
0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e;
0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75
])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [
"total"
] | [
"Lib.Buffer.createL_mglobal",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.buffer",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.recallable",
"Prims.list",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.map",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Test.SHA3.u8",
"Prims.Cons",
"Prims.Nil"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
// | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test4_plaintext:b: lbuffer uint8 112ul {recallable b} | [] | Hacl.Test.SHA3.test4_plaintext | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
Lib.Buffer.lbuffer_t Lib.Buffer.MUT
(Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC)
(FStar.UInt32.uint_to_t 112 <: FStar.UInt32.t) {Lib.Buffer.recallable b} | {
"end_col": 19,
"end_line": 266,
"start_col": 2,
"start_line": 254
} |
FStar.HyperStack.ST.St | val main: unit -> St C.exit_code | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let main () =
C.String.print (C.String.of_literal "\nTEST 1. SHA3\n");
recall test1_expected_sha3_224;
recall test1_expected_sha3_256;
recall test1_expected_sha3_384;
recall test1_expected_sha3_512;
recall test1_plaintext;
test_sha3 0ul
test1_plaintext
test1_expected_sha3_224
test1_expected_sha3_256
test1_expected_sha3_384
test1_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 2. SHA3\n");
recall test2_expected_sha3_224;
recall test2_expected_sha3_256;
recall test2_expected_sha3_384;
recall test2_expected_sha3_512;
recall test2_plaintext;
test_sha3 3ul
test2_plaintext
test2_expected_sha3_224
test2_expected_sha3_256
test2_expected_sha3_384
test2_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 3. SHA3\n");
recall test3_expected_sha3_224;
recall test3_expected_sha3_256;
recall test3_expected_sha3_384;
recall test3_expected_sha3_512;
recall test3_plaintext;
test_sha3 56ul
test3_plaintext
test3_expected_sha3_224
test3_expected_sha3_256
test3_expected_sha3_384
test3_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 4. SHA3\n");
recall test4_expected_sha3_224;
recall test4_expected_sha3_256;
recall test4_expected_sha3_384;
recall test4_expected_sha3_512;
recall test4_plaintext;
test_sha3 112ul
test4_plaintext
test4_expected_sha3_224
test4_expected_sha3_256
test4_expected_sha3_384
test4_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 5. SHAKE128\n");
recall test5_plaintext_shake128;
recall test5_expected_shake128;
test_shake128
0ul test5_plaintext_shake128
16ul test5_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 6. SHAKE128\n");
recall test6_plaintext_shake128;
recall test6_expected_shake128;
test_shake128
14ul test6_plaintext_shake128
16ul test6_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 7. SHAKE128\n");
recall test7_plaintext_shake128;
recall test7_expected_shake128;
test_shake128
34ul test7_plaintext_shake128
16ul test7_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 8. SHAKE128\n");
recall test8_plaintext_shake128;
recall test8_expected_shake128;
test_shake128
83ul test8_plaintext_shake128
16ul test8_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 9. SHAKE256\n");
recall test9_plaintext_shake256;
recall test9_expected_shake256;
test_shake256
0ul test9_plaintext_shake256
32ul test9_expected_shake256;
C.String.print (C.String.of_literal "\nTEST 10. SHAKE256\n");
recall test10_plaintext_shake256;
recall test10_expected_shake256;
test_shake256
17ul test10_plaintext_shake256
32ul test10_expected_shake256;
C.String.print (C.String.of_literal "\nTEST 11. SHAKE256\n");
recall test11_plaintext_shake256;
recall test11_expected_shake256;
test_shake256
32ul test11_plaintext_shake256
32ul test11_expected_shake256;
C.String.print (C.String.of_literal "\nTEST 12. SHAKE256\n");
recall test12_plaintext_shake256;
recall test12_expected_shake256;
test_shake256
78ul test12_plaintext_shake256
32ul test12_expected_shake256;
C.EXIT_SUCCESS | val main: unit -> St C.exit_code
let main () = | true | null | false | C.String.print (C.String.of_literal "\nTEST 1. SHA3\n");
recall test1_expected_sha3_224;
recall test1_expected_sha3_256;
recall test1_expected_sha3_384;
recall test1_expected_sha3_512;
recall test1_plaintext;
test_sha3 0ul
test1_plaintext
test1_expected_sha3_224
test1_expected_sha3_256
test1_expected_sha3_384
test1_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 2. SHA3\n");
recall test2_expected_sha3_224;
recall test2_expected_sha3_256;
recall test2_expected_sha3_384;
recall test2_expected_sha3_512;
recall test2_plaintext;
test_sha3 3ul
test2_plaintext
test2_expected_sha3_224
test2_expected_sha3_256
test2_expected_sha3_384
test2_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 3. SHA3\n");
recall test3_expected_sha3_224;
recall test3_expected_sha3_256;
recall test3_expected_sha3_384;
recall test3_expected_sha3_512;
recall test3_plaintext;
test_sha3 56ul
test3_plaintext
test3_expected_sha3_224
test3_expected_sha3_256
test3_expected_sha3_384
test3_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 4. SHA3\n");
recall test4_expected_sha3_224;
recall test4_expected_sha3_256;
recall test4_expected_sha3_384;
recall test4_expected_sha3_512;
recall test4_plaintext;
test_sha3 112ul
test4_plaintext
test4_expected_sha3_224
test4_expected_sha3_256
test4_expected_sha3_384
test4_expected_sha3_512;
C.String.print (C.String.of_literal "\nTEST 5. SHAKE128\n");
recall test5_plaintext_shake128;
recall test5_expected_shake128;
test_shake128 0ul test5_plaintext_shake128 16ul test5_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 6. SHAKE128\n");
recall test6_plaintext_shake128;
recall test6_expected_shake128;
test_shake128 14ul test6_plaintext_shake128 16ul test6_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 7. SHAKE128\n");
recall test7_plaintext_shake128;
recall test7_expected_shake128;
test_shake128 34ul test7_plaintext_shake128 16ul test7_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 8. SHAKE128\n");
recall test8_plaintext_shake128;
recall test8_expected_shake128;
test_shake128 83ul test8_plaintext_shake128 16ul test8_expected_shake128;
C.String.print (C.String.of_literal "\nTEST 9. SHAKE256\n");
recall test9_plaintext_shake256;
recall test9_expected_shake256;
test_shake256 0ul test9_plaintext_shake256 32ul test9_expected_shake256;
C.String.print (C.String.of_literal "\nTEST 10. SHAKE256\n");
recall test10_plaintext_shake256;
recall test10_expected_shake256;
test_shake256 17ul test10_plaintext_shake256 32ul test10_expected_shake256;
C.String.print (C.String.of_literal "\nTEST 11. SHAKE256\n");
recall test11_plaintext_shake256;
recall test11_expected_shake256;
test_shake256 32ul test11_plaintext_shake256 32ul test11_expected_shake256;
C.String.print (C.String.of_literal "\nTEST 12. SHAKE256\n");
recall test12_plaintext_shake256;
recall test12_expected_shake256;
test_shake256 78ul test12_plaintext_shake256 32ul test12_expected_shake256;
C.EXIT_SUCCESS | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [] | [
"Prims.unit",
"C.EXIT_SUCCESS",
"C.exit_code",
"Hacl.Test.SHA3.test_shake256",
"FStar.UInt32.__uint_to_t",
"Hacl.Test.SHA3.test12_plaintext_shake256",
"Hacl.Test.SHA3.test12_expected_shake256",
"Lib.Buffer.recall",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"C.String.print",
"C.String.of_literal",
"Hacl.Test.SHA3.test11_plaintext_shake256",
"Hacl.Test.SHA3.test11_expected_shake256",
"Hacl.Test.SHA3.test10_plaintext_shake256",
"Hacl.Test.SHA3.test10_expected_shake256",
"Hacl.Test.SHA3.test9_plaintext_shake256",
"Hacl.Test.SHA3.test9_expected_shake256",
"Hacl.Test.SHA3.test_shake128",
"Hacl.Test.SHA3.test8_plaintext_shake128",
"Hacl.Test.SHA3.test8_expected_shake128",
"Hacl.Test.SHA3.test7_plaintext_shake128",
"Hacl.Test.SHA3.test7_expected_shake128",
"Hacl.Test.SHA3.test6_plaintext_shake128",
"Hacl.Test.SHA3.test6_expected_shake128",
"Hacl.Test.SHA3.test5_plaintext_shake128",
"Hacl.Test.SHA3.test5_expected_shake128",
"Hacl.Test.SHA3.test_sha3",
"Hacl.Test.SHA3.test4_plaintext",
"Hacl.Test.SHA3.test4_expected_sha3_224",
"Hacl.Test.SHA3.test4_expected_sha3_256",
"Hacl.Test.SHA3.test4_expected_sha3_384",
"Hacl.Test.SHA3.test4_expected_sha3_512",
"Hacl.Test.SHA3.test3_plaintext",
"Hacl.Test.SHA3.test3_expected_sha3_224",
"Hacl.Test.SHA3.test3_expected_sha3_256",
"Hacl.Test.SHA3.test3_expected_sha3_384",
"Hacl.Test.SHA3.test3_expected_sha3_512",
"Hacl.Test.SHA3.test2_plaintext",
"Hacl.Test.SHA3.test2_expected_sha3_224",
"Hacl.Test.SHA3.test2_expected_sha3_256",
"Hacl.Test.SHA3.test2_expected_sha3_384",
"Hacl.Test.SHA3.test2_expected_sha3_512",
"Hacl.Test.SHA3.test1_plaintext",
"Hacl.Test.SHA3.test1_expected_sha3_224",
"Hacl.Test.SHA3.test1_expected_sha3_256",
"Hacl.Test.SHA3.test1_expected_sha3_384",
"Hacl.Test.SHA3.test1_expected_sha3_512"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame()
val test_shake128:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake128 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake128_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
val test_shake256:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> out_len:size_t{v out_len > 0}
-> expected:lbuffer uint8 out_len
-> Stack unit
(requires fun h -> live h msg /\ live h expected)
(ensures fun h0 r h1 -> modifies0 h0 h1)
let test_shake256 msg_len msg out_len expected =
push_frame ();
let test = create out_len (u8 0) in
shake256_hacl msg_len msg out_len test;
if not (result_compare_display out_len (to_const test) (to_const expected)) then C.exit 255l;
pop_frame ()
inline_for_extraction noextract
val u8: n:nat{n < 0x100} -> uint8
let u8 n = u8 n
//
// Test1_SHA3
//
let test1_plaintext: b:lbuffer uint8 0ul{ recallable b } =
let open Lib.RawIntTypes in
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test1_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x6b; 0x4e; 0x03; 0x42; 0x36; 0x67; 0xdb; 0xb7; 0x3b; 0x6e; 0x15; 0x45; 0x4f; 0x0e; 0xb1; 0xab;
0xd4; 0x59; 0x7f; 0x9a; 0x1b; 0x07; 0x8e; 0x3f; 0x5b; 0x5a; 0x6b; 0xc7])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test1_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa7; 0xff; 0xc6; 0xf8; 0xbf; 0x1e; 0xd7; 0x66; 0x51; 0xc1; 0x47; 0x56; 0xa0; 0x61; 0xd6; 0x62;
0xf5; 0x80; 0xff; 0x4d; 0xe4; 0x3b; 0x49; 0xfa; 0x82; 0xd8; 0x0a; 0x4b; 0x80; 0xf8; 0x43; 0x4a])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test1_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x0c; 0x63; 0xa7; 0x5b; 0x84; 0x5e; 0x4f; 0x7d; 0x01; 0x10; 0x7d; 0x85; 0x2e; 0x4c; 0x24; 0x85;
0xc5; 0x1a; 0x50; 0xaa; 0xaa; 0x94; 0xfc; 0x61; 0x99; 0x5e; 0x71; 0xbb; 0xee; 0x98; 0x3a; 0x2a;
0xc3; 0x71; 0x38; 0x31; 0x26; 0x4a; 0xdb; 0x47; 0xfb; 0x6b; 0xd1; 0xe0; 0x58; 0xd5; 0xf0; 0x04])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test1_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa6; 0x9f; 0x73; 0xcc; 0xa2; 0x3a; 0x9a; 0xc5; 0xc8; 0xb5; 0x67; 0xdc; 0x18; 0x5a; 0x75; 0x6e;
0x97; 0xc9; 0x82; 0x16; 0x4f; 0xe2; 0x58; 0x59; 0xe0; 0xd1; 0xdc; 0xc1; 0x47; 0x5c; 0x80; 0xa6;
0x15; 0xb2; 0x12; 0x3a; 0xf1; 0xf5; 0xf9; 0x4c; 0x11; 0xe3; 0xe9; 0x40; 0x2c; 0x3a; 0xc5; 0x58;
0xf5; 0x00; 0x19; 0x9d; 0x95; 0xb6; 0xd3; 0xe3; 0x01; 0x75; 0x85; 0x86; 0x28; 0x1d; 0xcd; 0x26])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test2_SHA3
//
let test2_plaintext: b:lbuffer uint8 3ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63])
in
assert_norm (List.Tot.length l == 3);
createL_mglobal l
let test2_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xe6; 0x42; 0x82; 0x4c; 0x3f; 0x8c; 0xf2; 0x4a; 0xd0; 0x92; 0x34; 0xee; 0x7d; 0x3c; 0x76; 0x6f;
0xc9; 0xa3; 0xa5; 0x16; 0x8d; 0x0c; 0x94; 0xad; 0x73; 0xb4; 0x6f; 0xdf])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test2_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x3a; 0x98; 0x5d; 0xa7; 0x4f; 0xe2; 0x25; 0xb2; 0x04; 0x5c; 0x17; 0x2d; 0x6b; 0xd3; 0x90; 0xbd;
0x85; 0x5f; 0x08; 0x6e; 0x3e; 0x9d; 0x52; 0x5b; 0x46; 0xbf; 0xe2; 0x45; 0x11; 0x43; 0x15; 0x32])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test2_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xec; 0x01; 0x49; 0x82; 0x88; 0x51; 0x6f; 0xc9; 0x26; 0x45; 0x9f; 0x58; 0xe2; 0xc6; 0xad; 0x8d;
0xf9; 0xb4; 0x73; 0xcb; 0x0f; 0xc0; 0x8c; 0x25; 0x96; 0xda; 0x7c; 0xf0; 0xe4; 0x9b; 0xe4; 0xb2;
0x98; 0xd8; 0x8c; 0xea; 0x92; 0x7a; 0xc7; 0xf5; 0x39; 0xf1; 0xed; 0xf2; 0x28; 0x37; 0x6d; 0x25])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test2_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xb7; 0x51; 0x85; 0x0b; 0x1a; 0x57; 0x16; 0x8a; 0x56; 0x93; 0xcd; 0x92; 0x4b; 0x6b; 0x09; 0x6e;
0x08; 0xf6; 0x21; 0x82; 0x74; 0x44; 0xf7; 0x0d; 0x88; 0x4f; 0x5d; 0x02; 0x40; 0xd2; 0x71; 0x2e;
0x10; 0xe1; 0x16; 0xe9; 0x19; 0x2a; 0xf3; 0xc9; 0x1a; 0x7e; 0xc5; 0x76; 0x47; 0xe3; 0x93; 0x40;
0x57; 0x34; 0x0b; 0x4c; 0xf4; 0x08; 0xd5; 0xa5; 0x65; 0x92; 0xf8; 0x27; 0x4e; 0xec; 0x53; 0xf0])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test3_SHA3
//
let test3_plaintext: b:lbuffer uint8 56ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x62; 0x63; 0x64; 0x65; 0x63; 0x64; 0x65; 0x66; 0x64; 0x65; 0x66; 0x67;
0x65; 0x66; 0x67; 0x68; 0x66; 0x67; 0x68; 0x69; 0x67; 0x68; 0x69; 0x6a; 0x68; 0x69; 0x6a; 0x6b;
0x69; 0x6a; 0x6b; 0x6c; 0x6a; 0x6b; 0x6c; 0x6d; 0x6b; 0x6c; 0x6d; 0x6e; 0x6c; 0x6d; 0x6e; 0x6f;
0x6d; 0x6e; 0x6f; 0x70; 0x6e; 0x6f; 0x70; 0x71])
in
assert_norm (List.Tot.length l == 56);
createL_mglobal l
let test3_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x8a; 0x24; 0x10; 0x8b; 0x15; 0x4a; 0xda; 0x21; 0xc9; 0xfd; 0x55; 0x74; 0x49; 0x44; 0x79; 0xba;
0x5c; 0x7e; 0x7a; 0xb7; 0x6e; 0xf2; 0x64; 0xea; 0xd0; 0xfc; 0xce; 0x33])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test3_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x41; 0xc0; 0xdb; 0xa2; 0xa9; 0xd6; 0x24; 0x08; 0x49; 0x10; 0x03; 0x76; 0xa8; 0x23; 0x5e; 0x2c;
0x82; 0xe1; 0xb9; 0x99; 0x8a; 0x99; 0x9e; 0x21; 0xdb; 0x32; 0xdd; 0x97; 0x49; 0x6d; 0x33; 0x76])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test3_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x99; 0x1c; 0x66; 0x57; 0x55; 0xeb; 0x3a; 0x4b; 0x6b; 0xbd; 0xfb; 0x75; 0xc7; 0x8a; 0x49; 0x2e;
0x8c; 0x56; 0xa2; 0x2c; 0x5c; 0x4d; 0x7e; 0x42; 0x9b; 0xfd; 0xbc; 0x32; 0xb9; 0xd4; 0xad; 0x5a;
0xa0; 0x4a; 0x1f; 0x07; 0x6e; 0x62; 0xfe; 0xa1; 0x9e; 0xef; 0x51; 0xac; 0xd0; 0x65; 0x7c; 0x22])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test3_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x04; 0xa3; 0x71; 0xe8; 0x4e; 0xcf; 0xb5; 0xb8; 0xb7; 0x7c; 0xb4; 0x86; 0x10; 0xfc; 0xa8; 0x18;
0x2d; 0xd4; 0x57; 0xce; 0x6f; 0x32; 0x6a; 0x0f; 0xd3; 0xd7; 0xec; 0x2f; 0x1e; 0x91; 0x63; 0x6d;
0xee; 0x69; 0x1f; 0xbe; 0x0c; 0x98; 0x53; 0x02; 0xba; 0x1b; 0x0d; 0x8d; 0xc7; 0x8c; 0x08; 0x63;
0x46; 0xb5; 0x33; 0xb4; 0x9c; 0x03; 0x0d; 0x99; 0xa2; 0x7d; 0xaf; 0x11; 0x39; 0xd6; 0xe7; 0x5e])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test4_SHA3
//
let test4_plaintext: b:lbuffer uint8 112ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x61; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x62; 0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69;
0x63; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x64; 0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b;
0x65; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x66; 0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d;
0x67; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x68; 0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f;
0x69; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x6a; 0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71;
0x6b; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x6c; 0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73;
0x6d; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x6e; 0x6f; 0x70; 0x71; 0x72; 0x73; 0x74; 0x75])
in
assert_norm (List.Tot.length l == 112);
createL_mglobal l
let test4_expected_sha3_224: b:lbuffer uint8 28ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x54; 0x3e; 0x68; 0x68; 0xe1; 0x66; 0x6c; 0x1a; 0x64; 0x36; 0x30; 0xdf; 0x77; 0x36; 0x7a; 0xe5;
0xa6; 0x2a; 0x85; 0x07; 0x0a; 0x51; 0xc1; 0x4c; 0xbf; 0x66; 0x5c; 0xbc])
in
assert_norm (List.Tot.length l == 28);
createL_mglobal l
let test4_expected_sha3_256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x91; 0x6f; 0x60; 0x61; 0xfe; 0x87; 0x97; 0x41; 0xca; 0x64; 0x69; 0xb4; 0x39; 0x71; 0xdf; 0xdb;
0x28; 0xb1; 0xa3; 0x2d; 0xc3; 0x6c; 0xb3; 0x25; 0x4e; 0x81; 0x2b; 0xe2; 0x7a; 0xad; 0x1d; 0x18])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test4_expected_sha3_384: b:lbuffer uint8 48ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x79; 0x40; 0x7d; 0x3b; 0x59; 0x16; 0xb5; 0x9c; 0x3e; 0x30; 0xb0; 0x98; 0x22; 0x97; 0x47; 0x91;
0xc3; 0x13; 0xfb; 0x9e; 0xcc; 0x84; 0x9e; 0x40; 0x6f; 0x23; 0x59; 0x2d; 0x04; 0xf6; 0x25; 0xdc;
0x8c; 0x70; 0x9b; 0x98; 0xb4; 0x3b; 0x38; 0x52; 0xb3; 0x37; 0x21; 0x61; 0x79; 0xaa; 0x7f; 0xc7])
in
assert_norm (List.Tot.length l == 48);
createL_mglobal l
let test4_expected_sha3_512: b:lbuffer uint8 64ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xaf; 0xeb; 0xb2; 0xef; 0x54; 0x2e; 0x65; 0x79; 0xc5; 0x0c; 0xad; 0x06; 0xd2; 0xe5; 0x78; 0xf9;
0xf8; 0xdd; 0x68; 0x81; 0xd7; 0xdc; 0x82; 0x4d; 0x26; 0x36; 0x0f; 0xee; 0xbf; 0x18; 0xa4; 0xfa;
0x73; 0xe3; 0x26; 0x11; 0x22; 0x94; 0x8e; 0xfc; 0xfd; 0x49; 0x2e; 0x74; 0xe8; 0x2e; 0x21; 0x89;
0xed; 0x0f; 0xb4; 0x40; 0xd1; 0x87; 0xf3; 0x82; 0x27; 0x0c; 0xb4; 0x55; 0xf2; 0x1d; 0xd1; 0x85])
in
assert_norm (List.Tot.length l == 64);
createL_mglobal l
//
// Test5_SHAKE128
//
let test5_plaintext_shake128: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test5_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7f; 0x9c; 0x2b; 0xa4; 0xe8; 0x8f; 0x82; 0x7d; 0x61; 0x60; 0x45; 0x50; 0x76; 0x05; 0x85; 0x3e])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test6_SHAKE128
//
let test6_plaintext_shake128: b:lbuffer uint8 14ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x52; 0x97; 0x7e; 0x53; 0x2b; 0xcc; 0xdb; 0x89; 0xdf; 0xef; 0xf7; 0xe9; 0xe4; 0xad]) in
assert_norm (List.Tot.length l == 14);
createL_mglobal l
let test6_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xfb; 0xfb; 0xa5; 0xc1; 0xe1; 0x79; 0xdf; 0x14; 0x69; 0xfc; 0xc8; 0x58; 0x8a; 0xe5; 0xd2; 0xcc])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test7_SHAKE128
//
let test7_plaintext_shake128: b:lbuffer uint8 34ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x4a; 0x20; 0x6a; 0x5b; 0x8a; 0xa3; 0x58; 0x6c; 0x06; 0x67; 0xa4; 0x00; 0x20; 0xd6; 0x5f; 0xf5;
0x11; 0xd5; 0x2b; 0x73; 0x2e; 0xf7; 0xa0; 0xc5; 0x69; 0xf1; 0xee; 0x68; 0x1a; 0x4f; 0xc3; 0x62;
0x00; 0x65])
in
assert_norm (List.Tot.length l == 34);
createL_mglobal l
let test7_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7b; 0xb4; 0x33; 0x75; 0x2b; 0x98; 0xf9; 0x15; 0xbe; 0x51; 0x82; 0xbc; 0x1f; 0x09; 0x66; 0x48])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test8_SHAKE128
//
let test8_plaintext_shake128: b:lbuffer uint8 83ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x24; 0x69; 0xf1; 0x01; 0xc9; 0xb4; 0x99; 0xa9; 0x30; 0xa9; 0x7e; 0xf1; 0xb3; 0x46; 0x73; 0xec;
0x74; 0x39; 0x3f; 0xd9; 0xfa; 0xf6; 0x58; 0xe3; 0x1f; 0x06; 0xee; 0x0b; 0x29; 0xa2; 0x2b; 0x62;
0x37; 0x80; 0xba; 0x7b; 0xdf; 0xed; 0x86; 0x20; 0x15; 0x1c; 0xc4; 0x44; 0x4e; 0xbe; 0x33; 0x39;
0xe6; 0xd2; 0xa2; 0x23; 0xbf; 0xbf; 0xb4; 0xad; 0x2c; 0xa0; 0xe0; 0xfa; 0x0d; 0xdf; 0xbb; 0xdf;
0x3b; 0x05; 0x7a; 0x4f; 0x26; 0xd0; 0xb2; 0x16; 0xbc; 0x87; 0x63; 0xca; 0x8d; 0x8a; 0x35; 0xff;
0x2d; 0x2d; 0x01])
in
assert_norm (List.Tot.length l == 83);
createL_mglobal l
let test8_expected_shake128: b:lbuffer uint8 16ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x00; 0xff; 0x5e; 0xf0; 0xcd; 0x7f; 0x8f; 0x90; 0xad; 0x94; 0xb7; 0x97; 0xe9; 0xd4; 0xdd; 0x30])
in
assert_norm (List.Tot.length l == 16);
createL_mglobal l
//
// Test9_SHAKE256
//
let test9_plaintext_shake256: b:lbuffer uint8 0ul{ recallable b } =
[@ inline_let]
let l:list uint8 = normalize_term (List.Tot.map u8 []) in
assert_norm (List.Tot.length l == 0);
createL_mglobal l
let test9_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x46; 0xb9; 0xdd; 0x2b; 0x0b; 0xa8; 0x8d; 0x13; 0x23; 0x3b; 0x3f; 0xeb; 0x74; 0x3e; 0xeb; 0x24;
0x3f; 0xcd; 0x52; 0xea; 0x62; 0xb8; 0x1b; 0x82; 0xb5; 0x0c; 0x27; 0x64; 0x6e; 0xd5; 0x76; 0x2f])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test10_SHAKE256
//
let test10_plaintext_shake256: b:lbuffer uint8 17ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xf9; 0xda; 0x78; 0xc8; 0x90; 0x84; 0x70; 0x40; 0x45; 0x4b; 0xa6; 0x42; 0x98; 0x82; 0xb0; 0x54;
0x09])
in
assert_norm (List.Tot.length l == 17);
createL_mglobal l
let test10_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xa8; 0x49; 0x83; 0xc9; 0xfe; 0x75; 0xad; 0x0d; 0xe1; 0x9e; 0x2c; 0x84; 0x20; 0xa7; 0xea; 0x85;
0xb2; 0x51; 0x02; 0x19; 0x56; 0x14; 0xdf; 0xa5; 0x34; 0x7d; 0xe6; 0x0a; 0x1c; 0xe1; 0x3b; 0x60])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test11_SHAKE256
//
let test11_plaintext_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xef; 0x89; 0x6c; 0xdc; 0xb3; 0x63; 0xa6; 0x15; 0x91; 0x78; 0xa1; 0xbb; 0x1c; 0x99; 0x39; 0x46;
0xc5; 0x04; 0x02; 0x09; 0x5c; 0xda; 0xea; 0x4f; 0xd4; 0xd4; 0x19; 0xaa; 0x47; 0x32; 0x1c; 0x88])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
let test11_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x7a; 0xbb; 0xa4; 0xe8; 0xb8; 0xdd; 0x76; 0x6b; 0xba; 0xbe; 0x98; 0xf8; 0xf1; 0x69; 0xcb; 0x62;
0x08; 0x67; 0x4d; 0xe1; 0x9a; 0x51; 0xd7; 0x3c; 0x92; 0xb7; 0xdc; 0x04; 0xa4; 0xb5; 0xee; 0x3d])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
//
// Test12_SHAKE256
//
let test12_plaintext_shake256: b:lbuffer uint8 78ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0xde; 0x70; 0x1f; 0x10; 0xad; 0x39; 0x61; 0xb0; 0xda; 0xcc; 0x96; 0x87; 0x3a; 0x3c; 0xd5; 0x58;
0x55; 0x81; 0x88; 0xff; 0x69; 0x6d; 0x85; 0x01; 0xb2; 0xe2; 0x7b; 0x67; 0xe9; 0x41; 0x90; 0xcd;
0x0b; 0x25; 0x48; 0xb6; 0x5b; 0x52; 0xa9; 0x22; 0xaa; 0xe8; 0x9d; 0x63; 0xd6; 0xdd; 0x97; 0x2c;
0x91; 0xa9; 0x79; 0xeb; 0x63; 0x43; 0xb6; 0x58; 0xf2; 0x4d; 0xb3; 0x4e; 0x82; 0x8b; 0x74; 0xdb;
0xb8; 0x9a; 0x74; 0x93; 0xa3; 0xdf; 0xd4; 0x29; 0xfd; 0xbd; 0xb8; 0x40; 0xad; 0x0b])
in
assert_norm (List.Tot.length l == 78);
createL_mglobal l
let test12_expected_shake256: b:lbuffer uint8 32ul{ recallable b } =
[@ inline_let]
let l:list uint8 =
normalize_term (List.Tot.map u8
[0x64; 0x2f; 0x3f; 0x23; 0x5a; 0xc7; 0xe3; 0xd4; 0x34; 0x06; 0x3b; 0x5f; 0xc9; 0x21; 0x5f; 0xc3;
0xf0; 0xe5; 0x91; 0xe2; 0xe7; 0xfd; 0x17; 0x66; 0x8d; 0x1a; 0x0c; 0x87; 0x46; 0x87; 0x35; 0xc2])
in
assert_norm (List.Tot.length l == 32);
createL_mglobal l
val main: unit -> St C.exit_code | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val main: unit -> St C.exit_code | [] | Hacl.Test.SHA3.main | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.HyperStack.ST.St C.exit_code | {
"end_col": 16,
"end_line": 600,
"start_col": 2,
"start_line": 492
} |
FStar.HyperStack.ST.Stack | val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True) | [
{
"abbrev": false,
"full_module": "Hacl.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.PrintBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_sha3 msg_len msg expected224 expected256 expected384 expected512 =
push_frame();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame() | val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True)
let test_sha3 msg_len msg expected224 expected256 expected384 expected512 = | true | null | false | push_frame ();
let test224 = create 28ul (u8 0) in
let test256 = create 32ul (u8 0) in
let test384 = create 48ul (u8 0) in
let test512 = create 64ul (u8 0) in
sha3_224 msg_len msg test224;
sha3_256 msg_len msg test256;
sha3_384 msg_len msg test384;
sha3_512 msg_len msg test512;
if not (result_compare_display 28ul (to_const test224) (to_const expected224)) then C.exit 255l;
if not (result_compare_display 32ul (to_const test256) (to_const expected256)) then C.exit 255l;
if not (result_compare_display 48ul (to_const test384) (to_const expected384)) then C.exit 255l;
if not (result_compare_display 64ul (to_const test512) (to_const expected512)) then C.exit 255l;
pop_frame () | {
"checked_file": "Hacl.Test.SHA3.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintBuffer.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.SHA3.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"C.String.fsti.checked",
"C.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Test.SHA3.fst"
} | [] | [
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"C.exit",
"FStar.Int32.__int_to_t",
"Prims.bool",
"Prims.op_Negation",
"Lib.PrintBuffer.result_compare_display",
"Lib.Buffer.to_const",
"Lib.Buffer.MUT",
"Hacl.SHA3.sha3_512",
"Hacl.SHA3.sha3_384",
"Hacl.SHA3.sha3_256",
"Hacl.SHA3.sha3_224",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Test.SHA3
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.PrintBuffer
open Hacl.SHA3
#reset-options "--z3rlimit 100 --fuel 0 --ifuel 0"
val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True) | false | false | Hacl.Test.SHA3.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_sha3:
msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> expected224:lbuffer uint8 28ul
-> expected256:lbuffer uint8 32ul
-> expected384:lbuffer uint8 48ul
-> expected512:lbuffer uint8 64ul
-> Stack unit
(requires fun h ->
live h msg /\ live h expected224 /\ live h expected256 /\
live h expected384 /\ live h expected512)
(ensures fun h0 r h1 -> True) | [] | Hacl.Test.SHA3.test_sha3 | {
"file_name": "code/tests/Hacl.Test.SHA3.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
msg_len: Lib.IntTypes.size_t ->
msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len ->
expected224: Lib.Buffer.lbuffer Lib.IntTypes.uint8 28ul ->
expected256: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
expected384: Lib.Buffer.lbuffer Lib.IntTypes.uint8 48ul ->
expected512: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 42,
"start_col": 2,
"start_line": 27
} |
Prims.Tot | val clens_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let clens_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: parse_fldata_strong_t s sz) -> (x <: t));
} | val clens_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t)
let clens_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t) = | false | null | false | { clens_cond = (fun _ -> True); clens_get = (fun (x: parse_fldata_strong_t s sz) -> (x <: t)) } | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"LowParse.Low.Base.Spec.Mkclens",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"Prims.l_True",
"LowParse.Low.Base.Spec.clens"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 ()
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
= fun (input: bytes) -> (
let _ = match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
)
let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _))
= gaccessor_prop_equiv (parse_fldata p sz) p (clens_id _) (gaccessor_fldata' p sz);
gaccessor_fldata' p sz
inline_for_extraction
let accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = slice_access_eq h (gaccessor_fldata p sz) input pos in
pos
let clens_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val clens_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t) | [] | LowParse.Low.FLData.clens_fldata_strong | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> sz: Prims.nat
-> LowParse.Low.Base.Spec.clens (LowParse.Spec.FLData.parse_fldata_strong_t s sz) t | {
"end_col": 64,
"end_line": 277,
"start_col": 2,
"start_line": 276
} |
Prims.Tot | val jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata p sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 () | val jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata p sz))
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata p sz)) = | false | null | false | jump_constant_size (parse_fldata p sz) sz32 () | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Low.Base.jump_constant_size",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata",
"LowParse.Low.Base.jumper"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } ) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata p sz)) | [] | LowParse.Low.FLData.jump_fldata | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t -> sz: Prims.nat -> sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == sz}
-> LowParse.Low.Base.jumper (LowParse.Spec.FLData.parse_fldata p sz) | {
"end_col": 48,
"end_line": 217,
"start_col": 2,
"start_line": 217
} |
Prims.Tot | val validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32 | val validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz))
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz)) = | false | null | false | if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32 | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.op_Equality",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserConsumesAll",
"LowParse.Low.FLData.validate_fldata_consumes_all",
"Prims.bool",
"LowParse.Low.FLData.validate_fldata_gen",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } ) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz)) | [] | LowParse.Low.FLData.validate_fldata | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | v: LowParse.Low.Base.validator p -> sz: Prims.nat -> sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == sz}
-> LowParse.Low.Base.validator (LowParse.Spec.FLData.parse_fldata p sz) | {
"end_col": 36,
"end_line": 132,
"start_col": 2,
"start_line": 130
} |
Prims.Tot | val gaccessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata_strong s sz) p (clens_fldata_strong s sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat)
: Tot (gaccessor (parse_fldata_strong s sz) p (clens_fldata_strong s sz))
= gaccessor_prop_equiv (parse_fldata_strong s sz) p (clens_fldata_strong s sz) (gaccessor_fldata_strong' s sz);
gaccessor_fldata_strong' s sz | val gaccessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata_strong s sz) p (clens_fldata_strong s sz))
let gaccessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata_strong s sz) p (clens_fldata_strong s sz)) = | false | null | false | gaccessor_prop_equiv (parse_fldata_strong s sz)
p
(clens_fldata_strong s sz)
(gaccessor_fldata_strong' s sz);
gaccessor_fldata_strong' s sz | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Low.FLData.gaccessor_fldata_strong'",
"Prims.unit",
"LowParse.Low.Base.Spec.gaccessor_prop_equiv",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong",
"LowParse.Low.FLData.clens_fldata_strong",
"LowParse.Low.Base.Spec.gaccessor"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 ()
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
= fun (input: bytes) -> (
let _ = match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
)
let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _))
= gaccessor_prop_equiv (parse_fldata p sz) p (clens_id _) (gaccessor_fldata' p sz);
gaccessor_fldata' p sz
inline_for_extraction
let accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = slice_access_eq h (gaccessor_fldata p sz) input pos in
pos
let clens_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: parse_fldata_strong_t s sz) -> (x <: t));
}
inline_for_extraction
let gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat)
: Tot (gaccessor' (parse_fldata_strong s sz) p (clens_fldata_strong s sz))
= fun (input: bytes) ->
let _ = match parse (parse_fldata_strong s sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
inline_for_extraction
let gaccessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata_strong s sz) p (clens_fldata_strong s sz)) | [] | LowParse.Low.FLData.gaccessor_fldata_strong | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s:
LowParse.Spec.Base.serializer p
{ Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
sz: Prims.nat
-> LowParse.Low.Base.Spec.gaccessor (LowParse.Spec.FLData.parse_fldata_strong s sz)
p
(LowParse.Low.FLData.clens_fldata_strong s sz) | {
"end_col": 31,
"end_line": 307,
"start_col": 2,
"start_line": 306
} |
Prims.Tot | val gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _))
= gaccessor_prop_equiv (parse_fldata p sz) p (clens_id _) (gaccessor_fldata' p sz);
gaccessor_fldata' p sz | val gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _))
let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _)) = | false | null | false | gaccessor_prop_equiv (parse_fldata p sz) p (clens_id _) (gaccessor_fldata' p sz);
gaccessor_fldata' p sz | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Low.FLData.gaccessor_fldata'",
"Prims.unit",
"LowParse.Low.Base.Spec.gaccessor_prop_equiv",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata",
"LowParse.Low.Base.Spec.clens_id",
"LowParse.Low.Base.Spec.gaccessor"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 ()
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
= fun (input: bytes) -> (
let _ = match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
)
let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _)) | [] | LowParse.Low.FLData.gaccessor_fldata | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p:
LowParse.Spec.Base.parser k t
{ Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
sz: Prims.nat
-> LowParse.Low.Base.Spec.gaccessor (LowParse.Spec.FLData.parse_fldata p sz)
p
(LowParse.Low.Base.Spec.clens_id t) | {
"end_col": 24,
"end_line": 254,
"start_col": 2,
"start_line": 253
} |
Prims.Tot | val gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
= fun (input: bytes) -> (
let _ = match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
) | val gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _)) = | false | null | false | fun (input: bytes) ->
(let _ =
match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz then parse_strong_prefix p (Seq.slice input 0 sz) input
in
0) | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Bytes.bytes",
"Prims.unit",
"LowParse.Spec.Base.parse",
"LowParse.Spec.FLData.parse_fldata",
"LowParse.Spec.Base.consumed_length",
"Prims.op_Equality",
"LowParse.Spec.Base.parse_strong_prefix",
"FStar.Seq.Base.slice",
"LowParse.Bytes.byte",
"Prims.bool",
"LowParse.Low.Base.Spec.gaccessor'",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Low.Base.Spec.clens_id"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 ()
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _)) | [] | LowParse.Low.FLData.gaccessor_fldata' | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p:
LowParse.Spec.Base.parser k t
{ Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
sz: Prims.nat
-> LowParse.Low.Base.Spec.gaccessor' (LowParse.Spec.FLData.parse_fldata p sz)
p
(LowParse.Low.Base.Spec.clens_id t) | {
"end_col": 3,
"end_line": 245,
"start_col": 2,
"start_line": 236
} |
Prims.Tot | val jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata_strong s sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 () | val jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata_strong s sz))
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata_strong s sz)) = | false | null | false | jump_constant_size (parse_fldata_strong s sz) sz32 () | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Low.Base.jump_constant_size",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong",
"LowParse.Low.Base.jumper"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } ) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (jumper (parse_fldata_strong s sz)) | [] | LowParse.Low.FLData.jump_fldata_strong | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.Base.serializer p ->
sz: Prims.nat ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == sz}
-> LowParse.Low.Base.jumper (LowParse.Spec.FLData.parse_fldata_strong s sz) | {
"end_col": 55,
"end_line": 228,
"start_col": 2,
"start_line": 228
} |
Prims.Tot | val accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = slice_access_eq h (gaccessor_fldata p sz) input pos in
pos | val accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz))
let accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz)) = | false | null | false | fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ = slice_access_eq h (gaccessor_fldata p sz) input pos in
pos | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"Prims.unit",
"LowParse.Low.Base.Spec.slice_access_eq",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata",
"LowParse.Low.Base.Spec.clens_id",
"LowParse.Low.FLData.gaccessor_fldata",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowParse.Low.Base.accessor"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 ()
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
= fun (input: bytes) -> (
let _ = match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
)
let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _))
= gaccessor_prop_equiv (parse_fldata p sz) p (clens_id _) (gaccessor_fldata' p sz);
gaccessor_fldata' p sz
inline_for_extraction
let accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz)) | [] | LowParse.Low.FLData.accessor_fldata | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p:
LowParse.Spec.Base.parser k t
{ Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
sz: Prims.nat
-> LowParse.Low.Base.accessor (LowParse.Low.FLData.gaccessor_fldata p sz) | {
"end_col": 5,
"end_line": 266,
"start_col": 2,
"start_line": 263
} |
Prims.Tot | val gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata_strong s sz) p (clens_fldata_strong s sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat)
: Tot (gaccessor' (parse_fldata_strong s sz) p (clens_fldata_strong s sz))
= fun (input: bytes) ->
let _ = match parse (parse_fldata_strong s sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0 | val gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata_strong s sz) p (clens_fldata_strong s sz))
let gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata_strong s sz) p (clens_fldata_strong s sz)) = | false | null | false | fun (input: bytes) ->
let _ =
match parse (parse_fldata_strong s sz) input with
| None -> ()
| Some (_, consumed) -> if consumed = sz then parse_strong_prefix p (Seq.slice input 0 sz) input
in
0 | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Bytes.bytes",
"Prims.unit",
"LowParse.Spec.Base.parse",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong",
"LowParse.Spec.Base.consumed_length",
"Prims.op_Equality",
"LowParse.Spec.Base.parse_strong_prefix",
"FStar.Seq.Base.slice",
"LowParse.Bytes.byte",
"Prims.bool",
"LowParse.Low.Base.Spec.gaccessor'",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Low.FLData.clens_fldata_strong"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 ()
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
= fun (input: bytes) -> (
let _ = match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
)
let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _))
= gaccessor_prop_equiv (parse_fldata p sz) p (clens_id _) (gaccessor_fldata' p sz);
gaccessor_fldata' p sz
inline_for_extraction
let accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = slice_access_eq h (gaccessor_fldata p sz) input pos in
pos
let clens_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: parse_fldata_strong_t s sz) -> (x <: t));
}
inline_for_extraction
let gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (gaccessor' (parse_fldata_strong s sz) p (clens_fldata_strong s sz)) | [] | LowParse.Low.FLData.gaccessor_fldata_strong' | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s:
LowParse.Spec.Base.serializer p
{ Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
sz: Prims.nat
-> LowParse.Low.Base.Spec.gaccessor' (LowParse.Spec.FLData.parse_fldata_strong s sz)
p
(LowParse.Low.FLData.clens_fldata_strong s sz) | {
"end_col": 5,
"end_line": 296,
"start_col": 2,
"start_line": 288
} |
Prims.Tot | val accessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata_strong s sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let accessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat)
: Tot (accessor (gaccessor_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = slice_access_eq h (gaccessor_fldata_strong s sz) input pos in
pos | val accessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata_strong s sz))
let accessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata_strong s sz)) = | false | null | false | fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ = slice_access_eq h (gaccessor_fldata_strong s sz) input pos in
pos | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"Prims.unit",
"LowParse.Low.Base.Spec.slice_access_eq",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong",
"LowParse.Low.FLData.clens_fldata_strong",
"LowParse.Low.FLData.gaccessor_fldata_strong",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowParse.Low.Base.accessor"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos
inline_for_extraction
let jump_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata p sz))
= jump_constant_size (parse_fldata p sz) sz32 ()
inline_for_extraction
let jump_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (jumper (parse_fldata_strong s sz))
= jump_constant_size (parse_fldata_strong s sz) sz32 ()
let gaccessor_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor' (parse_fldata p sz) p (clens_id _))
= fun (input: bytes) -> (
let _ = match parse (parse_fldata p sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
)
let gaccessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (gaccessor (parse_fldata p sz) p (clens_id _))
= gaccessor_prop_equiv (parse_fldata p sz) p (clens_id _) (gaccessor_fldata' p sz);
gaccessor_fldata' p sz
inline_for_extraction
let accessor_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t { k.parser_kind_subkind == Some ParserStrong } )
(sz: nat)
: Tot (accessor (gaccessor_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = slice_access_eq h (gaccessor_fldata p sz) input pos in
pos
let clens_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (clens (parse_fldata_strong_t s sz) t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: parse_fldata_strong_t s sz) -> (x <: t));
}
inline_for_extraction
let gaccessor_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat)
: Tot (gaccessor' (parse_fldata_strong s sz) p (clens_fldata_strong s sz))
= fun (input: bytes) ->
let _ = match parse (parse_fldata_strong s sz) input with
| None -> ()
| Some (_, consumed) ->
if consumed = sz
then parse_strong_prefix p (Seq.slice input 0 sz) input
else ()
in
0
inline_for_extraction
let gaccessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat)
: Tot (gaccessor (parse_fldata_strong s sz) p (clens_fldata_strong s sz))
= gaccessor_prop_equiv (parse_fldata_strong s sz) p (clens_fldata_strong s sz) (gaccessor_fldata_strong' s sz);
gaccessor_fldata_strong' s sz
inline_for_extraction
let accessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p { k.parser_kind_subkind == Some ParserStrong })
(sz: nat) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val accessor_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p {k.parser_kind_subkind == Some ParserStrong})
(sz: nat)
: Tot (accessor (gaccessor_fldata_strong s sz)) | [] | LowParse.Low.FLData.accessor_fldata_strong | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s:
LowParse.Spec.Base.serializer p
{ Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
sz: Prims.nat
-> LowParse.Low.Base.accessor (LowParse.Low.FLData.gaccessor_fldata_strong s sz) | {
"end_col": 5,
"end_line": 320,
"start_col": 2,
"start_line": 317
} |
Prims.Tot | val validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata_strong s sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata_strong s sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@inline_let] let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos | val validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata_strong s sz))
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata_strong s sz)) = | false | null | false | fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
[@@ inline_let ]let _ = valid_facts (parse_fldata_strong s sz) h input (uint64_to_uint32 pos) in
validate_fldata v sz sz32 input pos | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.Low.Base.validator",
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Low.FLData.validate_fldata",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong",
"LowParse.Low.ErrorCode.uint64_to_uint32",
"LowParse.Spec.FLData.parse_fldata",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } ) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata_strong s sz)) | [] | LowParse.Low.FLData.validate_fldata_strong | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.Base.serializer p ->
v: LowParse.Low.Base.validator p ->
sz: Prims.nat ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == sz}
-> LowParse.Low.Base.validator (LowParse.Spec.FLData.parse_fldata_strong s sz) | {
"end_col": 37,
"end_line": 207,
"start_col": 2,
"start_line": 203
} |
FStar.Pervasives.Lemma | val valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata p sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos'))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | val valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata p sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos')))
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel
#rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata p sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos'))) = | false | null | true | valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` (U32.uint_to_t sz) in
let input' = { base = input.base; len = pos' } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Low.Base.Spec.contents_exact_eq",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_exact_equiv",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Slice.Mkslice",
"LowParse.Slice.__proj__Mkslice__item__base",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata",
"LowParse.Low.Base.Spec.valid",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.UInt32.v",
"LowParse.Low.Base.Spec.valid_exact",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Low.Base.Spec.contents_exact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos' | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata p sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos'))) | [] | LowParse.Low.FLData.valid_fldata_gen_elim | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.Base.parser k t ->
sz: Prims.nat ->
input: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t ->
h: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires LowParse.Low.Base.Spec.valid (LowParse.Spec.FLData.parse_fldata p sz) h input pos)
(ensures
FStar.UInt32.v pos + sz < 4294967296 /\
(let pos' = FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz) in
LowParse.Low.Base.Spec.valid_exact p
h
input
pos
(FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz)) /\
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.FLData.parse_fldata p sz)
h
input
pos
(LowParse.Low.Base.Spec.contents_exact p h input pos pos')
pos')) | {
"end_col": 38,
"end_line": 62,
"start_col": 2,
"start_line": 57
} |
Prims.Tot | val validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos' | val validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz)) = | false | null | false | fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if ((Cast.uint32_to_uint64 input.len) `U64.sub` pos) `U64.lt` (Cast.uint32_to_uint64 sz32)
then validator_error_not_enough_data
else
[@@ inline_let ]let input' =
{ base = input.base; len = (uint64_to_uint32 pos) `U32.add` sz32 }
in
[@@ inline_let ]let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then if pos' = validator_error_not_enough_data then validator_error_generic else pos'
else pos' | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.squash",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserConsumesAll",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"FStar.UInt64.lt",
"FStar.UInt64.sub",
"FStar.Int.Cast.uint32_to_uint64",
"LowParse.Slice.__proj__Mkslice__item__len",
"LowParse.Low.ErrorCode.validator_error_not_enough_data",
"Prims.bool",
"LowParse.Low.ErrorCode.is_error",
"Prims.op_Equality",
"LowParse.Low.ErrorCode.validator_error_generic",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Low.ErrorCode.uint64_to_uint32",
"LowParse.Slice.Mkslice",
"LowParse.Slice.__proj__Mkslice__item__base",
"FStar.UInt32.add",
"LowParse.Spec.FLData.parse_fldata_consumes_all_correct",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll)) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz)) | [] | LowParse.Low.FLData.validate_fldata_consumes_all | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
v: LowParse.Low.Base.validator p ->
sz: Prims.nat ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == sz} ->
sq:
Prims.squash (Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll)
-> LowParse.Low.Base.validator (LowParse.Spec.FLData.parse_fldata p sz) | {
"end_col": 13,
"end_line": 119,
"start_col": 2,
"start_line": 102
} |
FStar.Pervasives.Lemma | val valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos'))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | val valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos')))
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel
#rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos'))) = | false | null | true | valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` (U32.uint_to_t sz) in
let input' = { base = input.base; len = pos' } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Low.Base.Spec.contents_exact_eq",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_exact_equiv",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Slice.Mkslice",
"LowParse.Slice.__proj__Mkslice__item__base",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.UInt32.v",
"LowParse.Low.Base.Spec.valid_exact",
"Prims.squash",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Low.Base.Spec.contents_exact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos' | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_content_pos (parse_fldata p sz)
h
input
pos
(contents_exact p h input pos pos')
pos'))) | [] | LowParse.Low.FLData.valid_fldata_gen | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.Base.parser k t ->
sz: Prims.nat ->
input: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t ->
h: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
FStar.UInt32.v pos + sz < 4294967296 /\
LowParse.Low.Base.Spec.valid_exact p
h
input
pos
(FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz)))
(ensures
FStar.UInt32.v pos + sz < 4294967296 /\
(let pos' = FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz) in
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.FLData.parse_fldata p sz)
h
input
pos
(LowParse.Low.Base.Spec.contents_exact p h input pos pos')
pos')) | {
"end_col": 38,
"end_line": 36,
"start_col": 2,
"start_line": 31
} |
FStar.Pervasives.Lemma | val valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata_strong s sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos')))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
))))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | val valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata_strong s sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'))))
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel
#rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata_strong s sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos')))) = | false | null | true | valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` (U32.uint_to_t sz) in
let input' = { base = input.base; len = pos' } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Low.Base.Spec.contents_exact_eq",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_exact_equiv",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Slice.Mkslice",
"LowParse.Slice.__proj__Mkslice__item__base",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong",
"LowParse.Low.Base.Spec.valid",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.UInt32.v",
"LowParse.Low.Base.Spec.valid_exact",
"Prims.eq2",
"FStar.Seq.Base.length",
"LowParse.Spec.Base.serialize",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Low.Base.Spec.contents_exact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata_strong s sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos' | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_fldata_strong_gen_elim
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma (requires (valid (parse_fldata_strong s sz) h input pos))
(ensures
(U32.v pos + sz < 4294967296 /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos')))) | [] | LowParse.Low.FLData.valid_fldata_strong_gen_elim | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.Base.serializer p ->
sz: Prims.nat ->
input: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t ->
h: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
LowParse.Low.Base.Spec.valid (LowParse.Spec.FLData.parse_fldata_strong s sz) h input pos)
(ensures
FStar.UInt32.v pos + sz < 4294967296 /\
(let pos' = FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz) in
LowParse.Low.Base.Spec.valid_exact p
h
input
pos
(FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz)) /\
(let x = LowParse.Low.Base.Spec.contents_exact p h input pos pos' in
FStar.Seq.Base.length (LowParse.Spec.Base.serialize s x) == sz /\
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.FLData.parse_fldata_strong s sz)
h
input
pos
x
pos'))) | {
"end_col": 38,
"end_line": 191,
"start_col": 2,
"start_line": 186
} |
Prims.Tot | val validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos' | val validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz))
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz)) = | false | null | false | fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if ((Cast.uint32_to_uint64 input.len) `U64.sub` pos) `U64.lt` (Cast.uint32_to_uint64 sz32)
then validator_error_not_enough_data
else
[@@ inline_let ]let input' =
{ base = input.base; len = (uint64_to_uint32 pos) `U32.add` sz32 }
in
[@@ inline_let ]let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then if pos' = validator_error_not_enough_data then validator_error_generic else pos'
else if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32 then validator_error_generic else pos' | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"FStar.UInt64.lt",
"FStar.UInt64.sub",
"FStar.Int.Cast.uint32_to_uint64",
"LowParse.Slice.__proj__Mkslice__item__len",
"LowParse.Low.ErrorCode.validator_error_not_enough_data",
"Prims.bool",
"LowParse.Low.ErrorCode.is_error",
"Prims.op_Equality",
"LowParse.Low.ErrorCode.validator_error_generic",
"Prims.op_disEquality",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Low.ErrorCode.uint64_to_uint32",
"LowParse.Slice.Mkslice",
"LowParse.Slice.__proj__Mkslice__item__base",
"FStar.UInt32.add",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } ) | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t{U32.v sz32 == sz})
: Tot (validator (parse_fldata p sz)) | [] | LowParse.Low.FLData.validate_fldata_gen | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | v: LowParse.Low.Base.validator p -> sz: Prims.nat -> sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == sz}
-> LowParse.Low.Base.validator (LowParse.Spec.FLData.parse_fldata p sz) | {
"end_col": 13,
"end_line": 90,
"start_col": 2,
"start_line": 73
} |
FStar.Pervasives.Lemma | val valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'
)))
= valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | val valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos')))
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel
#rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'))) = | false | null | true | valid_facts (parse_fldata_strong s sz) h input pos;
let pos' = pos `U32.add` (U32.uint_to_t sz) in
let input' = { base = input.base; len = pos' } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos' | {
"checked_file": "LowParse.Low.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.FLData.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.FLData.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Low.Base.Spec.contents_exact_eq",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_exact_equiv",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Slice.Mkslice",
"LowParse.Slice.__proj__Mkslice__item__base",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.UInt32.v",
"LowParse.Low.Base.Spec.valid_exact",
"Prims.squash",
"Prims.eq2",
"FStar.Seq.Base.length",
"LowParse.Spec.Base.serialize",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Low.Base.Spec.contents_exact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.FLData
include LowParse.Low.Combinators
include LowParse.Spec.FLData
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_fldata_gen
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
let valid_fldata_gen_elim
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
valid (parse_fldata p sz) h input pos
))
(ensures (
U32.v pos + sz < 4294967296 /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\
valid_content_pos (parse_fldata p sz) h input pos (contents_exact p h input pos pos') pos'
)))
= valid_facts (parse_fldata p sz) h input pos;
let pos' = pos `U32.add` U32.uint_to_t sz in
let input' = { base = input.base; len = pos'; } in
valid_facts p h input' pos;
valid_exact_equiv p h input pos pos';
contents_exact_eq p h input pos pos'
inline_for_extraction
let validate_fldata_gen
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ = valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos) in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else
if pos' `U64.sub` pos <> Cast.uint32_to_uint64 sz32
then validator_error_generic
else pos'
inline_for_extraction
let validate_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
(sq: squash (k.parser_kind_subkind == Some ParserConsumesAll))
: Tot (validator (parse_fldata p sz))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_fldata p sz) h input (uint64_to_uint32 pos);
parse_fldata_consumes_all_correct p sz (bytes_of_slice_from h input (uint64_to_uint32 pos))
in
if (Cast.uint32_to_uint64 input.len `U64.sub` pos) `U64.lt` Cast.uint32_to_uint64 sz32
then validator_error_not_enough_data
else
[@inline_let] let input' = { base = input.base; len = uint64_to_uint32 pos `U32.add` sz32; } in
[@inline_let] let _ = valid_facts p h input' (uint64_to_uint32 pos) in
let pos' = v input' pos in
if is_error pos'
then
if pos' = validator_error_not_enough_data
then validator_error_generic (* the size was fixed ahead of time, so if the parser runs out of data, then that size was wrong in the first place. *)
else pos' // error propagation
else pos'
inline_for_extraction
let validate_fldata
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(v: validator p)
(sz: nat)
(sz32: U32.t { U32.v sz32 == sz } )
: Tot (validator (parse_fldata p sz))
= if k.parser_kind_subkind = Some ParserConsumesAll
then validate_fldata_consumes_all v sz sz32 ()
else validate_fldata_gen v sz sz32
let valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
#rrel #rel
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz)
))
(ensures (
U32.v pos + sz < 4294967296 /\
valid_exact p h input pos (pos `U32.add` U32.uint_to_t sz) /\ (
let pos' = pos `U32.add` U32.uint_to_t sz in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos' | false | false | LowParse.Low.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_fldata_strong_gen
(#k: parser_kind)
(#t: Type0)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
(h: HS.mem)
: Lemma
(requires
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz))
))
(ensures
(U32.v pos + sz < 4294967296 /\ valid_exact p h input pos (pos `U32.add` (U32.uint_to_t sz)) /\
(let pos' = pos `U32.add` (U32.uint_to_t sz) in
let x = contents_exact p h input pos pos' in
Seq.length (serialize s x) == sz /\
valid_content_pos (parse_fldata_strong s sz) h input pos x pos'))) | [] | LowParse.Low.FLData.valid_fldata_strong_gen | {
"file_name": "src/lowparse/LowParse.Low.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.Base.serializer p ->
sz: Prims.nat ->
input: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t ->
h: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
FStar.UInt32.v pos + sz < 4294967296 /\
LowParse.Low.Base.Spec.valid_exact p
h
input
pos
(FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz)))
(ensures
FStar.UInt32.v pos + sz < 4294967296 /\
LowParse.Low.Base.Spec.valid_exact p
h
input
pos
(FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz)) /\
(let pos' = FStar.UInt32.add pos (FStar.UInt32.uint_to_t sz) in
let x = LowParse.Low.Base.Spec.contents_exact p h input pos pos' in
FStar.Seq.Base.length (LowParse.Spec.Base.serialize s x) == sz /\
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.FLData.parse_fldata_strong s sz)
h
input
pos
x
pos')) | {
"end_col": 38,
"end_line": 162,
"start_col": 2,
"start_line": 157
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true }) | let nonempty_set (t: eqtype) = | false | null | false | (s: Set.set t {exists x. set_def s x == true}) | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Set.set",
"Prims.l_Exists",
"Prims.eq2",
"Prims.bool",
"Steel.ST.C.Types.UserStruct.set_def"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract | false | true | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nonempty_set : t: Prims.eqtype -> Type0 | [] | Steel.ST.C.Types.UserStruct.nonempty_set | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Prims.eqtype -> Type0 | {
"end_col": 51,
"end_line": 20,
"start_col": 2,
"start_line": 20
} |
|
Prims.Tot | val set_def (#t: eqtype) (s: FStar.Set.set t) (x: t) : Tot bool | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s | val set_def (#t: eqtype) (s: FStar.Set.set t) (x: t) : Tot bool
let set_def (#t: eqtype) (s: FStar.Set.set t) (x: t) : Tot bool = | false | null | false | FStar.Set.mem x s | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Set.set",
"FStar.Set.mem",
"Prims.bool"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t) | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_def (#t: eqtype) (s: FStar.Set.set t) (x: t) : Tot bool | [] | Steel.ST.C.Types.UserStruct.set_def | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | s: FStar.Set.set t -> x: t -> Prims.bool | {
"end_col": 19,
"end_line": 16,
"start_col": 2,
"start_line": 16
} |
Prims.Tot | val field_t (s: Set.set string) : Tot eqtype | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let field_t (s: Set.set string) : Tot eqtype =
(f: string { Set.mem f s }) | val field_t (s: Set.set string) : Tot eqtype
let field_t (s: Set.set string) : Tot eqtype = | false | null | false | (f: string{Set.mem f s}) | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [
"total"
] | [
"FStar.Set.set",
"Prims.string",
"Prims.b2t",
"FStar.Set.mem",
"Prims.eqtype"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a
[@@noextract_to "krml"] | false | true | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val field_t (s: Set.set string) : Tot eqtype | [] | Steel.ST.C.Types.UserStruct.field_t | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | s: FStar.Set.set Prims.string -> Prims.eqtype | {
"end_col": 29,
"end_line": 33,
"start_col": 2,
"start_line": 33
} |
Prims.Tot | val set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f)
: Tot t | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) : Tot t =
sd.mk (set_aux sd x f v) | val set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f)
: Tot t
let set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f)
: Tot t = | false | null | false | sd.mk (set_aux sd x f v) | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [
"total"
] | [
"Steel.ST.C.Types.UserStruct.struct_def",
"Steel.ST.C.Types.UserStruct.field_t",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__fields",
"Steel.ST.C.Types.Struct.Aux.__proj__Mkfield_description_gen_t__item__fd_type",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__field_desc",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__mk",
"Steel.ST.C.Types.UserStruct.set_aux"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a
[@@noextract_to "krml"]
let field_t (s: Set.set string) : Tot eqtype =
(f: string { Set.mem f s })
[@@noextract_to "krml"; norm_field_attr]
inline_for_extraction // for field_desc.fd_type
noeq
type struct_def (t: Type) = {
fields: Set.set string;
field_desc: field_description_gen_t (field_t fields);
mk: ((f: field_t fields) -> Tot (field_desc.fd_type f)) -> Tot t;
get: (t -> (f: field_t fields) -> Tot (field_desc.fd_type f));
get_mk: (phi: ((f: field_t fields) -> Tot (field_desc.fd_type f))) -> (f: field_t fields) -> Lemma
(get (mk phi) f == phi f);
extensionality: (x1: t) -> (x2: t) -> ((f: field_t fields) -> Lemma (get x1 f == get x2 f)) -> Lemma (x1 == x2);
}
let nonempty_set_nonempty_type (x: string) (s: Set.set string) : Lemma
(requires (x `Set.mem` s))
(ensures (exists (x: field_t s) . True))
= Classical.exists_intro (fun (_: field_t s) -> True) x
[@@noextract_to "krml"]
let set_aux
(#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f')
= if f = f' then v else sd.get x f'
[@@noextract_to "krml"] | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f)
: Tot t | [] | Steel.ST.C.Types.UserStruct.set | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
sd: Steel.ST.C.Types.UserStruct.struct_def t ->
x: t ->
f: Steel.ST.C.Types.UserStruct.field_t (Mkstruct_def?.fields sd) ->
v: Mkfield_description_gen_t?.fd_type (Mkstruct_def?.field_desc sd) f
-> t | {
"end_col": 26,
"end_line": 61,
"start_col": 2,
"start_line": 61
} |
Prims.Pure | val set_snoc (#t: eqtype) (q: FStar.Set.set t) (a: t)
: Pure (nonempty_set t)
(requires True)
(ensures
(fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s}
FStar.Set.mem x s == (x = a || FStar.Set.mem x q)))) | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a | val set_snoc (#t: eqtype) (q: FStar.Set.set t) (a: t)
: Pure (nonempty_set t)
(requires True)
(ensures
(fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s}
FStar.Set.mem x s == (x = a || FStar.Set.mem x q))))
let set_snoc (#t: eqtype) (q: FStar.Set.set t) (a: t)
: Pure (nonempty_set t)
(requires True)
(ensures
(fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s}
FStar.Set.mem x s == (x = a || FStar.Set.mem x q)))) = | false | null | false | q `FStar.Set.union` (FStar.Set.singleton a) | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [] | [
"Prims.eqtype",
"FStar.Set.set",
"FStar.Set.union",
"FStar.Set.singleton",
"Steel.ST.C.Types.UserStruct.nonempty_set",
"Prims.l_True",
"Prims.l_Forall",
"Prims.eq2",
"Prims.bool",
"FStar.Set.mem",
"Prims.op_BarBar",
"Prims.op_Equality"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q)) | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_snoc (#t: eqtype) (q: FStar.Set.set t) (a: t)
: Pure (nonempty_set t)
(requires True)
(ensures
(fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s}
FStar.Set.mem x s == (x = a || FStar.Set.mem x q)))) | [] | Steel.ST.C.Types.UserStruct.set_snoc | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | q: FStar.Set.set t -> a: t -> Prims.Pure (Steel.ST.C.Types.UserStruct.nonempty_set t) | {
"end_col": 43,
"end_line": 29,
"start_col": 2,
"start_line": 29
} |
FStar.Pervasives.Lemma | val nonempty_set_nonempty_type (x: string) (s: Set.set string)
: Lemma (requires (x `Set.mem` s)) (ensures (exists (x: field_t s). True)) | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nonempty_set_nonempty_type (x: string) (s: Set.set string) : Lemma
(requires (x `Set.mem` s))
(ensures (exists (x: field_t s) . True))
= Classical.exists_intro (fun (_: field_t s) -> True) x | val nonempty_set_nonempty_type (x: string) (s: Set.set string)
: Lemma (requires (x `Set.mem` s)) (ensures (exists (x: field_t s). True))
let nonempty_set_nonempty_type (x: string) (s: Set.set string)
: Lemma (requires (x `Set.mem` s)) (ensures (exists (x: field_t s). True)) = | false | null | true | Classical.exists_intro (fun (_: field_t s) -> True) x | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [
"lemma"
] | [
"Prims.string",
"FStar.Set.set",
"FStar.Classical.exists_intro",
"Steel.ST.C.Types.UserStruct.field_t",
"Prims.l_True",
"Prims.unit",
"Prims.b2t",
"FStar.Set.mem",
"Prims.squash",
"Prims.l_Exists",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a
[@@noextract_to "krml"]
let field_t (s: Set.set string) : Tot eqtype =
(f: string { Set.mem f s })
[@@noextract_to "krml"; norm_field_attr]
inline_for_extraction // for field_desc.fd_type
noeq
type struct_def (t: Type) = {
fields: Set.set string;
field_desc: field_description_gen_t (field_t fields);
mk: ((f: field_t fields) -> Tot (field_desc.fd_type f)) -> Tot t;
get: (t -> (f: field_t fields) -> Tot (field_desc.fd_type f));
get_mk: (phi: ((f: field_t fields) -> Tot (field_desc.fd_type f))) -> (f: field_t fields) -> Lemma
(get (mk phi) f == phi f);
extensionality: (x1: t) -> (x2: t) -> ((f: field_t fields) -> Lemma (get x1 f == get x2 f)) -> Lemma (x1 == x2);
}
let nonempty_set_nonempty_type (x: string) (s: Set.set string) : Lemma
(requires (x `Set.mem` s)) | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nonempty_set_nonempty_type (x: string) (s: Set.set string)
: Lemma (requires (x `Set.mem` s)) (ensures (exists (x: field_t s). True)) | [] | Steel.ST.C.Types.UserStruct.nonempty_set_nonempty_type | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | x: Prims.string -> s: FStar.Set.set Prims.string
-> FStar.Pervasives.Lemma (requires FStar.Set.mem x s)
(ensures exists (x: Steel.ST.C.Types.UserStruct.field_t s). Prims.l_True) | {
"end_col": 55,
"end_line": 51,
"start_col": 2,
"start_line": 51
} |
Prims.Tot | val set_aux
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f') | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_aux
(#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f')
= if f = f' then v else sd.get x f' | val set_aux
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f')
let set_aux
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f') = | false | null | false | if f = f' then v else sd.get x f' | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [
"total"
] | [
"Steel.ST.C.Types.UserStruct.struct_def",
"Steel.ST.C.Types.UserStruct.field_t",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__fields",
"Steel.ST.C.Types.Struct.Aux.__proj__Mkfield_description_gen_t__item__fd_type",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__field_desc",
"Prims.op_Equality",
"Prims.bool",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__get"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a
[@@noextract_to "krml"]
let field_t (s: Set.set string) : Tot eqtype =
(f: string { Set.mem f s })
[@@noextract_to "krml"; norm_field_attr]
inline_for_extraction // for field_desc.fd_type
noeq
type struct_def (t: Type) = {
fields: Set.set string;
field_desc: field_description_gen_t (field_t fields);
mk: ((f: field_t fields) -> Tot (field_desc.fd_type f)) -> Tot t;
get: (t -> (f: field_t fields) -> Tot (field_desc.fd_type f));
get_mk: (phi: ((f: field_t fields) -> Tot (field_desc.fd_type f))) -> (f: field_t fields) -> Lemma
(get (mk phi) f == phi f);
extensionality: (x1: t) -> (x2: t) -> ((f: field_t fields) -> Lemma (get x1 f == get x2 f)) -> Lemma (x1 == x2);
}
let nonempty_set_nonempty_type (x: string) (s: Set.set string) : Lemma
(requires (x `Set.mem` s))
(ensures (exists (x: field_t s) . True))
= Classical.exists_intro (fun (_: field_t s) -> True) x
[@@noextract_to "krml"]
let set_aux
(#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f': field_t sd.fields) | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_aux
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f') | [] | Steel.ST.C.Types.UserStruct.set_aux | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
sd: Steel.ST.C.Types.UserStruct.struct_def t ->
x: t ->
f: Steel.ST.C.Types.UserStruct.field_t (Mkstruct_def?.fields sd) ->
v: Mkfield_description_gen_t?.fd_type (Mkstruct_def?.field_desc sd) f ->
f': Steel.ST.C.Types.UserStruct.field_t (Mkstruct_def?.fields sd)
-> Mkfield_description_gen_t?.fd_type (Mkstruct_def?.field_desc sd) f' | {
"end_col": 35,
"end_line": 57,
"start_col": 2,
"start_line": 57
} |
FStar.Pervasives.Lemma | val get_set
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Lemma (sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f'))
[SMTPat (sd.get (set sd x f v) f')] | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f' : field_t sd.fields) : Lemma
(sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f'))
[SMTPat (sd.get (set sd x f v) f')]
= sd.get_mk (set_aux sd x f v) f' | val get_set
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Lemma (sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f'))
[SMTPat (sd.get (set sd x f v) f')]
let get_set
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Lemma (sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f'))
[SMTPat (sd.get (set sd x f v) f')] = | false | null | true | sd.get_mk (set_aux sd x f v) f' | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [
"lemma"
] | [
"Steel.ST.C.Types.UserStruct.struct_def",
"Steel.ST.C.Types.UserStruct.field_t",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__fields",
"Steel.ST.C.Types.Struct.Aux.__proj__Mkfield_description_gen_t__item__fd_type",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__field_desc",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__get_mk",
"Steel.ST.C.Types.UserStruct.set_aux",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__get",
"Steel.ST.C.Types.UserStruct.set",
"Prims.op_Equality",
"Prims.bool",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a
[@@noextract_to "krml"]
let field_t (s: Set.set string) : Tot eqtype =
(f: string { Set.mem f s })
[@@noextract_to "krml"; norm_field_attr]
inline_for_extraction // for field_desc.fd_type
noeq
type struct_def (t: Type) = {
fields: Set.set string;
field_desc: field_description_gen_t (field_t fields);
mk: ((f: field_t fields) -> Tot (field_desc.fd_type f)) -> Tot t;
get: (t -> (f: field_t fields) -> Tot (field_desc.fd_type f));
get_mk: (phi: ((f: field_t fields) -> Tot (field_desc.fd_type f))) -> (f: field_t fields) -> Lemma
(get (mk phi) f == phi f);
extensionality: (x1: t) -> (x2: t) -> ((f: field_t fields) -> Lemma (get x1 f == get x2 f)) -> Lemma (x1 == x2);
}
let nonempty_set_nonempty_type (x: string) (s: Set.set string) : Lemma
(requires (x `Set.mem` s))
(ensures (exists (x: field_t s) . True))
= Classical.exists_intro (fun (_: field_t s) -> True) x
[@@noextract_to "krml"]
let set_aux
(#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f')
= if f = f' then v else sd.get x f'
[@@noextract_to "krml"]
let set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) : Tot t =
sd.mk (set_aux sd x f v)
let get_set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f' : field_t sd.fields) : Lemma
(sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f')) | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_set
(#t: Type)
(sd: struct_def t)
(x: t)
(f: field_t sd.fields)
(v: sd.field_desc.fd_type f)
(f': field_t sd.fields)
: Lemma (sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f'))
[SMTPat (sd.get (set sd x f v) f')] | [] | Steel.ST.C.Types.UserStruct.get_set | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
sd: Steel.ST.C.Types.UserStruct.struct_def t ->
x: t ->
f: Steel.ST.C.Types.UserStruct.field_t (Mkstruct_def?.fields sd) ->
v: Mkfield_description_gen_t?.fd_type (Mkstruct_def?.field_desc sd) f ->
f': Steel.ST.C.Types.UserStruct.field_t (Mkstruct_def?.fields sd)
-> FStar.Pervasives.Lemma
(ensures
Mkstruct_def?.get sd (Steel.ST.C.Types.UserStruct.set sd x f v) f' ==
(match f = f' with
| true -> v
| _ -> Mkstruct_def?.get sd x f'))
[SMTPat (Mkstruct_def?.get sd (Steel.ST.C.Types.UserStruct.set sd x f v) f')] | {
"end_col": 33,
"end_line": 66,
"start_col": 2,
"start_line": 66
} |
Steel.ST.Effect.Ghost.STGhost | val unstruct_field_alt
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(#v': Ghost.erased (sd.field_desc.fd_type field))
(r': ref (sd.field_desc.fd_typedef field))
: STGhost (Ghost.erased t)
opened
(((has_struct_field r field r') `star` (pts_to r v)) `star` (pts_to r' v'))
(fun s' -> (has_struct_field r field r') `star` (pts_to r s'))
(sd.get v field == unknown (sd.field_desc.fd_typedef field))
(fun s' -> Ghost.reveal s' == set sd v field v') | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let unstruct_field_alt
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(#v': Ghost.erased (sd.field_desc.fd_type field))
(r': ref (sd.field_desc.fd_typedef field))
: STGhost (Ghost.erased t) opened
(has_struct_field r field r' `star` pts_to r v `star` pts_to r' v')
(fun s' -> has_struct_field r field r' `star` pts_to r s')
(
sd.get v field == unknown (sd.field_desc.fd_typedef field)
)
(fun s' -> Ghost.reveal s' == set sd v field v')
= unstruct_field r field r';
_ | val unstruct_field_alt
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(#v': Ghost.erased (sd.field_desc.fd_type field))
(r': ref (sd.field_desc.fd_typedef field))
: STGhost (Ghost.erased t)
opened
(((has_struct_field r field r') `star` (pts_to r v)) `star` (pts_to r' v'))
(fun s' -> (has_struct_field r field r') `star` (pts_to r s'))
(sd.get v field == unknown (sd.field_desc.fd_typedef field))
(fun s' -> Ghost.reveal s' == set sd v field v')
let unstruct_field_alt
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(#v': Ghost.erased (sd.field_desc.fd_type field))
(r': ref (sd.field_desc.fd_typedef field))
: STGhost (Ghost.erased t)
opened
(((has_struct_field r field r') `star` (pts_to r v)) `star` (pts_to r' v'))
(fun s' -> (has_struct_field r field r') `star` (pts_to r s'))
(sd.get v field == unknown (sd.field_desc.fd_typedef field))
(fun s' -> Ghost.reveal s' == set sd v field v') = | true | null | false | unstruct_field r field r';
_ | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [] | [
"Steel.Memory.inames",
"Steel.ST.C.Types.UserStruct.struct_def",
"FStar.Ghost.erased",
"Steel.ST.C.Types.Base.ref",
"Steel.ST.C.Types.UserStruct.struct_typedef",
"Steel.ST.C.Types.UserStruct.field_t",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__fields",
"Steel.ST.C.Types.Struct.Aux.__proj__Mkfield_description_gen_t__item__fd_type",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__field_desc",
"Steel.ST.C.Types.Struct.Aux.__proj__Mkfield_description_gen_t__item__fd_typedef",
"FStar.Ghost.hide",
"Steel.ST.C.Types.UserStruct.set",
"FStar.Ghost.reveal",
"Prims.unit",
"Steel.ST.C.Types.UserStruct.unstruct_field",
"Steel.Effect.Common.star",
"Steel.ST.C.Types.UserStruct.has_struct_field",
"Steel.ST.C.Types.Base.pts_to",
"Steel.Effect.Common.vprop",
"Prims.eq2",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__get",
"Steel.ST.C.Types.Base.unknown",
"Prims.l_True"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a
[@@noextract_to "krml"]
let field_t (s: Set.set string) : Tot eqtype =
(f: string { Set.mem f s })
[@@noextract_to "krml"; norm_field_attr]
inline_for_extraction // for field_desc.fd_type
noeq
type struct_def (t: Type) = {
fields: Set.set string;
field_desc: field_description_gen_t (field_t fields);
mk: ((f: field_t fields) -> Tot (field_desc.fd_type f)) -> Tot t;
get: (t -> (f: field_t fields) -> Tot (field_desc.fd_type f));
get_mk: (phi: ((f: field_t fields) -> Tot (field_desc.fd_type f))) -> (f: field_t fields) -> Lemma
(get (mk phi) f == phi f);
extensionality: (x1: t) -> (x2: t) -> ((f: field_t fields) -> Lemma (get x1 f == get x2 f)) -> Lemma (x1 == x2);
}
let nonempty_set_nonempty_type (x: string) (s: Set.set string) : Lemma
(requires (x `Set.mem` s))
(ensures (exists (x: field_t s) . True))
= Classical.exists_intro (fun (_: field_t s) -> True) x
[@@noextract_to "krml"]
let set_aux
(#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f')
= if f = f' then v else sd.get x f'
[@@noextract_to "krml"]
let set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) : Tot t =
sd.mk (set_aux sd x f v)
let get_set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f' : field_t sd.fields) : Lemma
(sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f'))
[SMTPat (sd.get (set sd x f v) f')]
= sd.get_mk (set_aux sd x f v) f'
[@@noextract_to "krml"]
val struct_typedef
(#t: Type)
(sd: struct_def t)
: Tot (typedef t)
val has_struct_field
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
: Tot vprop
val has_struct_field_dup
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(has_struct_field r field r')
(fun _ -> has_struct_field r field r' `star` has_struct_field r field r')
val has_struct_field_inj
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r1 r2: ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(has_struct_field r field r1 `star` has_struct_field r field r2)
(fun _ -> has_struct_field r field r1 `star` has_struct_field r field r2 `star` ref_equiv r1 r2)
val has_struct_field_equiv_from
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r1: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
(r2: ref (struct_typedef sd))
: STGhostT unit opened
(ref_equiv r1 r2 `star` has_struct_field r1 field r')
(fun _ -> ref_equiv r1 r2 `star` has_struct_field r2 field r')
val has_struct_field_equiv_to
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r1' r2': ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(ref_equiv r1' r2' `star` has_struct_field r field r1')
(fun _ -> ref_equiv r1' r2' `star` has_struct_field r field r2')
val ghost_struct_field_focus
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(has_struct_field r field r' `star` pts_to r v)
(fun _ -> has_struct_field r field r' `star` pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to r' (sd.get v field))
val ghost_struct_field
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STGhostT (Ghost.erased (ref (sd.field_desc.fd_typedef field))) opened
(pts_to r v)
(fun r' -> has_struct_field r field r' `star` pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to r' (sd.get v field))
[@@noextract_to "krml"] // primitive
val struct_field0
(#t: Type)
(t': Type0)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(td': typedef t' {
t' == sd.field_desc.fd_type field /\
td' == sd.field_desc.fd_typedef field
})
: STT (ref td')
(pts_to r v)
(fun r' -> has_struct_field r field (coerce_eq () r') `star` pts_to r (set sd (Ghost.reveal v) field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to #_ #(sd.field_desc.fd_typedef field) (coerce_eq () r') (sd.get (Ghost.reveal v) field))
inline_for_extraction [@@noextract_to "krml"] // primitive
let struct_field
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STT (ref #(norm norm_field_steps (sd.field_desc.fd_type field)) (sd.field_desc.fd_typedef field))
(pts_to r v)
(fun r' -> pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to #(norm norm_field_steps (sd.field_desc.fd_type field)) r' (sd.get v field) `star` has_struct_field r field r')
= struct_field0
(norm norm_field_steps (sd.field_desc.fd_type field))
r
field
(sd.field_desc.fd_typedef field)
val unstruct_field
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(#v': Ghost.erased (sd.field_desc.fd_type field))
(r': ref (sd.field_desc.fd_typedef field))
: STGhost unit opened
(has_struct_field r field r' `star` pts_to r v `star` pts_to r' v')
(fun _ -> has_struct_field r field r' `star` pts_to r (set sd v field v'))
(
sd.get v field == unknown (sd.field_desc.fd_typedef field)
)
(fun _ -> True)
let unstruct_field_alt
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(#v': Ghost.erased (sd.field_desc.fd_type field))
(r': ref (sd.field_desc.fd_typedef field))
: STGhost (Ghost.erased t) opened
(has_struct_field r field r' `star` pts_to r v `star` pts_to r' v')
(fun s' -> has_struct_field r field r' `star` pts_to r s')
(
sd.get v field == unknown (sd.field_desc.fd_typedef field)
) | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val unstruct_field_alt
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(#v': Ghost.erased (sd.field_desc.fd_type field))
(r': ref (sd.field_desc.fd_typedef field))
: STGhost (Ghost.erased t)
opened
(((has_struct_field r field r') `star` (pts_to r v)) `star` (pts_to r' v'))
(fun s' -> (has_struct_field r field r') `star` (pts_to r s'))
(sd.get v field == unknown (sd.field_desc.fd_typedef field))
(fun s' -> Ghost.reveal s' == set sd v field v') | [] | Steel.ST.C.Types.UserStruct.unstruct_field_alt | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
r: Steel.ST.C.Types.Base.ref (Steel.ST.C.Types.UserStruct.struct_typedef sd) ->
field: Steel.ST.C.Types.UserStruct.field_t (Mkstruct_def?.fields sd) ->
r':
Steel.ST.C.Types.Base.ref (Mkfield_description_gen_t?.fd_typedef (Mkstruct_def?.field_desc sd)
field)
-> Steel.ST.Effect.Ghost.STGhost (FStar.Ghost.erased t) | {
"end_col": 3,
"end_line": 216,
"start_col": 2,
"start_line": 215
} |
Steel.ST.Effect.STT | val struct_field
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STT
(ref #(norm norm_field_steps (sd.field_desc.fd_type field)) (sd.field_desc.fd_typedef field))
(pts_to r v)
(fun r' ->
((pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))))
`star`
(pts_to #(norm norm_field_steps (sd.field_desc.fd_type field)) r' (sd.get v field)))
`star`
(has_struct_field r field r')) | [
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types.Struct.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.C.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let struct_field
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STT (ref #(norm norm_field_steps (sd.field_desc.fd_type field)) (sd.field_desc.fd_typedef field))
(pts_to r v)
(fun r' -> pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to #(norm norm_field_steps (sd.field_desc.fd_type field)) r' (sd.get v field) `star` has_struct_field r field r')
= struct_field0
(norm norm_field_steps (sd.field_desc.fd_type field))
r
field
(sd.field_desc.fd_typedef field) | val struct_field
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STT
(ref #(norm norm_field_steps (sd.field_desc.fd_type field)) (sd.field_desc.fd_typedef field))
(pts_to r v)
(fun r' ->
((pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))))
`star`
(pts_to #(norm norm_field_steps (sd.field_desc.fd_type field)) r' (sd.get v field)))
`star`
(has_struct_field r field r'))
let struct_field
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STT
(ref #(norm norm_field_steps (sd.field_desc.fd_type field)) (sd.field_desc.fd_typedef field))
(pts_to r v)
(fun r' ->
((pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))))
`star`
(pts_to #(norm norm_field_steps (sd.field_desc.fd_type field)) r' (sd.get v field)))
`star`
(has_struct_field r field r')) = | true | null | false | struct_field0 (norm norm_field_steps (sd.field_desc.fd_type field))
r
field
(sd.field_desc.fd_typedef field) | {
"checked_file": "Steel.ST.C.Types.UserStruct.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.C.Types.Struct.Aux.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.C.Types.UserStruct.fsti"
} | [] | [
"Steel.ST.C.Types.UserStruct.struct_def",
"FStar.Ghost.erased",
"Steel.ST.C.Types.Base.ref",
"Steel.ST.C.Types.UserStruct.struct_typedef",
"Steel.ST.C.Types.UserStruct.field_t",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__fields",
"Steel.ST.C.Types.UserStruct.struct_field0",
"FStar.Pervasives.norm",
"Steel.ST.C.Types.Base.norm_field_steps",
"Steel.ST.C.Types.Struct.Aux.__proj__Mkfield_description_gen_t__item__fd_type",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__field_desc",
"Steel.ST.C.Types.Struct.Aux.__proj__Mkfield_description_gen_t__item__fd_typedef",
"Steel.ST.C.Types.Base.pts_to",
"Steel.Effect.Common.star",
"FStar.Ghost.hide",
"Steel.ST.C.Types.UserStruct.set",
"FStar.Ghost.reveal",
"Steel.ST.C.Types.Base.unknown",
"Steel.ST.C.Types.UserStruct.__proj__Mkstruct_def__item__get",
"Steel.ST.C.Types.UserStruct.has_struct_field",
"Steel.Effect.Common.vprop"
] | [] | module Steel.ST.C.Types.UserStruct
open Steel.ST.Util
open Steel.ST.C.Types.Struct.Aux
module Set = FStar.Set
(* This library allows the user to define their own struct type, with
a constructor from field values, and a destructor to field values for
each field. This may be necessary for recursive structs *)
let set_def
(#t: eqtype)
(s: FStar.Set.set t)
(x: t)
: Tot bool
= FStar.Set.mem x s
noextract
let nonempty_set (t: eqtype) =
(s: Set.set t { exists x . set_def s x == true })
noextract
let set_snoc // for associativity reasons
(#t: eqtype) (q: FStar.Set.set t) (a: t) : Pure (nonempty_set t)
(requires True)
(ensures (fun s ->
(forall (x: t). {:pattern FStar.Set.mem x s} FStar.Set.mem x s == (x = a || FStar.Set.mem x q))
))
= q `FStar.Set.union` FStar.Set.singleton a
[@@noextract_to "krml"]
let field_t (s: Set.set string) : Tot eqtype =
(f: string { Set.mem f s })
[@@noextract_to "krml"; norm_field_attr]
inline_for_extraction // for field_desc.fd_type
noeq
type struct_def (t: Type) = {
fields: Set.set string;
field_desc: field_description_gen_t (field_t fields);
mk: ((f: field_t fields) -> Tot (field_desc.fd_type f)) -> Tot t;
get: (t -> (f: field_t fields) -> Tot (field_desc.fd_type f));
get_mk: (phi: ((f: field_t fields) -> Tot (field_desc.fd_type f))) -> (f: field_t fields) -> Lemma
(get (mk phi) f == phi f);
extensionality: (x1: t) -> (x2: t) -> ((f: field_t fields) -> Lemma (get x1 f == get x2 f)) -> Lemma (x1 == x2);
}
let nonempty_set_nonempty_type (x: string) (s: Set.set string) : Lemma
(requires (x `Set.mem` s))
(ensures (exists (x: field_t s) . True))
= Classical.exists_intro (fun (_: field_t s) -> True) x
[@@noextract_to "krml"]
let set_aux
(#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f': field_t sd.fields)
: Tot (sd.field_desc.fd_type f')
= if f = f' then v else sd.get x f'
[@@noextract_to "krml"]
let set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) : Tot t =
sd.mk (set_aux sd x f v)
let get_set (#t: Type) (sd: struct_def t) (x: t) (f: field_t sd.fields) (v: sd.field_desc.fd_type f) (f' : field_t sd.fields) : Lemma
(sd.get (set sd x f v) f' == (if f = f' then v else sd.get x f'))
[SMTPat (sd.get (set sd x f v) f')]
= sd.get_mk (set_aux sd x f v) f'
[@@noextract_to "krml"]
val struct_typedef
(#t: Type)
(sd: struct_def t)
: Tot (typedef t)
val has_struct_field
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
: Tot vprop
val has_struct_field_dup
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(has_struct_field r field r')
(fun _ -> has_struct_field r field r' `star` has_struct_field r field r')
val has_struct_field_inj
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r1 r2: ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(has_struct_field r field r1 `star` has_struct_field r field r2)
(fun _ -> has_struct_field r field r1 `star` has_struct_field r field r2 `star` ref_equiv r1 r2)
val has_struct_field_equiv_from
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r1: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
(r2: ref (struct_typedef sd))
: STGhostT unit opened
(ref_equiv r1 r2 `star` has_struct_field r1 field r')
(fun _ -> ref_equiv r1 r2 `star` has_struct_field r2 field r')
val has_struct_field_equiv_to
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r1' r2': ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(ref_equiv r1' r2' `star` has_struct_field r field r1')
(fun _ -> ref_equiv r1' r2' `star` has_struct_field r field r2')
val ghost_struct_field_focus
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(r': ref (sd.field_desc.fd_typedef field))
: STGhostT unit opened
(has_struct_field r field r' `star` pts_to r v)
(fun _ -> has_struct_field r field r' `star` pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to r' (sd.get v field))
val ghost_struct_field
(#opened: _)
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STGhostT (Ghost.erased (ref (sd.field_desc.fd_typedef field))) opened
(pts_to r v)
(fun r' -> has_struct_field r field r' `star` pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to r' (sd.get v field))
[@@noextract_to "krml"] // primitive
val struct_field0
(#t: Type)
(t': Type0)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
(td': typedef t' {
t' == sd.field_desc.fd_type field /\
td' == sd.field_desc.fd_typedef field
})
: STT (ref td')
(pts_to r v)
(fun r' -> has_struct_field r field (coerce_eq () r') `star` pts_to r (set sd (Ghost.reveal v) field (unknown (sd.field_desc.fd_typedef field))) `star` pts_to #_ #(sd.field_desc.fd_typedef field) (coerce_eq () r') (sd.get (Ghost.reveal v) field))
inline_for_extraction [@@noextract_to "krml"] // primitive
let struct_field
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STT (ref #(norm norm_field_steps (sd.field_desc.fd_type field)) (sd.field_desc.fd_typedef field))
(pts_to r v) | false | false | Steel.ST.C.Types.UserStruct.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val struct_field
(#t: Type)
(#sd: struct_def t)
(#v: Ghost.erased t)
(r: ref (struct_typedef sd))
(field: field_t sd.fields)
: STT
(ref #(norm norm_field_steps (sd.field_desc.fd_type field)) (sd.field_desc.fd_typedef field))
(pts_to r v)
(fun r' ->
((pts_to r (set sd v field (unknown (sd.field_desc.fd_typedef field))))
`star`
(pts_to #(norm norm_field_steps (sd.field_desc.fd_type field)) r' (sd.get v field)))
`star`
(has_struct_field r field r')) | [] | Steel.ST.C.Types.UserStruct.struct_field | {
"file_name": "lib/steel/c/Steel.ST.C.Types.UserStruct.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
r: Steel.ST.C.Types.Base.ref (Steel.ST.C.Types.UserStruct.struct_typedef sd) ->
field: Steel.ST.C.Types.UserStruct.field_t (Mkstruct_def?.fields sd)
-> Steel.ST.Effect.STT
(Steel.ST.C.Types.Base.ref (Mkfield_description_gen_t?.fd_typedef (Mkstruct_def?.field_desc sd)
field)) | {
"end_col": 36,
"end_line": 180,
"start_col": 2,
"start_line": 176
} |
Prims.Tot | val null (#a: Type u#a) (#pcm: pcm a) : ref a pcm | [
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null | val null (#a: Type u#a) (#pcm: pcm a) : ref a pcm
let null (#a: Type u#a) (#pcm: pcm a) : ref a pcm = | false | null | false | core_ref_null | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Steel.Heap.core_ref_null",
"Steel.Heap.ref"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val null (#a: Type u#a) (#pcm: pcm a) : ref a pcm | [] | Steel.Heap.null | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Steel.Heap.ref a pcm | {
"end_col": 63,
"end_line": 53,
"start_col": 50,
"start_line": 53
} |
Prims.Tot | val ref (a: Type u#a) (pcm: pcm a) : Type u#0 | [
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref | val ref (a: Type u#a) (pcm: pcm a) : Type u#0
let ref (a: Type u#a) (pcm: pcm a) : Type u#0 = | false | null | false | core_ref | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Steel.Heap.core_ref"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ref (a: Type u#a) (pcm: pcm a) : Type u#0 | [] | Steel.Heap.ref | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | a: Type -> pcm: FStar.PCM.pcm a -> Type0 | {
"end_col": 54,
"end_line": 47,
"start_col": 46,
"start_line": 47
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m | let equiv (p1 p2: slprop) = | false | null | false | forall m. interp p1 m <==> interp p2 m | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Prims.l_Forall",
"Steel.Heap.heap",
"Prims.l_iff",
"Steel.Heap.interp",
"Prims.logical"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*) | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equiv : p1: Steel.Heap.slprop -> p2: Steel.Heap.slprop -> Prims.logical | [] | Steel.Heap.equiv | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p1: Steel.Heap.slprop -> p2: Steel.Heap.slprop -> Prims.logical | {
"end_col": 40,
"end_line": 158,
"start_col": 2,
"start_line": 158
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x)) | let pre_action (fp: slprop u#a) (a: Type u#b) (fp': (a -> slprop u#a)) = | false | null | false | full_hheap fp -> (x: a & full_hheap (fp' x)) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.full_hheap",
"Prims.dtuple2"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*) | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pre_action : fp: Steel.Heap.slprop -> a: Type -> fp': (_: a -> Steel.Heap.slprop) -> Type | [] | Steel.Heap.pre_action | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | fp: Steel.Heap.slprop -> a: Type -> fp': (_: a -> Steel.Heap.slprop) -> Type | {
"end_col": 45,
"end_line": 406,
"start_col": 2,
"start_line": 406
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r) | let ptr (#a: Type u#a) (#pcm: pcm a) (r: ref a pcm) = | false | null | false | h_exists (pts_to r) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Steel.Heap.ref",
"Steel.Heap.h_exists",
"Steel.Heap.pts_to",
"Steel.Heap.slprop"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*) | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ptr : r: Steel.Heap.ref a pcm -> Steel.Heap.slprop | [] | Steel.Heap.ptr | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | r: Steel.Heap.ref a pcm -> Steel.Heap.slprop | {
"end_col": 23,
"end_line": 241,
"start_col": 4,
"start_line": 241
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
} | let hprop (fp: slprop u#a) = | false | null | false | q:
(heap u#a -> prop)
{forall (h0: heap{interp fp h0}) (h1: heap{disjoint h0 h1}). q h0 <==> q (join h0 h1)} | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.heap",
"Prims.prop",
"Prims.l_Forall",
"Steel.Heap.interp",
"Steel.Heap.disjoint",
"Prims.l_iff",
"Steel.Heap.join"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*) | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hprop : fp: Steel.Heap.slprop -> Type | [] | Steel.Heap.hprop | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | fp: Steel.Heap.slprop -> Type | {
"end_col": 3,
"end_line": 148,
"start_col": 2,
"start_line": 145
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p } | let a_heap_prop = | false | null | false | p: (heap -> prop){heap_prop_is_affine p} | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.heap",
"Prims.prop",
"Steel.Heap.heap_prop_is_affine"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val a_heap_prop : Type | [] | Steel.Heap.a_heap_prop | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Type | {
"end_col": 60,
"end_line": 117,
"start_col": 18,
"start_line": 117
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1) | let action_related_heaps (frame: slprop) (h0 h1: full_heap) = | false | null | false | heap_evolves h0 h1 /\ (forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp: hprop frame). hp h0 == hp h1) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.full_heap",
"Prims.l_and",
"Steel.Heap.heap_evolves",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Steel.Heap.free_above_addr",
"Steel.Heap.hprop",
"Prims.eq2",
"Prims.prop",
"Prims.logical"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val action_related_heaps : frame: Steel.Heap.slprop -> h0: Steel.Heap.full_heap -> h1: Steel.Heap.full_heap -> Prims.logical | [] | Steel.Heap.action_related_heaps | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | frame: Steel.Heap.slprop -> h0: Steel.Heap.full_heap -> h1: Steel.Heap.full_heap -> Prims.logical | {
"end_col": 43,
"end_line": 418,
"start_col": 2,
"start_line": 416
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hheap (p:slprop u#a) = m:heap u#a {interp p m} | let hheap (p: slprop u#a) = | false | null | false | m: heap u#a {interp p m} | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.heap",
"Steel.Heap.interp"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
} | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hheap : p: Steel.Heap.slprop -> Type | [] | Steel.Heap.hheap | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: Steel.Heap.slprop -> Type | {
"end_col": 50,
"end_line": 151,
"start_col": 27,
"start_line": 151
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let full_heap = h:heap { full_heap_pred h } | let full_heap = | false | null | false | h: heap{full_heap_pred h} | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.heap",
"Steel.Heap.full_heap_pred"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val full_heap : Type | [] | Steel.Heap.full_heap | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Type | {
"end_col": 43,
"end_line": 379,
"start_col": 16,
"start_line": 379
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let action (fp:slprop u#b) (a:Type u#a) (fp':a -> slprop u#b) =
f:pre_action fp a fp'{ is_frame_preserving f } | let action (fp: slprop u#b) (a: Type u#a) (fp': (a -> slprop u#b)) = | false | null | false | f: pre_action fp a fp' {is_frame_preserving f} | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.pre_action",
"Steel.Heap.is_frame_preserving"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1)
(** Every action is frame-preserving *) | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val action : fp: Steel.Heap.slprop -> a: Type -> fp': (_: a -> Steel.Heap.slprop) -> Type | [] | Steel.Heap.action | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | fp: Steel.Heap.slprop -> a: Type -> fp': (_: a -> Steel.Heap.slprop) -> Type | {
"end_col": 48,
"end_line": 441,
"start_col": 2,
"start_line": 441
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let stronger (p q:slprop) =
forall h. interp p h ==> interp q h | let stronger (p q: slprop) = | false | null | false | forall h. interp p h ==> interp q h | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Prims.l_Forall",
"Steel.Heap.heap",
"Prims.l_imp",
"Steel.Heap.interp",
"Prims.logical"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *) | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val stronger : p: Steel.Heap.slprop -> q: Steel.Heap.slprop -> Prims.logical | [] | Steel.Heap.stronger | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: Steel.Heap.slprop -> q: Steel.Heap.slprop -> Prims.logical | {
"end_col": 37,
"end_line": 363,
"start_col": 2,
"start_line": 363
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let full_hheap fp = h:hheap fp { full_heap_pred h } | let full_hheap fp = | false | null | false | h: hheap fp {full_heap_pred h} | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.hheap",
"Steel.Heap.full_heap_pred"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h } | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val full_hheap : fp: Steel.Heap.slprop -> Type | [] | Steel.Heap.full_hheap | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | fp: Steel.Heap.slprop -> Type | {
"end_col": 51,
"end_line": 381,
"start_col": 20,
"start_line": 381
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let frame_related_heaps (h0 h1:full_heap) (fp0 fp1 frame:slprop) (allocates:bool) =
interp (fp0 `star` frame) h0 ==>
interp (fp1 `star` frame) h1 /\
heap_evolves h0 h1 /\
(forall (hp:hprop frame). hp h0 == hp h1) /\
(not allocates ==> (forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr)) | let frame_related_heaps (h0 h1: full_heap) (fp0 fp1 frame: slprop) (allocates: bool) = | false | null | false | interp (fp0 `star` frame) h0 ==>
interp (fp1 `star` frame) h1 /\ heap_evolves h0 h1 /\ (forall (hp: hprop frame). hp h0 == hp h1) /\
(not allocates ==> (forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr)) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.full_heap",
"Steel.Heap.slprop",
"Prims.bool",
"Prims.l_imp",
"Steel.Heap.interp",
"Steel.Heap.star",
"Prims.l_and",
"Steel.Heap.heap_evolves",
"Prims.l_Forall",
"Steel.Heap.hprop",
"Prims.eq2",
"Prims.prop",
"Prims.b2t",
"Prims.op_Negation",
"Prims.nat",
"Steel.Heap.free_above_addr",
"Prims.logical"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1)
(** Every action is frame-preserving *)
let action (fp:slprop u#b) (a:Type u#a) (fp':a -> slprop u#b) =
f:pre_action fp a fp'{ is_frame_preserving f }
(**
We define a second, but equivalent, type for actions that
instead of quantifying over the frame, are explicitly passed a frame
from outside
This notion of action is useful for defining actions like witness_h_exists, see comments at the declaration of witness_h_exists
*)
let action_with_frame
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
h0:full_hheap (fp `star` frame) ->
Pure (x:a & full_hheap (fp' x `star` frame))
(requires True)
(ensures fun (| x, h1 |) -> action_related_heaps frame h0 h1)
(**
Two heaps [h0] and [h1] are frame-related if you can get from [h0] to [h1] with a
frame-preserving update.
*) | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val frame_related_heaps : h0: Steel.Heap.full_heap ->
h1: Steel.Heap.full_heap ->
fp0: Steel.Heap.slprop ->
fp1: Steel.Heap.slprop ->
frame: Steel.Heap.slprop ->
allocates: Prims.bool
-> Prims.logical | [] | Steel.Heap.frame_related_heaps | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
h0: Steel.Heap.full_heap ->
h1: Steel.Heap.full_heap ->
fp0: Steel.Heap.slprop ->
fp1: Steel.Heap.slprop ->
frame: Steel.Heap.slprop ->
allocates: Prims.bool
-> Prims.logical | {
"end_col": 89,
"end_line": 469,
"start_col": 2,
"start_line": 465
} |
|
Prims.Tot | val is_frame_monotonic (#a: _) (p: (a -> slprop)) : prop | [
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_frame_monotonic #a (p : a -> slprop) : prop =
forall x y m frame. interp (p x `star` frame) m /\ interp (p y) m ==> interp (p y `star` frame) m | val is_frame_monotonic (#a: _) (p: (a -> slprop)) : prop
let is_frame_monotonic #a (p: (a -> slprop)) : prop = | false | null | false | forall x y m frame.
interp ((p x) `star` frame) m /\ interp (p y) m ==> interp ((p y) `star` frame) m | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Prims.l_Forall",
"Steel.Heap.heap",
"Prims.l_imp",
"Prims.l_and",
"Steel.Heap.interp",
"Steel.Heap.star",
"Prims.prop"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1)
(** Every action is frame-preserving *)
let action (fp:slprop u#b) (a:Type u#a) (fp':a -> slprop u#b) =
f:pre_action fp a fp'{ is_frame_preserving f }
(**
We define a second, but equivalent, type for actions that
instead of quantifying over the frame, are explicitly passed a frame
from outside
This notion of action is useful for defining actions like witness_h_exists, see comments at the declaration of witness_h_exists
*)
let action_with_frame
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
h0:full_hheap (fp `star` frame) ->
Pure (x:a & full_hheap (fp' x `star` frame))
(requires True)
(ensures fun (| x, h1 |) -> action_related_heaps frame h0 h1)
(**
Two heaps [h0] and [h1] are frame-related if you can get from [h0] to [h1] with a
frame-preserving update.
*)
let frame_related_heaps (h0 h1:full_heap) (fp0 fp1 frame:slprop) (allocates:bool) =
interp (fp0 `star` frame) h0 ==>
interp (fp1 `star` frame) h1 /\
heap_evolves h0 h1 /\
(forall (hp:hprop frame). hp h0 == hp h1) /\
(not allocates ==> (forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr))
(**
A frame-preserving action applied on [h0] produces an [h1] such that [h0] and [h1] are
frame-related
*)
let action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
($f:action fp a fp')
(frame:slprop) (h0:full_hheap (fp `star` frame))
: Lemma (
affine_star fp frame h0;
let (| x, h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false
)
=
affine_star fp frame h0;
emp_unit fp
(** [sel] is a ghost read of the value contained in a heap reference *)
val sel (#a:Type u#h) (#pcm:pcm a) (r:ref a pcm) (m:full_hheap (ptr r)) : a
(** [sel_v] is a ghost read of the value contained in a heap reference *)
val sel_v (#a:Type u#h) (#pcm:pcm a) (r:ref a pcm) (v:erased a) (m:full_hheap (pts_to r v))
: v':a{ compatible pcm v v' /\
pcm.refine v' /\
interp (ptr r) m /\
v' == sel r m }
(** [sel] respect [pts_to] *)
val sel_lemma (#a:_) (#pcm:_) (r:ref a pcm) (m:full_hheap (ptr r))
: Lemma (interp (pts_to r (sel r m)) m)
let witnessed_ref (#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(fact:a -> prop)
(h:full_heap)
= interp (ptr r) h /\
fact (sel r h)
val witnessed_ref_stability (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:a -> prop)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) heap_evolves)
(**
The action variant of [sel], returning the "true" value inside the heap. This "true" value
can be different of the [pts_to] value you assumed at the beginning, because of the PCM structure
*)
val sel_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:erased a)
: action (pts_to r v0) (v:a{compatible pcm v0 v}) (fun _ -> pts_to r v0)
(**
A version of select that incorporates a ghost update of local
knowledge of a ref cell based on the value that was read
*)
val select_refine (#a:_) (#p:_)
(r:ref a p)
(x:erased a)
(f:(v:a{compatible p x v}
-> GTot (y:a{compatible p y v /\
FStar.PCM.frame_compatible p x v y})))
: action (pts_to r x)
(v:a{compatible p x v /\ p.refine v})
(fun v -> pts_to r (f v))
(** Updating a ref cell for a user-defined PCM *)
val upd_gen_action (#a:Type) (#p:pcm a) (r:ref a p) (x y:Ghost.erased a)
(f:FStar.PCM.frame_preserving_upd p x y)
: action (pts_to r x)
unit
(fun _ -> pts_to r y)
(**
The update action needs you to prove that the mutation from [v0] to [v1] is frame-preserving
with respect to the individual PCM governing the reference [r]. See [FStar.PCM.frame_preserving]
*)
val upd_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:a {FStar.PCM.frame_preserving pcm v0 v1 /\ pcm.refine v1})
: action (pts_to r v0) unit (fun _ -> pts_to r v1)
(** Deallocating a reference, by actually replacing its value by the unit of the PCM *)
val free_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a {exclusive pcm v0 /\ pcm.refine pcm.FStar.PCM.p.one})
: action (pts_to r v0) unit (fun _ -> pts_to r pcm.FStar.PCM.p.one)
(** Splitting a permission on a composite resource into two separate permissions *)
val split_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a{composable pcm v0 v1})
: action (pts_to r (v0 `op pcm` v1)) unit (fun _ -> pts_to r v0 `star` pts_to r v1)
(** Combining separate permissions into a single composite permission *)
val gather_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a)
: action (pts_to r v0 `star` pts_to r v1) (_:unit{composable pcm v0 v1}) (fun _ -> pts_to r (op pcm v0 v1))
(** Allocating is a pseudo action here, the context needs to provide a fresh address *)
val extend
(#a:Type u#a)
(#pcm:pcm a)
(x:a{compatible pcm x x /\ pcm.refine x})
(addr:nat)
(h:full_heap{h `free_above_addr` addr})
: (
r:ref a pcm
& h':full_heap{
(forall (frame: slprop u#a).
frame_related_heaps h h' emp (pts_to r x) frame (true)) /\
h' `free_above_addr` (addr + 1) /\
heap_evolves h h'
}
)
val frame (#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(frame:slprop)
($f:action pre a post)
: action (pre `star` frame) a (fun x -> post x `star` frame)
val change_slprop (p q:slprop)
(proof: (h:heap -> Lemma (requires interp p h) (ensures interp q h)))
: action p unit (fun _ -> q)
module U = FStar.Universe
val id_elim_star (p q:slprop) (h:heap)
: Pure (erased heap & erased heap )
(requires (interp (p `star` q) h))
(ensures (fun (hl, hr) -> disjoint hl hr
/\ h == join hl hr
/\ interp p hl
/\ interp q hr))
val id_elim_exists (#a:Type) (p : a -> slprop) (h:heap)
: Pure (erased a)
(requires (interp (h_exists p) h))
(ensures (fun x -> interp (p x) h)) | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_frame_monotonic (#a: _) (p: (a -> slprop)) : prop | [] | Steel.Heap.is_frame_monotonic | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: (_: a -> Steel.Heap.slprop) -> Prims.prop | {
"end_col": 99,
"end_line": 635,
"start_col": 2,
"start_line": 635
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_witness_invariant #a (p : a -> slprop) =
forall x y m. interp (p x) m /\ interp (p y) m ==> x == y | let is_witness_invariant #a (p: (a -> slprop)) = | false | null | false | forall x y m. interp (p x) m /\ interp (p y) m ==> x == y | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Prims.l_Forall",
"Steel.Heap.heap",
"Prims.l_imp",
"Prims.l_and",
"Steel.Heap.interp",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1)
(** Every action is frame-preserving *)
let action (fp:slprop u#b) (a:Type u#a) (fp':a -> slprop u#b) =
f:pre_action fp a fp'{ is_frame_preserving f }
(**
We define a second, but equivalent, type for actions that
instead of quantifying over the frame, are explicitly passed a frame
from outside
This notion of action is useful for defining actions like witness_h_exists, see comments at the declaration of witness_h_exists
*)
let action_with_frame
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
h0:full_hheap (fp `star` frame) ->
Pure (x:a & full_hheap (fp' x `star` frame))
(requires True)
(ensures fun (| x, h1 |) -> action_related_heaps frame h0 h1)
(**
Two heaps [h0] and [h1] are frame-related if you can get from [h0] to [h1] with a
frame-preserving update.
*)
let frame_related_heaps (h0 h1:full_heap) (fp0 fp1 frame:slprop) (allocates:bool) =
interp (fp0 `star` frame) h0 ==>
interp (fp1 `star` frame) h1 /\
heap_evolves h0 h1 /\
(forall (hp:hprop frame). hp h0 == hp h1) /\
(not allocates ==> (forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr))
(**
A frame-preserving action applied on [h0] produces an [h1] such that [h0] and [h1] are
frame-related
*)
let action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
($f:action fp a fp')
(frame:slprop) (h0:full_hheap (fp `star` frame))
: Lemma (
affine_star fp frame h0;
let (| x, h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false
)
=
affine_star fp frame h0;
emp_unit fp
(** [sel] is a ghost read of the value contained in a heap reference *)
val sel (#a:Type u#h) (#pcm:pcm a) (r:ref a pcm) (m:full_hheap (ptr r)) : a
(** [sel_v] is a ghost read of the value contained in a heap reference *)
val sel_v (#a:Type u#h) (#pcm:pcm a) (r:ref a pcm) (v:erased a) (m:full_hheap (pts_to r v))
: v':a{ compatible pcm v v' /\
pcm.refine v' /\
interp (ptr r) m /\
v' == sel r m }
(** [sel] respect [pts_to] *)
val sel_lemma (#a:_) (#pcm:_) (r:ref a pcm) (m:full_hheap (ptr r))
: Lemma (interp (pts_to r (sel r m)) m)
let witnessed_ref (#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(fact:a -> prop)
(h:full_heap)
= interp (ptr r) h /\
fact (sel r h)
val witnessed_ref_stability (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:a -> prop)
: Lemma
(requires FStar.Preorder.stable fact (Steel.Preorder.preorder_of_pcm pcm))
(ensures FStar.Preorder.stable (witnessed_ref r fact) heap_evolves)
(**
The action variant of [sel], returning the "true" value inside the heap. This "true" value
can be different of the [pts_to] value you assumed at the beginning, because of the PCM structure
*)
val sel_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:erased a)
: action (pts_to r v0) (v:a{compatible pcm v0 v}) (fun _ -> pts_to r v0)
(**
A version of select that incorporates a ghost update of local
knowledge of a ref cell based on the value that was read
*)
val select_refine (#a:_) (#p:_)
(r:ref a p)
(x:erased a)
(f:(v:a{compatible p x v}
-> GTot (y:a{compatible p y v /\
FStar.PCM.frame_compatible p x v y})))
: action (pts_to r x)
(v:a{compatible p x v /\ p.refine v})
(fun v -> pts_to r (f v))
(** Updating a ref cell for a user-defined PCM *)
val upd_gen_action (#a:Type) (#p:pcm a) (r:ref a p) (x y:Ghost.erased a)
(f:FStar.PCM.frame_preserving_upd p x y)
: action (pts_to r x)
unit
(fun _ -> pts_to r y)
(**
The update action needs you to prove that the mutation from [v0] to [v1] is frame-preserving
with respect to the individual PCM governing the reference [r]. See [FStar.PCM.frame_preserving]
*)
val upd_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:a {FStar.PCM.frame_preserving pcm v0 v1 /\ pcm.refine v1})
: action (pts_to r v0) unit (fun _ -> pts_to r v1)
(** Deallocating a reference, by actually replacing its value by the unit of the PCM *)
val free_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a {exclusive pcm v0 /\ pcm.refine pcm.FStar.PCM.p.one})
: action (pts_to r v0) unit (fun _ -> pts_to r pcm.FStar.PCM.p.one)
(** Splitting a permission on a composite resource into two separate permissions *)
val split_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a{composable pcm v0 v1})
: action (pts_to r (v0 `op pcm` v1)) unit (fun _ -> pts_to r v0 `star` pts_to r v1)
(** Combining separate permissions into a single composite permission *)
val gather_action
(#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(v0:FStar.Ghost.erased a)
(v1:FStar.Ghost.erased a)
: action (pts_to r v0 `star` pts_to r v1) (_:unit{composable pcm v0 v1}) (fun _ -> pts_to r (op pcm v0 v1))
(** Allocating is a pseudo action here, the context needs to provide a fresh address *)
val extend
(#a:Type u#a)
(#pcm:pcm a)
(x:a{compatible pcm x x /\ pcm.refine x})
(addr:nat)
(h:full_heap{h `free_above_addr` addr})
: (
r:ref a pcm
& h':full_heap{
(forall (frame: slprop u#a).
frame_related_heaps h h' emp (pts_to r x) frame (true)) /\
h' `free_above_addr` (addr + 1) /\
heap_evolves h h'
}
)
val frame (#a:Type)
(#pre:slprop)
(#post:a -> slprop)
(frame:slprop)
($f:action pre a post)
: action (pre `star` frame) a (fun x -> post x `star` frame)
val change_slprop (p q:slprop)
(proof: (h:heap -> Lemma (requires interp p h) (ensures interp q h)))
: action p unit (fun _ -> q)
module U = FStar.Universe
val id_elim_star (p q:slprop) (h:heap)
: Pure (erased heap & erased heap )
(requires (interp (p `star` q) h))
(ensures (fun (hl, hr) -> disjoint hl hr
/\ h == join hl hr
/\ interp p hl
/\ interp q hr))
val id_elim_exists (#a:Type) (p : a -> slprop) (h:heap)
: Pure (erased a)
(requires (interp (h_exists p) h))
(ensures (fun x -> interp (p x) h))
let is_frame_monotonic #a (p : a -> slprop) : prop =
forall x y m frame. interp (p x `star` frame) m /\ interp (p y) m ==> interp (p y `star` frame) m | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_witness_invariant : p: (_: a -> Steel.Heap.slprop) -> Prims.logical | [] | Steel.Heap.is_witness_invariant | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: (_: a -> Steel.Heap.slprop) -> Prims.logical | {
"end_col": 59,
"end_line": 638,
"start_col": 2,
"start_line": 638
} |
|
Prims.Tot | val heap_prop_is_affine (p: (heap u#a -> prop)) : prop | [
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1) | val heap_prop_is_affine (p: (heap u#a -> prop)) : prop
let heap_prop_is_affine (p: (heap u#a -> prop)) : prop = | false | null | false | forall (h0: heap u#a) (h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.heap",
"Prims.prop",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Steel.Heap.disjoint",
"Steel.Heap.join"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*) | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val heap_prop_is_affine (p: (heap u#a -> prop)) : prop | [] | Steel.Heap.heap_prop_is_affine | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: (_: Steel.Heap.heap -> Prims.prop) -> Prims.prop | {
"end_col": 69,
"end_line": 112,
"start_col": 2,
"start_line": 112
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let action_with_frame
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
h0:full_hheap (fp `star` frame) ->
Pure (x:a & full_hheap (fp' x `star` frame))
(requires True)
(ensures fun (| x, h1 |) -> action_related_heaps frame h0 h1) | let action_with_frame (fp: slprop u#a) (a: Type u#b) (fp': (a -> slprop u#a)) = | false | null | false | frame: slprop u#a -> h0: full_hheap (fp `star` frame)
-> Pure (x: a & full_hheap ((fp' x) `star` frame))
(requires True)
(ensures fun (| x , h1 |) -> action_related_heaps frame h0 h1) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.full_hheap",
"Steel.Heap.star",
"Prims.dtuple2",
"Prims.l_True",
"Steel.Heap.action_related_heaps"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1)
(** Every action is frame-preserving *)
let action (fp:slprop u#b) (a:Type u#a) (fp':a -> slprop u#b) =
f:pre_action fp a fp'{ is_frame_preserving f }
(**
We define a second, but equivalent, type for actions that
instead of quantifying over the frame, are explicitly passed a frame
from outside
This notion of action is useful for defining actions like witness_h_exists, see comments at the declaration of witness_h_exists
*)
let action_with_frame
(fp:slprop u#a)
(a:Type u#b) | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val action_with_frame : fp: Steel.Heap.slprop -> a: Type -> fp': (_: a -> Steel.Heap.slprop) -> Type | [] | Steel.Heap.action_with_frame | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | fp: Steel.Heap.slprop -> a: Type -> fp': (_: a -> Steel.Heap.slprop) -> Type | {
"end_col": 67,
"end_line": 458,
"start_col": 4,
"start_line": 454
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let witnessed_ref (#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(fact:a -> prop)
(h:full_heap)
= interp (ptr r) h /\
fact (sel r h) | let witnessed_ref (#a: Type u#a) (#pcm: pcm a) (r: ref a pcm) (fact: (a -> prop)) (h: full_heap) = | false | null | false | interp (ptr r) h /\ fact (sel r h) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Steel.Heap.ref",
"Prims.prop",
"Steel.Heap.full_heap",
"Prims.l_and",
"Steel.Heap.interp",
"Steel.Heap.ptr",
"Steel.Heap.sel",
"Prims.logical"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1)
(** Every action is frame-preserving *)
let action (fp:slprop u#b) (a:Type u#a) (fp':a -> slprop u#b) =
f:pre_action fp a fp'{ is_frame_preserving f }
(**
We define a second, but equivalent, type for actions that
instead of quantifying over the frame, are explicitly passed a frame
from outside
This notion of action is useful for defining actions like witness_h_exists, see comments at the declaration of witness_h_exists
*)
let action_with_frame
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
h0:full_hheap (fp `star` frame) ->
Pure (x:a & full_hheap (fp' x `star` frame))
(requires True)
(ensures fun (| x, h1 |) -> action_related_heaps frame h0 h1)
(**
Two heaps [h0] and [h1] are frame-related if you can get from [h0] to [h1] with a
frame-preserving update.
*)
let frame_related_heaps (h0 h1:full_heap) (fp0 fp1 frame:slprop) (allocates:bool) =
interp (fp0 `star` frame) h0 ==>
interp (fp1 `star` frame) h1 /\
heap_evolves h0 h1 /\
(forall (hp:hprop frame). hp h0 == hp h1) /\
(not allocates ==> (forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr))
(**
A frame-preserving action applied on [h0] produces an [h1] such that [h0] and [h1] are
frame-related
*)
let action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
($f:action fp a fp')
(frame:slprop) (h0:full_hheap (fp `star` frame))
: Lemma (
affine_star fp frame h0;
let (| x, h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false
)
=
affine_star fp frame h0;
emp_unit fp
(** [sel] is a ghost read of the value contained in a heap reference *)
val sel (#a:Type u#h) (#pcm:pcm a) (r:ref a pcm) (m:full_hheap (ptr r)) : a
(** [sel_v] is a ghost read of the value contained in a heap reference *)
val sel_v (#a:Type u#h) (#pcm:pcm a) (r:ref a pcm) (v:erased a) (m:full_hheap (pts_to r v))
: v':a{ compatible pcm v v' /\
pcm.refine v' /\
interp (ptr r) m /\
v' == sel r m }
(** [sel] respect [pts_to] *)
val sel_lemma (#a:_) (#pcm:_) (r:ref a pcm) (m:full_hheap (ptr r))
: Lemma (interp (pts_to r (sel r m)) m)
let witnessed_ref (#a:Type u#a)
(#pcm:pcm a)
(r:ref a pcm)
(fact:a -> prop) | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val witnessed_ref : r: Steel.Heap.ref a pcm -> fact: (_: a -> Prims.prop) -> h: Steel.Heap.full_heap -> Prims.logical | [] | Steel.Heap.witnessed_ref | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | r: Steel.Heap.ref a pcm -> fact: (_: a -> Prims.prop) -> h: Steel.Heap.full_heap -> Prims.logical | {
"end_col": 18,
"end_line": 511,
"start_col": 4,
"start_line": 510
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1) | let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': (a -> slprop u#b))
(f: pre_action fp a fp')
= | false | null | false | forall (frame: slprop u#b) (h0: full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x , h1 |) = f h0 in
interp ((fp' x) `star` frame) h1 /\ action_related_heaps frame h0 h1) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Steel.Heap.slprop",
"Steel.Heap.pre_action",
"Prims.l_Forall",
"Steel.Heap.full_hheap",
"Steel.Heap.star",
"Prims.l_and",
"Steel.Heap.interp",
"Steel.Heap.action_related_heaps",
"Prims.dtuple2",
"Prims.unit",
"Steel.Heap.affine_star",
"Prims.logical"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp') | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_frame_preserving : f: Steel.Heap.pre_action fp a fp' -> Prims.logical | [] | Steel.Heap.is_frame_preserving | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | f: Steel.Heap.pre_action fp a fp' -> Prims.logical | {
"end_col": 39,
"end_line": 437,
"start_col": 2,
"start_line": 433
} |
|
Prims.Tot | val is_null (#a: Type u#a) (#pcm: pcm a) (r: ref a pcm) : (b: bool{b <==> r == null}) | [
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r | val is_null (#a: Type u#a) (#pcm: pcm a) (r: ref a pcm) : (b: bool{b <==> r == null})
let is_null (#a: Type u#a) (#pcm: pcm a) (r: ref a pcm) : (b: bool{b <==> r == null}) = | false | null | false | core_ref_is_null r | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"FStar.PCM.pcm",
"Steel.Heap.ref",
"Steel.Heap.core_ref_is_null",
"Prims.bool",
"Prims.l_iff",
"Prims.b2t",
"Prims.eq2",
"Steel.Heap.null"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null] | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_null (#a: Type u#a) (#pcm: pcm a) (r: ref a pcm) : (b: bool{b <==> r == null}) | [] | Steel.Heap.is_null | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | r: Steel.Heap.ref a pcm -> b: Prims.bool{b <==> r == Steel.Heap.null} | {
"end_col": 102,
"end_line": 61,
"start_col": 84,
"start_line": 61
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pure (p:prop) = h_refine emp (fun _ -> p) | let pure (p: prop) = | false | null | false | h_refine emp (fun _ -> p) | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"total"
] | [
"Prims.prop",
"Steel.Heap.h_refine",
"Steel.Heap.emp",
"Steel.Heap.heap",
"Steel.Heap.slprop"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world | false | true | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pure : p: Prims.prop -> Steel.Heap.slprop | [] | Steel.Heap.pure | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: Prims.prop -> Steel.Heap.slprop | {
"end_col": 45,
"end_line": 344,
"start_col": 20,
"start_line": 344
} |
|
FStar.Pervasives.Lemma | val action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': (a -> slprop u#b))
($f: action fp a fp')
(frame: slprop)
(h0: full_hheap (fp `star` frame))
: Lemma
(affine_star fp frame h0;
let (| x , h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false) | [
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "PP"
},
{
"abbrev": true,
"full_module": "FStar.WellFounded",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "Frac"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
($f:action fp a fp')
(frame:slprop) (h0:full_hheap (fp `star` frame))
: Lemma (
affine_star fp frame h0;
let (| x, h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false
)
=
affine_star fp frame h0;
emp_unit fp | val action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': (a -> slprop u#b))
($f: action fp a fp')
(frame: slprop)
(h0: full_hheap (fp `star` frame))
: Lemma
(affine_star fp frame h0;
let (| x , h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false)
let action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': (a -> slprop u#b))
($f: action fp a fp')
(frame: slprop)
(h0: full_hheap (fp `star` frame))
: Lemma
(affine_star fp frame h0;
let (| x , h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false) = | false | null | true | affine_star fp frame h0;
emp_unit fp | {
"checked_file": "Steel.Heap.fsti.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"prims.fst.checked",
"FStar.Universe.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Heap.fsti"
} | [
"lemma"
] | [
"Steel.Heap.slprop",
"Steel.Heap.action",
"Steel.Heap.full_hheap",
"Steel.Heap.star",
"Steel.Heap.emp_unit",
"Prims.unit",
"Steel.Heap.affine_star",
"Prims.l_True",
"Prims.squash",
"Steel.Heap.frame_related_heaps",
"Prims.dtuple2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Heap
open FStar.Ghost
open FStar.PCM
/// This module defines the behavior of a structured heap where each memory cell is governed by
/// a partial commutative monoid. This PCM structure is reused for the entire heap as it is possible
/// to talk about disjoint heaps and join them together.
///
/// In a sense, a heap here can be seen as a partial heap, containing a partial view of the state of
/// the memory. Combining disjoint heaps is then equivalent to conciling two partial views of the
/// memory together. This is our base for separation logic.
///
/// The heap is instrumented with affine heap predicates, heap predicates that don't change if you
/// augment the heap on which they're valid by joining another partial heap. These affine heap
/// predicates are the terms of our separation logic.
///
/// Finally, the module defines actions for heap, which are frame-preserving heap updates.
(**** The base : partial heaps *)
(**
Abstract type of heaps. Can conceptually be thought of as a map from addresses to
contents of memory cells.
*)
val heap : Type u#(a + 1)
(** A [core_ref] is a key into the [heap] or [null] *)
val core_ref : Type u#0
(** We index a [core_ref] by the type of its heap contents
and a [pcm] governing it, for ease of type inference *)
let ref (a:Type u#a) (pcm:pcm a) : Type u#0 = core_ref
val core_ref_null : core_ref
(** [null] is a specific reference, that is not associated to any value
*)
let null (#a:Type u#a) (#pcm:pcm a) : ref a pcm = core_ref_null
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
val core_ref_is_null (r:core_ref) : b:bool { b <==> r == core_ref_null }
(** Checking whether [r] is the null pointer is decidable through [is_null]
*)
let is_null (#a:Type u#a) (#pcm:pcm a) (r:ref a pcm) : (b:bool{b <==> r == null}) = core_ref_is_null r
(** The predicate describing non-overlapping heaps *)
val disjoint (h0 h1:heap u#h) : prop
(** Disjointness is symmetric *)
val disjoint_sym (h0 h1:heap u#h)
: Lemma (disjoint h0 h1 <==> disjoint h1 h0)
[SMTPat (disjoint h0 h1)]
(** Disjoint heaps can be combined into a bigger heap*)
val join (h0:heap u#h) (h1:heap u#h{disjoint h0 h1}) : heap u#h
(** The join operation is commutative *)
val join_commutative (h0 h1:heap)
: Lemma
(requires
disjoint h0 h1)
(ensures
(disjoint h1 h0 /\
join h0 h1 == join h1 h0))
(** Disjointness distributes over join *)
val disjoint_join (h0 h1 h2:heap)
: Lemma (disjoint h1 h2 /\
disjoint h0 (join h1 h2) ==>
disjoint h0 h1 /\
disjoint h0 h2 /\
disjoint (join h0 h1) h2 /\
disjoint (join h0 h2) h1)
(** Join is associative *)
val join_associative (h0 h1 h2:heap)
: Lemma
(requires
disjoint h1 h2 /\
disjoint h0 (join h1 h2))
(ensures
(disjoint h0 h1 /\
disjoint (join h0 h1) h2 /\
join h0 (join h1 h2) == join (join h0 h1) h2))
(**** Separation logic over heaps *)
(**
An affine heap proposition or affine heap predicate is a proposition whose validity does not
change if the heap on which it is valid grows. In other terms, it is a proposition that is
compatible with the disjoint/join operations for partial heaps. These affine heap predicates
are the base of our separation logic.
*)
let heap_prop_is_affine (p:heap u#a -> prop) : prop =
forall (h0 h1: heap u#a). p h0 /\ disjoint h0 h1 ==> p (join h0 h1)
(**
An affine heap proposition
*)
let a_heap_prop = p:(heap -> prop) { heap_prop_is_affine p }
(**
[slprop] is an abstract "separation logic proposition"
The [erasable] attribute says that it is computationally irrelevant
and will be extracted to [()]
*)
[@@erasable]
val slprop : Type u#(a + 1)
(**
[slprop]s can be "interpreted" over any heap, yielding a [prop]
*)
val interp (p:slprop u#a) (m:heap u#a) : prop
(**
Promoting an affine heap proposition to an slprop
*)
val as_slprop (f:a_heap_prop) : p:slprop{forall h.interp p h <==> f h}
(**
An [hprop] is heap predicate indexed by a footprint [fp:slprop].
Its validity depends only on the fragment of the heap that satisfies [fp].
Note, it is unrelated to affinity, since the forward implication only applies
to heaps [h0] that validate [fp]
*)
let hprop (fp:slprop u#a) =
q:(heap u#a -> prop){
forall (h0:heap{interp fp h0}) (h1:heap{disjoint h0 h1}).
q h0 <==> q (join h0 h1)
}
(** A common abbreviation: [hheap p] is a heap on which [p] is valid *)
let hheap (p:slprop u#a) = m:heap u#a {interp p m}
(**
Equivalence relation on [slprop]s is just
equivalence of their interpretations
*)
let equiv (p1 p2:slprop) =
forall m. interp p1 m <==> interp p2 m
(**
An extensional equivalence principle for slprop
*)
val slprop_extensionality (p q:slprop)
: Lemma
(requires p `equiv` q)
(ensures p == q)
/// We can now define all the standard connectives of separation logic
(** [emp] is the empty [slprop], valid on all heaps. It acts as the unit element *)
val emp : slprop u#a
(** "Points to" allows to talk about the heap contents *)
val pts_to (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v:a) : slprop u#a
val h_and (p1 p2:slprop u#a) : slprop u#a
val h_or (p1 p2:slprop u#a) : slprop u#a
val star (p1 p2:slprop u#a) : slprop u#a
val wand (p1 p2:slprop u#a) : slprop u#a
val h_exists (#[@@@strictly_positive] a:Type u#b)
([@@@strictly_positive] f: (a -> slprop u#a))
: slprop u#a
val h_forall (#a:Type u#b) (f: (a -> slprop u#a)) : slprop u#a
(**
[h_refine] consists of refining a separation logic proposition [p] with an affine heap predicate
[r]. Since both types are equal, this is equivalent to [h_and].
*)
val h_refine (p:slprop u#a) (r:a_heap_prop u#a) : slprop u#a
(***** Basic properties of separation logic *)
(** If [p * q] is valid on [h], then [p] and [q] are valid on [h] *)
val affine_star (p q:slprop) (h:heap)
: Lemma ((interp (p `star` q) h ==> interp p h /\ interp q h))
(** Equivalence of separation logic propositions is symmetric *)
val equiv_symmetric (p1 p2:slprop)
: squash (p1 `equiv` p2 ==> p2 `equiv` p1)
(** If [p1 ~ p2] then [p1 * p3 ~ p2 * p3] *)
val equiv_extensional_on_star (p1 p2 p3:slprop)
: squash (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3))
(** [p ~~ p * emp] *)
val emp_unit (p:slprop)
: Lemma (p `equiv` (p `star` emp))
(** [emp] is trivial *)
val intro_emp (h:heap)
: Lemma (interp emp h)
(** Introduction rule for equivalence of [h_exists] propositions *)
val h_exists_cong (#a:Type) (p q : a -> slprop)
: Lemma
(requires (forall x. p x `equiv` q x))
(ensures (h_exists p `equiv` h_exists q))
(** Introducing [h_exists] by presenting a witness *)
val intro_h_exists (#a:_) (x:a) (p:a -> slprop) (h:heap)
: Lemma (interp (p x) h ==> interp (h_exists p) h)
(** Eliminate an existential by simply getting a proposition. *)
val elim_h_exists (#a:_) (p:a -> slprop) (h:heap)
: Lemma (interp (h_exists p) h ==> (exists x. interp (p x) h))
(**
The interpretation of a separation logic proposition [hp] is itself an [hprop] of footprint
[hp]
*)
val interp_depends_only_on (hp:slprop u#a)
: Lemma
(forall (h0:hheap hp) (h1:heap u#a{disjoint h0 h1}).
interp hp h0 <==> interp hp (join h0 h1))
(***** [pts_to] properties *)
(**
[ptr r] is a separation logic proposition asserting the existence of an allocated cell at
reference [r]
*)
let ptr (#a: Type u#a) (#pcm: pcm a) (r:ref a pcm) =
h_exists (pts_to r)
(**
If we have [pts_to x v0] and [pts_to y v1] on the same heap, then [v0] and [v1] are are related
by the PCM governing [x]. Indeed, the [pts_to] predicate is not stricly injective, as our partial
heaps offer only a partial view on the contents of the memory cell. This partial view is governed
by [pcm], and this lemma shows that you can combine two [pts_to] predicates into a third, with
a new value with is the composition of [v0] and [v1] by [pcm].
This lemma is equivalent to injectivity of [pts_to] if you instantiate [pcm] with the exclusive
PCM.
*)
val pts_to_compatible
(#a:Type u#a)
(#pcm: pcm a)
(x:ref a pcm)
(v0 v1:a)
(h:heap u#a)
: Lemma
(interp (pts_to x v0 `star` pts_to x v1) h
<==>
(composable pcm v0 v1 /\
interp (pts_to x (op pcm v0 v1)) h))
(** If a reference points to two different values, they must be joinable
in the PCM, even when the pointing does not happen separately. *)
val pts_to_join (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures joinable pcm v1 v2)
(** Further, the value in the heap is a witness for that property *)
val pts_to_join' (#a:Type u#a) (#pcm:_) (r:ref a pcm) (v1 v2:a) (m:heap)
: Lemma (requires (interp (pts_to r v1) m /\ interp (pts_to r v2) m))
(ensures (exists z. compatible pcm v1 z /\ compatible pcm v2 z /\
interp (pts_to r z) m))
val pts_to_compatible_equiv (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v0:a)
(v1:a{composable pcm v0 v1})
: Lemma (equiv (pts_to x v0 `star` pts_to x v1)
(pts_to x (op pcm v0 v1)))
val pts_to_not_null (#a:Type)
(#pcm:_)
(x:ref a pcm)
(v:a)
(m:heap)
: Lemma (requires interp (pts_to x v) m)
(ensures x =!= null)
(***** Properties of separating conjunction *)
(** The separating conjunction [star] arises from the disjointness of partial heaps *)
val intro_star (p q:slprop) (hp:hheap p) (hq:hheap q)
: Lemma
(requires disjoint hp hq)
(ensures interp (p `star` q) (join hp hq))
val elim_star (p q:slprop) (h:hheap (p `star` q))
: Lemma
(requires interp (p `star` q) h)
(ensures exists hl hr.
disjoint hl hr /\
h == join hl hr /\
interp p hl /\
interp q hr)
(** [star] is commutative *)
val star_commutative (p1 p2:slprop)
: Lemma ((p1 `star` p2) `equiv` (p2 `star` p1))
(** [star] is associative *)
val star_associative (p1 p2 p3:slprop)
: Lemma (
(p1 `star` (p2 `star` p3))
`equiv`
((p1 `star` p2) `star` p3)
)
(** If [p1 ~ p3] and [p2 ~ p4], then [p1 * p2 ~ p3 * p4] *)
val star_congruence (p1 p2 p3 p4:slprop)
: Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4)
(ensures (p1 `star` p2) `equiv` (p3 `star` p4))
(***** Properties of the refinement *)
(** [h_refine p q] is just interpreting the affine heap prop [q] when [p] is valid *)
val refine_interp (p:slprop u#a) (q:a_heap_prop u#a) (h:heap u#a)
: Lemma (interp p h /\ q h <==> interp (h_refine p q) h)
(**
Equivalence on [h_refine] propositions is define by logical equivalence of the refinements
on all heaps
*)
val refine_equiv (p0 p1:slprop u#a) (q0 q1:a_heap_prop u#a)
: Lemma (p0 `equiv` p1 /\ (forall h. q0 h <==> q1 h) ==>
equiv (h_refine p0 q0) (h_refine p1 q1))
(**
A [pure] separation logic predicate is a refinement on the empty heap. That is how we
lift pure propositions to the separation logic world
*)
let pure (p:prop) = h_refine emp (fun _ -> p)
(** Equivalence of pure propositions is the equivalence of the underlying propositions *)
val pure_equiv (p q:prop)
: Lemma ((p <==> q) ==> (pure p `equiv` pure q))
(** And the interpretation of pure propositions is their underlying propositions *)
val pure_interp (q:prop) (h:heap u#a)
: Lemma (interp (pure q) h <==> q)
(** A helper lemma for interpreting a pure proposition with another [slprop] *)
val pure_star_interp (p:slprop u#a) (q:prop) (h:heap u#a)
: Lemma (interp (p `star` pure q) h <==>
interp (p `star` emp) h /\ q)
(***** Magic wand and implications properties *)
(** We can define a [stronger] relation on [slprops], defined by interpretation implication *)
let stronger (p q:slprop) =
forall h. interp p h ==> interp q h
(** [stronger] is stable when adding another starred [slprop] *)
val stronger_star (p q r:slprop)
: Lemma (stronger q r ==> stronger (p `star` q) (p `star` r))
(** If [q > r] and [p * q] is valid, then [p * r] is valid *)
val weaken (p q r:slprop) (h:heap u#a)
: Lemma (q `stronger` r /\ interp (p `star` q) h ==> interp (p `star` r) h)
(**** Actions *)
(** An abstract predicate classifying a "full" heap, i.e., the entire
heap of the executing program, not just a fragment of it *)
val full_heap_pred : heap -> prop
let full_heap = h:heap { full_heap_pred h }
let full_hheap fp = h:hheap fp { full_heap_pred h }
(**
This modules exposes a preorder that is respected for every well-formed update of the heap.
The preorder represents the fact that once a reference is allocated, its type and PCM cannot
change and the trace of values contained in the PCM respects the preorder induced by the
PCM (see Steel.Preorder).
*)
val heap_evolves : FStar.Preorder.preorder full_heap
(**
This predicate allows us to maintain an allocation counter, as all references above [a]
in [h] are free.
*)
val free_above_addr (h:heap u#a) (a:nat) : prop
(** [free_above_addr] is abstract but can be weakened consistently with its intended behavior *)
val weaken_free_above (h:heap) (a b:nat)
: Lemma (free_above_addr h a /\ a <= b ==> free_above_addr h b)
(**
The base type for an action is indexed by two separation logic propositions, representing
the heap specification of the action before and after.
*)
let pre_action (fp:slprop u#a) (a:Type u#b) (fp':a -> slprop u#a) =
full_hheap fp -> (x:a & full_hheap (fp' x))
(**
This is how the heaps before and after the action relate:
- evolving the heap according to the heap preorder;
- not allocating any new references;
- preserving the validity of any heap proposition affecting any frame
*)
unfold
let action_related_heaps (frame:slprop) (h0 h1:full_heap) =
heap_evolves h0 h1 /\
(forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr) /\
(forall (hp:hprop frame). hp h0 == hp h1)
(**
We only want to consider heap updates that are "frame-preserving", meaning that they only
modify the portion of the heap that they're allowed to, without messing with any other
partial view of the heap that is compatible with the one you own. This includes :
- preserving correct interpretation in presence of a frame;
- heaps are related as defined above
*)
let is_frame_preserving
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
(f:pre_action fp a fp')
=
forall (frame: slprop u#b) (h0:full_hheap (fp `star` frame)).
(affine_star fp frame h0;
let (| x, h1 |) = f h0 in
interp (fp' x `star` frame) h1 /\
action_related_heaps frame h0 h1)
(** Every action is frame-preserving *)
let action (fp:slprop u#b) (a:Type u#a) (fp':a -> slprop u#b) =
f:pre_action fp a fp'{ is_frame_preserving f }
(**
We define a second, but equivalent, type for actions that
instead of quantifying over the frame, are explicitly passed a frame
from outside
This notion of action is useful for defining actions like witness_h_exists, see comments at the declaration of witness_h_exists
*)
let action_with_frame
(fp:slprop u#a)
(a:Type u#b)
(fp':a -> slprop u#a)
= frame:slprop u#a ->
h0:full_hheap (fp `star` frame) ->
Pure (x:a & full_hheap (fp' x `star` frame))
(requires True)
(ensures fun (| x, h1 |) -> action_related_heaps frame h0 h1)
(**
Two heaps [h0] and [h1] are frame-related if you can get from [h0] to [h1] with a
frame-preserving update.
*)
let frame_related_heaps (h0 h1:full_heap) (fp0 fp1 frame:slprop) (allocates:bool) =
interp (fp0 `star` frame) h0 ==>
interp (fp1 `star` frame) h1 /\
heap_evolves h0 h1 /\
(forall (hp:hprop frame). hp h0 == hp h1) /\
(not allocates ==> (forall ctr. h0 `free_above_addr` ctr ==> h1 `free_above_addr` ctr))
(**
A frame-preserving action applied on [h0] produces an [h1] such that [h0] and [h1] are
frame-related
*)
let action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': a -> slprop u#b)
($f:action fp a fp')
(frame:slprop) (h0:full_hheap (fp `star` frame))
: Lemma (
affine_star fp frame h0;
let (| x, h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false
) | false | false | Steel.Heap.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val action_framing
(#a: Type u#a)
(#fp: slprop u#b)
(#fp': (a -> slprop u#b))
($f: action fp a fp')
(frame: slprop)
(h0: full_hheap (fp `star` frame))
: Lemma
(affine_star fp frame h0;
let (| x , h1 |) = f h0 in
frame_related_heaps h0 h1 fp (fp' x) frame false) | [] | Steel.Heap.action_framing | {
"file_name": "lib/steel/Steel.Heap.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
$f: Steel.Heap.action fp a fp' ->
frame: Steel.Heap.slprop ->
h0: Steel.Heap.full_hheap (Steel.Heap.star fp frame)
-> FStar.Pervasives.Lemma
(ensures
([@@ FStar.Pervasives.inline_let ]let _ = Steel.Heap.affine_star fp frame h0 in
let _ = f h0 in
(let Prims.Mkdtuple2 #_ #_ x h1 = _ in
Steel.Heap.frame_related_heaps h0 h1 fp (fp' x) frame false)
<:
Type0)) | {
"end_col": 13,
"end_line": 489,
"start_col": 2,
"start_line": 488
} |
Prims.Tot | val to_seq (#a: Type0) (#len: size_nat) (l: lseq a len) : seq a | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l | val to_seq (#a: Type0) (#len: size_nat) (l: lseq a len) : seq a
let to_seq (#a: Type0) (#len: size_nat) (l: lseq a len) : seq a = | false | null | false | l | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.Sequence.seq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val to_seq (#a: Type0) (#len: size_nat) (l: lseq a len) : seq a | [] | Lib.Sequence.to_seq | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | l: Lib.Sequence.lseq a len -> Lib.Sequence.seq a | {
"end_col": 64,
"end_line": 28,
"start_col": 63,
"start_line": 28
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq (a:Type0) = Seq.seq a | let seq (a: Type0) = | false | null | false | Seq.seq a | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"FStar.Seq.Base.seq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*) | false | true | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq : a: Type0 -> Type0 | [] | Lib.Sequence.seq | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> Type0 | {
"end_col": 29,
"end_line": 15,
"start_col": 20,
"start_line": 15
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len} | let lseq (a: Type0) (len: size_nat) = | false | null | false | s: seq a {Seq.length s == len} | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *) | false | true | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lseq : a: Type0 -> len: Lib.IntTypes.size_nat -> Type0 | [] | Lib.Sequence.lseq | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> len: Lib.IntTypes.size_nat -> Type0 | {
"end_col": 64,
"end_line": 27,
"start_col": 36,
"start_line": 27
} |
|
Prims.Tot | val length (#a: Type0) (s: seq a) : nat | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let length (#a:Type0) (s:seq a) : nat = Seq.length s | val length (#a: Type0) (s: seq a) : nat
let length (#a: Type0) (s: seq a) : nat = | false | null | false | Seq.length s | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.Sequence.seq",
"FStar.Seq.Base.length",
"Prims.nat"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val length (#a: Type0) (s: seq a) : nat | [] | Lib.Sequence.length | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.seq a -> Prims.nat | {
"end_col": 52,
"end_line": 18,
"start_col": 40,
"start_line": 18
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1 | let op_At_Bar #a #len0 #len1 s0 s1 = | false | null | false | concat #a #len0 #len1 s0 s1 | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.lseq",
"Lib.Sequence.concat",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)}) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_At_Bar : s0: Lib.Sequence.lseq a len0 -> s1: Lib.Sequence.lseq a len1
-> s2:
Lib.Sequence.lseq a (len0 + len1)
{ Lib.Sequence.to_seq s2 ==
FStar.Seq.Base.append (Lib.Sequence.to_seq s0) (Lib.Sequence.to_seq s1) } | [] | Lib.Sequence.op_At_Bar | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s0: Lib.Sequence.lseq a len0 -> s1: Lib.Sequence.lseq a len1
-> s2:
Lib.Sequence.lseq a (len0 + len1)
{ Lib.Sequence.to_seq s2 ==
FStar.Seq.Base.append (Lib.Sequence.to_seq s0) (Lib.Sequence.to_seq s1) } | {
"end_col": 61,
"end_line": 61,
"start_col": 34,
"start_line": 61
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let createL #a l = of_list #a l | let createL #a l = | false | null | false | of_list #a l | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Prims.list",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.List.Tot.Base.length",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.of_list",
"Lib.Sequence.lseq",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Properties.seq_of_list"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)] | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val createL : l: Prims.list a {FStar.List.Tot.Base.length l <= Lib.IntTypes.max_size_t}
-> s:
Lib.Sequence.lseq a (FStar.List.Tot.Base.length l)
{Lib.Sequence.to_seq s == FStar.Seq.Properties.seq_of_list l} | [] | Lib.Sequence.createL | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | l: Prims.list a {FStar.List.Tot.Base.length l <= Lib.IntTypes.max_size_t}
-> s:
Lib.Sequence.lseq a (FStar.List.Tot.Base.length l)
{Lib.Sequence.to_seq s == FStar.Seq.Properties.seq_of_list l} | {
"end_col": 38,
"end_line": 98,
"start_col": 26,
"start_line": 98
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_String_Access #a #len = index #a #len | let op_String_Access #a #len = | false | null | false | index #a #len | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.index",
"Lib.Sequence.lseq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_String_Access : s: Lib.Sequence.lseq a len -> i: (n: Prims.nat{n <= Prims.pow2 32 - 1}){i < len}
-> r: a{r == FStar.Seq.Base.index (Lib.Sequence.to_seq s) i} | [] | Lib.Sequence.op_String_Access | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.lseq a len -> i: (n: Prims.nat{n <= Prims.pow2 32 - 1}){i < len}
-> r: a{r == FStar.Seq.Base.index (Lib.Sequence.to_seq s) i} | {
"end_col": 44,
"end_line": 115,
"start_col": 31,
"start_line": 115
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_String_Assignment #a #len = upd #a #len | let op_String_Assignment #a #len = | false | null | false | upd #a #len | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.upd",
"Lib.Sequence.lseq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_LessThan",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.Sequence.index",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_String_Assignment : s: Lib.Sequence.lseq a len -> n: (n: Prims.nat{n <= Prims.pow2 32 - 1}){n < len} -> x: a
-> o:
Lib.Sequence.lseq a len
{ Lib.Sequence.to_seq o == FStar.Seq.Base.upd (Lib.Sequence.to_seq s) n x /\
Lib.Sequence.index o n == x /\
(forall (i: n: Prims.nat{n <= Prims.pow2 32 - 1}). {:pattern Lib.Sequence.index s i}
i < len /\ i <> n ==> Lib.Sequence.index o i == Lib.Sequence.index s i) } | [] | Lib.Sequence.op_String_Assignment | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.lseq a len -> n: (n: Prims.nat{n <= Prims.pow2 32 - 1}){n < len} -> x: a
-> o:
Lib.Sequence.lseq a len
{ Lib.Sequence.to_seq o == FStar.Seq.Base.upd (Lib.Sequence.to_seq s) n x /\
Lib.Sequence.index o n == x /\
(forall (i: n: Prims.nat{n <= Prims.pow2 32 - 1}). {:pattern Lib.Sequence.index s i}
i < len /\ i <> n ==> Lib.Sequence.index o i == Lib.Sequence.index s i) } | {
"end_col": 46,
"end_line": 119,
"start_col": 35,
"start_line": 119
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs} | let map_blocks_a (a: Type) (bs: size_nat) (max: nat) (i: nat{i <= max}) = | false | null | false | s: seq a {length s == i * bs} | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd
(** Creation of a fixed-length Sequence from an initialization function *)
val createi: #a:Type
-> len:size_nat
-> init:(i:nat{i < len} -> a) ->
Tot (s:lseq a len{(forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init i)})
(** Mapi function for fixed-length Sequences *)
val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
(** Map function for fixed-length Sequences *)
val map:#a:Type -> #b:Type -> #len:size_nat
-> f:(a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f s1.[i])})
(** Map2i function for fixed-length Sequences *)
val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
(** Map2 function for fixed-length Sequences *)
val map2:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f s1.[i] s2.[i])})
(** Forall function for fixed-length Sequences *)
val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
(** Forall2 function for fixed-length Sequences *)
val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b
=
assert ((i+1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc
val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c
val lemma_repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> bs:size_pos
-> inp:seq a
-> f:(lseq a bs -> b -> b)
-> l:(len:nat{len < bs} -> s:lseq a len -> b -> c)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init in
let last = Seq.slice inp (nb * bs) len in
let acc = l rem last acc in
repeat_blocks #a #b bs inp f l init == acc)
val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b
val lemma_repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> bs:size_pos
-> inp:seq a{length inp % bs = 0}
-> f:(lseq a bs -> b -> b)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
repeat_blocks_multi #a #b bs inp f init ==
Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init)
(** Generates `n` blocks of length `len` by iteratively applying a function with an accumulator *)
val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len})
(** Generates `n` blocks of length `len` by iteratively applying a function without an accumulator *)
val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize})
(** The following functions allow us to bridge between unbounded and bounded sequences *)
val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n)
val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b)
val div_mul_lt: b:pos -> a:int -> n:int -> Lemma
(requires a < n * b)
(ensures a / b < n)
val mod_div_lt: b:pos -> i:int -> j:int -> Lemma
(requires (j / b) * b <= i /\ i < j)
(ensures i % b < j % b)
val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d)) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_a : a: Type0 -> bs: Lib.IntTypes.size_nat -> max: Prims.nat -> i: Prims.nat{i <= max} -> Type0 | [] | Lib.Sequence.map_blocks_a | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> bs: Lib.IntTypes.size_nat -> max: Prims.nat -> i: Prims.nat{i <= max} -> Type0 | {
"end_col": 97,
"end_line": 378,
"start_col": 70,
"start_line": 378
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let block (len:nat) (blocksize:size_pos) = i:nat{i < len / blocksize} | let block (len: nat) (blocksize: size_pos) = | false | null | false | i: nat{i < len / blocksize} | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Prims.nat",
"Lib.IntTypes.size_pos",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd
(** Creation of a fixed-length Sequence from an initialization function *)
val createi: #a:Type
-> len:size_nat
-> init:(i:nat{i < len} -> a) ->
Tot (s:lseq a len{(forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init i)})
(** Mapi function for fixed-length Sequences *)
val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
(** Map function for fixed-length Sequences *)
val map:#a:Type -> #b:Type -> #len:size_nat
-> f:(a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f s1.[i])})
(** Map2i function for fixed-length Sequences *)
val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
(** Map2 function for fixed-length Sequences *)
val map2:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f s1.[i] s2.[i])})
(** Forall function for fixed-length Sequences *)
val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
(** Forall2 function for fixed-length Sequences *)
val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b
=
assert ((i+1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc
val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c
val lemma_repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> bs:size_pos
-> inp:seq a
-> f:(lseq a bs -> b -> b)
-> l:(len:nat{len < bs} -> s:lseq a len -> b -> c)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init in
let last = Seq.slice inp (nb * bs) len in
let acc = l rem last acc in
repeat_blocks #a #b bs inp f l init == acc)
val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b
val lemma_repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> bs:size_pos
-> inp:seq a{length inp % bs = 0}
-> f:(lseq a bs -> b -> b)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
repeat_blocks_multi #a #b bs inp f init ==
Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init)
(** Generates `n` blocks of length `len` by iteratively applying a function with an accumulator *)
val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len})
(** Generates `n` blocks of length `len` by iteratively applying a function without an accumulator *)
val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize})
(** The following functions allow us to bridge between unbounded and bounded sequences *)
val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n)
val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b)
val div_mul_lt: b:pos -> a:int -> n:int -> Lemma
(requires a < n * b)
(ensures a / b < n)
val mod_div_lt: b:pos -> i:int -> j:int -> Lemma
(requires (j / b) * b <= i /\ i < j)
(ensures i % b < j % b)
val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d))
let map_blocks_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let map_blocks_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(inp:seq a{length inp == max * bs})
(f:(i:nat{i < max} -> lseq a bs -> lseq a bs))
(i:nat{i < max})
(acc:map_blocks_a a bs max i) : map_blocks_a a bs max (i + 1)
=
Math.Lemmas.lemma_mult_le_right bs (i+1) max;
let block = Seq.slice inp (i*bs) ((i+1)*bs) in
Seq.append acc (f i block)
val map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Tot (out:seq a {length out == n * blocksize})
val lemma_map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize)
-> Lemma
(map_blocks_multi #a blocksize max n inp f ==
LoopCombinators.repeat_gen n (map_blocks_a a blocksize max) (map_blocks_f #a blocksize max inp f) Seq.empty)
#restart-solver
val index_map_blocks_multi:
#a:Type0
-> bs:size_pos
-> max:pos
-> n:pos{n <= max}
-> inp:seq a{length inp == max * bs}
-> f:(i:nat{i < max} -> lseq a bs -> lseq a bs)
-> i:nat{i < n * bs}
-> Lemma (
div_mul_lt bs i n;
let j = i / bs in
let block: lseq a bs = Seq.slice inp (j * bs) ((j + 1) * bs) in
Seq.index (map_blocks_multi bs max n inp f) i == Seq.index (f j block) (i % bs))
(* A full block index *) | false | true | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val block : len: Prims.nat -> blocksize: Lib.IntTypes.size_pos -> Type0 | [] | Lib.Sequence.block | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Prims.nat -> blocksize: Lib.IntTypes.size_pos -> Type0 | {
"end_col": 69,
"end_line": 433,
"start_col": 43,
"start_line": 433
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let last (len:nat) (blocksize:size_pos) = i:nat{i = len / blocksize} | let last (len: nat) (blocksize: size_pos) = | false | null | false | i: nat{i = len / blocksize} | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Prims.nat",
"Lib.IntTypes.size_pos",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Division"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd
(** Creation of a fixed-length Sequence from an initialization function *)
val createi: #a:Type
-> len:size_nat
-> init:(i:nat{i < len} -> a) ->
Tot (s:lseq a len{(forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init i)})
(** Mapi function for fixed-length Sequences *)
val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
(** Map function for fixed-length Sequences *)
val map:#a:Type -> #b:Type -> #len:size_nat
-> f:(a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f s1.[i])})
(** Map2i function for fixed-length Sequences *)
val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
(** Map2 function for fixed-length Sequences *)
val map2:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f s1.[i] s2.[i])})
(** Forall function for fixed-length Sequences *)
val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
(** Forall2 function for fixed-length Sequences *)
val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b
=
assert ((i+1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc
val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c
val lemma_repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> bs:size_pos
-> inp:seq a
-> f:(lseq a bs -> b -> b)
-> l:(len:nat{len < bs} -> s:lseq a len -> b -> c)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init in
let last = Seq.slice inp (nb * bs) len in
let acc = l rem last acc in
repeat_blocks #a #b bs inp f l init == acc)
val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b
val lemma_repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> bs:size_pos
-> inp:seq a{length inp % bs = 0}
-> f:(lseq a bs -> b -> b)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
repeat_blocks_multi #a #b bs inp f init ==
Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init)
(** Generates `n` blocks of length `len` by iteratively applying a function with an accumulator *)
val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len})
(** Generates `n` blocks of length `len` by iteratively applying a function without an accumulator *)
val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize})
(** The following functions allow us to bridge between unbounded and bounded sequences *)
val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n)
val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b)
val div_mul_lt: b:pos -> a:int -> n:int -> Lemma
(requires a < n * b)
(ensures a / b < n)
val mod_div_lt: b:pos -> i:int -> j:int -> Lemma
(requires (j / b) * b <= i /\ i < j)
(ensures i % b < j % b)
val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d))
let map_blocks_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let map_blocks_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(inp:seq a{length inp == max * bs})
(f:(i:nat{i < max} -> lseq a bs -> lseq a bs))
(i:nat{i < max})
(acc:map_blocks_a a bs max i) : map_blocks_a a bs max (i + 1)
=
Math.Lemmas.lemma_mult_le_right bs (i+1) max;
let block = Seq.slice inp (i*bs) ((i+1)*bs) in
Seq.append acc (f i block)
val map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Tot (out:seq a {length out == n * blocksize})
val lemma_map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize)
-> Lemma
(map_blocks_multi #a blocksize max n inp f ==
LoopCombinators.repeat_gen n (map_blocks_a a blocksize max) (map_blocks_f #a blocksize max inp f) Seq.empty)
#restart-solver
val index_map_blocks_multi:
#a:Type0
-> bs:size_pos
-> max:pos
-> n:pos{n <= max}
-> inp:seq a{length inp == max * bs}
-> f:(i:nat{i < max} -> lseq a bs -> lseq a bs)
-> i:nat{i < n * bs}
-> Lemma (
div_mul_lt bs i n;
let j = i / bs in
let block: lseq a bs = Seq.slice inp (j * bs) ((j + 1) * bs) in
Seq.index (map_blocks_multi bs max n inp f) i == Seq.index (f j block) (i % bs))
(* A full block index *)
unfold
let block (len:nat) (blocksize:size_pos) = i:nat{i < len / blocksize}
(* Index of last (incomplete) block *) | false | true | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val last : len: Prims.nat -> blocksize: Lib.IntTypes.size_pos -> Type0 | [] | Lib.Sequence.last | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Prims.nat -> blocksize: Lib.IntTypes.size_pos -> Type0 | {
"end_col": 69,
"end_line": 437,
"start_col": 43,
"start_line": 437
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start) | let slice
(#a: Type)
(#len: size_nat)
(s1: lseq a len)
(start: size_nat)
(fin: size_nat{start <= fin /\ fin <= len})
= | false | null | false | sub #a s1 start (fin - start) | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.sub",
"Prims.op_Subtraction",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.nat",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len}) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice : s1: Lib.Sequence.lseq a len ->
start: Lib.IntTypes.size_nat ->
fin: Lib.IntTypes.size_nat{start <= fin /\ fin <= len}
-> s2:
Lib.Sequence.lseq a (fin - start)
{ Lib.Sequence.to_seq s2 ==
FStar.Seq.Base.slice (Lib.Sequence.to_seq s1) start (start + (fin - start)) /\
(forall (k: Prims.nat{k < fin - start}). {:pattern Lib.Sequence.index s2 k}
Lib.Sequence.index s2 k == Lib.Sequence.index s1 (start + k)) } | [] | Lib.Sequence.slice | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s1: Lib.Sequence.lseq a len ->
start: Lib.IntTypes.size_nat ->
fin: Lib.IntTypes.size_nat{start <= fin /\ fin <= len}
-> s2:
Lib.Sequence.lseq a (fin - start)
{ Lib.Sequence.to_seq s2 ==
FStar.Seq.Base.slice (Lib.Sequence.to_seq s1) start (start + (fin - start)) /\
(forall (k: Prims.nat{k < fin - start}). {:pattern Lib.Sequence.index s2 k}
Lib.Sequence.index s2 k == Lib.Sequence.index s1 (start + k)) } | {
"end_col": 31,
"end_line": 139,
"start_col": 2,
"start_line": 139
} |
|
Prims.Tot | val to_lseq (#a: Type0) (s: seq a {length s <= max_size_t}) : l: lseq a (length s) {l == s} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s | val to_lseq (#a: Type0) (s: seq a {length s <= max_size_t}) : l: lseq a (length s) {l == s}
let to_lseq (#a: Type0) (s: seq a {length s <= max_size_t}) : l: lseq a (length s) {l == s} = | false | null | false | s | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.lseq",
"Prims.eq2",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len} | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val to_lseq (#a: Type0) (s: seq a {length s <= max_size_t}) : l: lseq a (length s) {l == s} | [] | Lib.Sequence.to_lseq | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.seq a {Lib.Sequence.length s <= Lib.IntTypes.max_size_t}
-> l: Lib.Sequence.lseq a (Lib.Sequence.length s) {l == s} | {
"end_col": 90,
"end_line": 29,
"start_col": 89,
"start_line": 29
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd | let update_slice
(#a: Type)
(#len: size_nat)
(i: lseq a len)
(start: size_nat)
(fin: size_nat{start <= fin /\ fin <= len})
(upd: lseq a (fin - start))
= | false | null | false | update_sub #a i start (fin - start) upd | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Lib.Sequence.update_sub",
"Prims.eq2",
"Lib.Sequence.sub",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start)) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_slice : i: Lib.Sequence.lseq a len ->
start: Lib.IntTypes.size_nat ->
fin: Lib.IntTypes.size_nat{start <= fin /\ fin <= len} ->
upd: Lib.Sequence.lseq a (fin - start)
-> o:
Lib.Sequence.lseq a len
{ Lib.Sequence.sub o start (fin - start) == upd /\
(forall (k: Prims.nat{0 <= k /\ k < start \/ start + (fin - start) <= k /\ k < len}).
{:pattern Lib.Sequence.index o k}
Lib.Sequence.index o k == Lib.Sequence.index i k) } | [] | Lib.Sequence.update_slice | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
i: Lib.Sequence.lseq a len ->
start: Lib.IntTypes.size_nat ->
fin: Lib.IntTypes.size_nat{start <= fin /\ fin <= len} ->
upd: Lib.Sequence.lseq a (fin - start)
-> o:
Lib.Sequence.lseq a len
{ Lib.Sequence.sub o start (fin - start) == upd /\
(forall (k: Prims.nat{0 <= k /\ k < start \/ start + (fin - start) <= k /\ k < len}).
{:pattern Lib.Sequence.index o k}
Lib.Sequence.index o k == Lib.Sequence.index i k) } | {
"end_col": 41,
"end_line": 209,
"start_col": 2,
"start_line": 209
} |
|
Prims.Tot | val repeat_blocks_f
(#a #b: Type0)
(bs: size_nat{bs > 0})
(inp: seq a)
(f: (lseq a bs -> b -> b))
(nb: nat{nb == length inp / bs})
(i: nat{i < nb})
(acc: b)
: b | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b
=
assert ((i+1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc | val repeat_blocks_f
(#a #b: Type0)
(bs: size_nat{bs > 0})
(inp: seq a)
(f: (lseq a bs -> b -> b))
(nb: nat{nb == length inp / bs})
(i: nat{i < nb})
(acc: b)
: b
let repeat_blocks_f
(#a #b: Type0)
(bs: size_nat{bs > 0})
(inp: seq a)
(f: (lseq a bs -> b -> b))
(nb: nat{nb == length inp / bs})
(i: nat{i < nb})
(acc: b)
: b = | false | null | false | assert ((i + 1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.Sequence.seq",
"Lib.Sequence.lseq",
"Prims.nat",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"Lib.Sequence.length",
"Prims.op_LessThan",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.unit",
"Prims._assert",
"Prims.op_LessThanOrEqual"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd
(** Creation of a fixed-length Sequence from an initialization function *)
val createi: #a:Type
-> len:size_nat
-> init:(i:nat{i < len} -> a) ->
Tot (s:lseq a len{(forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init i)})
(** Mapi function for fixed-length Sequences *)
val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
(** Map function for fixed-length Sequences *)
val map:#a:Type -> #b:Type -> #len:size_nat
-> f:(a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f s1.[i])})
(** Map2i function for fixed-length Sequences *)
val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
(** Map2 function for fixed-length Sequences *)
val map2:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f s1.[i] s2.[i])})
(** Forall function for fixed-length Sequences *)
val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
(** Forall2 function for fixed-length Sequences *)
val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_f
(#a #b: Type0)
(bs: size_nat{bs > 0})
(inp: seq a)
(f: (lseq a bs -> b -> b))
(nb: nat{nb == length inp / bs})
(i: nat{i < nb})
(acc: b)
: b | [] | Lib.Sequence.repeat_blocks_f | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
bs: Lib.IntTypes.size_nat{bs > 0} ->
inp: Lib.Sequence.seq a ->
f: (_: Lib.Sequence.lseq a bs -> _: b -> b) ->
nb: Prims.nat{nb == Lib.Sequence.length inp / bs} ->
i: Prims.nat{i < nb} ->
acc: b
-> b | {
"end_col": 13,
"end_line": 280,
"start_col": 2,
"start_line": 278
} |
Prims.Tot | val map_blocks_f
(#a: Type)
(bs: size_nat{bs > 0})
(max: nat)
(inp: seq a {length inp == max * bs})
(f: (i: nat{i < max} -> lseq a bs -> lseq a bs))
(i: nat{i < max})
(acc: map_blocks_a a bs max i)
: map_blocks_a a bs max (i + 1) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(inp:seq a{length inp == max * bs})
(f:(i:nat{i < max} -> lseq a bs -> lseq a bs))
(i:nat{i < max})
(acc:map_blocks_a a bs max i) : map_blocks_a a bs max (i + 1)
=
Math.Lemmas.lemma_mult_le_right bs (i+1) max;
let block = Seq.slice inp (i*bs) ((i+1)*bs) in
Seq.append acc (f i block) | val map_blocks_f
(#a: Type)
(bs: size_nat{bs > 0})
(max: nat)
(inp: seq a {length inp == max * bs})
(f: (i: nat{i < max} -> lseq a bs -> lseq a bs))
(i: nat{i < max})
(acc: map_blocks_a a bs max i)
: map_blocks_a a bs max (i + 1)
let map_blocks_f
(#a: Type)
(bs: size_nat{bs > 0})
(max: nat)
(inp: seq a {length inp == max * bs})
(f: (i: nat{i < max} -> lseq a bs -> lseq a bs))
(i: nat{i < max})
(acc: map_blocks_a a bs max i)
: map_blocks_a a bs max (i + 1) = | false | null | false | Math.Lemmas.lemma_mult_le_right bs (i + 1) max;
let block = Seq.slice inp (i * bs) ((i + 1) * bs) in
Seq.append acc (f i block) | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.nat",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.map_blocks_a",
"FStar.Seq.Base.append",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mult_le_right"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd
(** Creation of a fixed-length Sequence from an initialization function *)
val createi: #a:Type
-> len:size_nat
-> init:(i:nat{i < len} -> a) ->
Tot (s:lseq a len{(forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init i)})
(** Mapi function for fixed-length Sequences *)
val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
(** Map function for fixed-length Sequences *)
val map:#a:Type -> #b:Type -> #len:size_nat
-> f:(a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f s1.[i])})
(** Map2i function for fixed-length Sequences *)
val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
(** Map2 function for fixed-length Sequences *)
val map2:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f s1.[i] s2.[i])})
(** Forall function for fixed-length Sequences *)
val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
(** Forall2 function for fixed-length Sequences *)
val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b
=
assert ((i+1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc
val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c
val lemma_repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> bs:size_pos
-> inp:seq a
-> f:(lseq a bs -> b -> b)
-> l:(len:nat{len < bs} -> s:lseq a len -> b -> c)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init in
let last = Seq.slice inp (nb * bs) len in
let acc = l rem last acc in
repeat_blocks #a #b bs inp f l init == acc)
val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b
val lemma_repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> bs:size_pos
-> inp:seq a{length inp % bs = 0}
-> f:(lseq a bs -> b -> b)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
repeat_blocks_multi #a #b bs inp f init ==
Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init)
(** Generates `n` blocks of length `len` by iteratively applying a function with an accumulator *)
val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len})
(** Generates `n` blocks of length `len` by iteratively applying a function without an accumulator *)
val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize})
(** The following functions allow us to bridge between unbounded and bounded sequences *)
val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n)
val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b)
val div_mul_lt: b:pos -> a:int -> n:int -> Lemma
(requires a < n * b)
(ensures a / b < n)
val mod_div_lt: b:pos -> i:int -> j:int -> Lemma
(requires (j / b) * b <= i /\ i < j)
(ensures i % b < j % b)
val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d))
let map_blocks_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let map_blocks_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(inp:seq a{length inp == max * bs})
(f:(i:nat{i < max} -> lseq a bs -> lseq a bs))
(i:nat{i < max})
(acc:map_blocks_a a bs max i) : map_blocks_a a bs max (i + 1) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_f
(#a: Type)
(bs: size_nat{bs > 0})
(max: nat)
(inp: seq a {length inp == max * bs})
(f: (i: nat{i < max} -> lseq a bs -> lseq a bs))
(i: nat{i < max})
(acc: map_blocks_a a bs max i)
: map_blocks_a a bs max (i + 1) | [] | Lib.Sequence.map_blocks_f | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
bs: Lib.IntTypes.size_nat{bs > 0} ->
max: Prims.nat ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == max * bs} ->
f: (i: Prims.nat{i < max} -> _: Lib.Sequence.lseq a bs -> Lib.Sequence.lseq a bs) ->
i: Prims.nat{i < max} ->
acc: Lib.Sequence.map_blocks_a a bs max i
-> Lib.Sequence.map_blocks_a a bs max (i + 1) | {
"end_col": 28,
"end_line": 391,
"start_col": 2,
"start_line": 389
} |
Prims.Pure | val get_last
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(g: (last len blocksize -> rem: size_nat{rem < blocksize} -> lseq a rem -> lseq a rem))
(i: nat{(len / blocksize) * blocksize <= i /\ i < len})
: Pure (lseq a (len % blocksize)) True (fun _ -> i % blocksize < len % blocksize) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_last
(#a:Type)
(#len:nat)
(blocksize:size_pos)
(inp:seq a{length inp == len})
(g:(last len blocksize -> rem:size_nat{rem < blocksize} -> lseq a rem -> lseq a rem))
(i:nat{(len / blocksize) * blocksize <= i /\ i < len}) :
Pure (lseq a (len % blocksize)) True (fun _ -> i % blocksize < len % blocksize)
=
mod_div_lt blocksize i len;
let rem = len % blocksize in
let b: lseq a rem = Seq.slice inp (len - rem) len in
g (len / blocksize) rem b | val get_last
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(g: (last len blocksize -> rem: size_nat{rem < blocksize} -> lseq a rem -> lseq a rem))
(i: nat{(len / blocksize) * blocksize <= i /\ i < len})
: Pure (lseq a (len % blocksize)) True (fun _ -> i % blocksize < len % blocksize)
let get_last
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(g: (last len blocksize -> rem: size_nat{rem < blocksize} -> lseq a rem -> lseq a rem))
(i: nat{(len / blocksize) * blocksize <= i /\ i < len})
: Pure (lseq a (len % blocksize)) True (fun _ -> i % blocksize < len % blocksize) = | false | null | false | mod_div_lt blocksize i len;
let rem = len % blocksize in
let b:lseq a rem = Seq.slice inp (len - rem) len in
g (len / blocksize) rem b | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [] | [
"Prims.nat",
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.Sequence.last",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.op_Division",
"FStar.Seq.Base.slice",
"Prims.op_Subtraction",
"Prims.int",
"Prims.op_Modulus",
"Prims.unit",
"Lib.Sequence.mod_div_lt",
"Prims.l_True"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd
(** Creation of a fixed-length Sequence from an initialization function *)
val createi: #a:Type
-> len:size_nat
-> init:(i:nat{i < len} -> a) ->
Tot (s:lseq a len{(forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init i)})
(** Mapi function for fixed-length Sequences *)
val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
(** Map function for fixed-length Sequences *)
val map:#a:Type -> #b:Type -> #len:size_nat
-> f:(a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f s1.[i])})
(** Map2i function for fixed-length Sequences *)
val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
(** Map2 function for fixed-length Sequences *)
val map2:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f s1.[i] s2.[i])})
(** Forall function for fixed-length Sequences *)
val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
(** Forall2 function for fixed-length Sequences *)
val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b
=
assert ((i+1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc
val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c
val lemma_repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> bs:size_pos
-> inp:seq a
-> f:(lseq a bs -> b -> b)
-> l:(len:nat{len < bs} -> s:lseq a len -> b -> c)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init in
let last = Seq.slice inp (nb * bs) len in
let acc = l rem last acc in
repeat_blocks #a #b bs inp f l init == acc)
val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b
val lemma_repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> bs:size_pos
-> inp:seq a{length inp % bs = 0}
-> f:(lseq a bs -> b -> b)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
repeat_blocks_multi #a #b bs inp f init ==
Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init)
(** Generates `n` blocks of length `len` by iteratively applying a function with an accumulator *)
val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len})
(** Generates `n` blocks of length `len` by iteratively applying a function without an accumulator *)
val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize})
(** The following functions allow us to bridge between unbounded and bounded sequences *)
val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n)
val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b)
val div_mul_lt: b:pos -> a:int -> n:int -> Lemma
(requires a < n * b)
(ensures a / b < n)
val mod_div_lt: b:pos -> i:int -> j:int -> Lemma
(requires (j / b) * b <= i /\ i < j)
(ensures i % b < j % b)
val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d))
let map_blocks_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let map_blocks_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(inp:seq a{length inp == max * bs})
(f:(i:nat{i < max} -> lseq a bs -> lseq a bs))
(i:nat{i < max})
(acc:map_blocks_a a bs max i) : map_blocks_a a bs max (i + 1)
=
Math.Lemmas.lemma_mult_le_right bs (i+1) max;
let block = Seq.slice inp (i*bs) ((i+1)*bs) in
Seq.append acc (f i block)
val map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Tot (out:seq a {length out == n * blocksize})
val lemma_map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize)
-> Lemma
(map_blocks_multi #a blocksize max n inp f ==
LoopCombinators.repeat_gen n (map_blocks_a a blocksize max) (map_blocks_f #a blocksize max inp f) Seq.empty)
#restart-solver
val index_map_blocks_multi:
#a:Type0
-> bs:size_pos
-> max:pos
-> n:pos{n <= max}
-> inp:seq a{length inp == max * bs}
-> f:(i:nat{i < max} -> lseq a bs -> lseq a bs)
-> i:nat{i < n * bs}
-> Lemma (
div_mul_lt bs i n;
let j = i / bs in
let block: lseq a bs = Seq.slice inp (j * bs) ((j + 1) * bs) in
Seq.index (map_blocks_multi bs max n inp f) i == Seq.index (f j block) (i % bs))
(* A full block index *)
unfold
let block (len:nat) (blocksize:size_pos) = i:nat{i < len / blocksize}
(* Index of last (incomplete) block *)
unfold
let last (len:nat) (blocksize:size_pos) = i:nat{i = len / blocksize}
val map_blocks:
#a:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) ->
Tot (out:seq a{length out == length inp})
val lemma_map_blocks:
#a:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) ->
Lemma (
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let bs = map_blocks_multi #a blocksize nb nb blocks f in
let res = if (rem > 0) then Seq.append bs (g nb rem last) else bs in
res == map_blocks #a blocksize inp f g)
(* Computes the block of the i-th element of (map_blocks blocksize input f g) *)
let get_block
(#a:Type)
(#len:nat)
(blocksize:size_pos)
(inp:seq a{length inp == len})
(f:(block len blocksize -> lseq a blocksize -> lseq a blocksize))
(i:nat{i < (len / blocksize) * blocksize}) :
Pure (lseq a blocksize) True (fun _ -> i / blocksize < len / blocksize)
=
div_mul_lt blocksize i (len / blocksize);
let j: block len blocksize = i / blocksize in
let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in
f j b
(* Computes the last block of (map_blocks blocksize input f g) *)
let get_last
(#a:Type)
(#len:nat)
(blocksize:size_pos)
(inp:seq a{length inp == len})
(g:(last len blocksize -> rem:size_nat{rem < blocksize} -> lseq a rem -> lseq a rem))
(i:nat{(len / blocksize) * blocksize <= i /\ i < len}) :
Pure (lseq a (len % blocksize)) True (fun _ -> i % blocksize < len % blocksize) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_last
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(g: (last len blocksize -> rem: size_nat{rem < blocksize} -> lseq a rem -> lseq a rem))
(i: nat{(len / blocksize) * blocksize <= i /\ i < len})
: Pure (lseq a (len % blocksize)) True (fun _ -> i % blocksize < len % blocksize) | [] | Lib.Sequence.get_last | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == len} ->
g:
(
_: Lib.Sequence.last len blocksize ->
rem: Lib.IntTypes.size_nat{rem < blocksize} ->
_: Lib.Sequence.lseq a rem
-> Lib.Sequence.lseq a rem) ->
i: Prims.nat{(len / blocksize) * blocksize <= i /\ i < len}
-> Prims.Pure (Lib.Sequence.lseq a (len % blocksize)) | {
"end_col": 27,
"end_line": 494,
"start_col": 2,
"start_line": 491
} |
Prims.Pure | val get_block
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(f: (block len blocksize -> lseq a blocksize -> lseq a blocksize))
(i: nat{i < (len / blocksize) * blocksize})
: Pure (lseq a blocksize) True (fun _ -> i / blocksize < len / blocksize) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_block
(#a:Type)
(#len:nat)
(blocksize:size_pos)
(inp:seq a{length inp == len})
(f:(block len blocksize -> lseq a blocksize -> lseq a blocksize))
(i:nat{i < (len / blocksize) * blocksize}) :
Pure (lseq a blocksize) True (fun _ -> i / blocksize < len / blocksize)
=
div_mul_lt blocksize i (len / blocksize);
let j: block len blocksize = i / blocksize in
let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in
f j b | val get_block
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(f: (block len blocksize -> lseq a blocksize -> lseq a blocksize))
(i: nat{i < (len / blocksize) * blocksize})
: Pure (lseq a blocksize) True (fun _ -> i / blocksize < len / blocksize)
let get_block
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(f: (block len blocksize -> lseq a blocksize -> lseq a blocksize))
(i: nat{i < (len / blocksize) * blocksize})
: Pure (lseq a blocksize) True (fun _ -> i / blocksize < len / blocksize) = | false | null | false | div_mul_lt blocksize i (len / blocksize);
let j:block len blocksize = i / blocksize in
let b:lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in
f j b | {
"checked_file": "Lib.Sequence.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Sequence.fsti"
} | [] | [
"Prims.nat",
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.Sequence.block",
"Lib.Sequence.lseq",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Prims.op_Division",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.unit",
"Lib.Sequence.div_mul_lt",
"Prims.l_True"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
/// Variable length Sequences, derived from FStar.Seq
(* This is the type of unbounded sequences.
Use this only when dealing with, say, user input whose length is unbounded.
As far as possible use the API for bounded sequences defined later in this file.*)
(** Definition of a Sequence *)
let seq (a:Type0) = Seq.seq a
(** Length of a Sequence *)
let length (#a:Type0) (s:seq a) : nat = Seq.length s
/// Fixed length Sequences
(* This is the type of bounded sequences.
Use this as much as possible.
It adds additional length checks that you'd have to prove in the implementation otherwise *)
(** Definition of a fixed-length Sequence *)
let lseq (a:Type0) (len:size_nat) = s:seq a{Seq.length s == len}
let to_seq (#a:Type0) (#len:size_nat) (l:lseq a len) : seq a = l
let to_lseq (#a:Type0) (s:seq a{length s <= max_size_t}) : l:lseq a (length s){l == s} = s
(* If you want to prove your code with an abstract lseq use the following: *)
// val lseq: a:Type0 -> len:size_nat -> Type0
// val to_seq: #a:Type0 -> #len:size_nat -> lseq a len -> s:seq a{length s == len}
// val to_lseq: #a:Type0 -> s:seq a{length s <= max_size_t} -> lseq a (length s)
val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
(** Creation of a fixed-length Sequence from an initial value *)
val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)})
(** Concatenate sequences: use with care, may make implementation hard to verify *)
val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let ( @| ) #a #len0 #len1 s0 s1 = concat #a #len0 #len1 s0 s1
(** Conversion of a Sequence to a list *)
val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
(** Creation of a fixed-length Sequence from a list of values *)
val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
(* Alias for creation from a list *)
unfold let createL #a l = of_list #a l
(** Updating an element of a fixed-length Sequence *)
val upd:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> n:size_nat{n < len}
-> x:a ->
Tot (o:lseq a len{to_seq o == Seq.upd (to_seq s) n x /\ index o n == x /\ (forall (i:size_nat).
{:pattern (index s i)} (i < len /\ i <> n) ==> index o i == index s i)})
(** Membership of an element to a fixed-length Sequence *)
val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
(** Operator for accessing an element of a fixed-length Sequence *)
unfold
let op_String_Access #a #len = index #a #len
(** Operator for updating an element of a fixed-length Sequence *)
unfold
let op_String_Assignment #a #len = upd #a #len
(** Selecting a subset of a fixed-length Sequence *)
val sub:
#a:Type
-> #len:size_nat
-> s1:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len} ->
Tot (s2:lseq a n{to_seq s2 == Seq.slice (to_seq s1) start (start + n) /\
(forall (k:nat{k < n}). {:pattern (index s2 k)} index s2 k == index s1 (start + k))})
(** Selecting a subset of a fixed-length Sequence *)
let slice
(#a:Type)
(#len:size_nat)
(s1:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
=
sub #a s1 start (fin - start)
(** Updating a sub-Sequence from another fixed-length Sequence *)
val update_sub:
#a:Type
-> #len:size_nat
-> i:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> x:lseq a n ->
Tot (o:lseq a len{sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < len)}).
{:pattern (index o k)} index o k == index i k)})
(** Lemma regarding updating a sub-Sequence with another Sequence *)
val lemma_update_sub:
#a:Type
-> #len:size_nat
-> dst:lseq a len
-> start:size_nat
-> n:size_nat{start + n <= len}
-> src:lseq a n
-> res:lseq a len ->
Lemma
(requires
sub res 0 start == sub dst 0 start /\
sub res start n == src /\
sub res (start + n) (len - start - n) ==
sub dst (start + n) (len - start - n))
(ensures
res == update_sub dst start n src)
val lemma_concat2:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> s:lseq a (len0 + len1) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1)
(ensures s == concat s0 s1)
val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
(** Updating a sub-Sequence from another fixed-length Sequence *)
let update_slice
(#a:Type)
(#len:size_nat)
(i:lseq a len)
(start:size_nat)
(fin:size_nat{start <= fin /\ fin <= len})
(upd:lseq a (fin - start))
=
update_sub #a i start (fin - start) upd
(** Creation of a fixed-length Sequence from an initialization function *)
val createi: #a:Type
-> len:size_nat
-> init:(i:nat{i < len} -> a) ->
Tot (s:lseq a len{(forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init i)})
(** Mapi function for fixed-length Sequences *)
val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
(** Map function for fixed-length Sequences *)
val map:#a:Type -> #b:Type -> #len:size_nat
-> f:(a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f s1.[i])})
(** Map2i function for fixed-length Sequences *)
val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
(** Map2 function for fixed-length Sequences *)
val map2:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f s1.[i] s2.[i])})
(** Forall function for fixed-length Sequences *)
val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
(** Forall2 function for fixed-length Sequences *)
val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_f
(#a:Type0)
(#b:Type0)
(bs:size_nat{bs > 0})
(inp:seq a)
(f:(lseq a bs -> b -> b))
(nb:nat{nb == length inp / bs})
(i:nat{i < nb})
(acc:b) : b
=
assert ((i+1) * bs <= nb * bs);
let block = Seq.slice inp (i * bs) (i * bs + bs) in
f block acc
val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c
val lemma_repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> bs:size_pos
-> inp:seq a
-> f:(lseq a bs -> b -> b)
-> l:(len:nat{len < bs} -> s:lseq a len -> b -> c)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init in
let last = Seq.slice inp (nb * bs) len in
let acc = l rem last acc in
repeat_blocks #a #b bs inp f l init == acc)
val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b
val lemma_repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> bs:size_pos
-> inp:seq a{length inp % bs = 0}
-> f:(lseq a bs -> b -> b)
-> init:b ->
Lemma (
let len = length inp in
let nb = len / bs in
repeat_blocks_multi #a #b bs inp f init ==
Lib.LoopCombinators.repeati nb (repeat_blocks_f bs inp f nb) init)
(** Generates `n` blocks of length `len` by iteratively applying a function with an accumulator *)
val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len})
(** Generates `n` blocks of length `len` by iteratively applying a function without an accumulator *)
val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize})
(** The following functions allow us to bridge between unbounded and bounded sequences *)
val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n)
val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b)
val div_mul_lt: b:pos -> a:int -> n:int -> Lemma
(requires a < n * b)
(ensures a / b < n)
val mod_div_lt: b:pos -> i:int -> j:int -> Lemma
(requires (j / b) * b <= i /\ i < j)
(ensures i % b < j % b)
val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d))
let map_blocks_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let map_blocks_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(inp:seq a{length inp == max * bs})
(f:(i:nat{i < max} -> lseq a bs -> lseq a bs))
(i:nat{i < max})
(acc:map_blocks_a a bs max i) : map_blocks_a a bs max (i + 1)
=
Math.Lemmas.lemma_mult_le_right bs (i+1) max;
let block = Seq.slice inp (i*bs) ((i+1)*bs) in
Seq.append acc (f i block)
val map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Tot (out:seq a {length out == n * blocksize})
val lemma_map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize)
-> Lemma
(map_blocks_multi #a blocksize max n inp f ==
LoopCombinators.repeat_gen n (map_blocks_a a blocksize max) (map_blocks_f #a blocksize max inp f) Seq.empty)
#restart-solver
val index_map_blocks_multi:
#a:Type0
-> bs:size_pos
-> max:pos
-> n:pos{n <= max}
-> inp:seq a{length inp == max * bs}
-> f:(i:nat{i < max} -> lseq a bs -> lseq a bs)
-> i:nat{i < n * bs}
-> Lemma (
div_mul_lt bs i n;
let j = i / bs in
let block: lseq a bs = Seq.slice inp (j * bs) ((j + 1) * bs) in
Seq.index (map_blocks_multi bs max n inp f) i == Seq.index (f j block) (i % bs))
(* A full block index *)
unfold
let block (len:nat) (blocksize:size_pos) = i:nat{i < len / blocksize}
(* Index of last (incomplete) block *)
unfold
let last (len:nat) (blocksize:size_pos) = i:nat{i = len / blocksize}
val map_blocks:
#a:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) ->
Tot (out:seq a{length out == length inp})
val lemma_map_blocks:
#a:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize)
-> g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) ->
Lemma (
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
Math.Lemmas.cancel_mul_div nb blocksize;
let bs = map_blocks_multi #a blocksize nb nb blocks f in
let res = if (rem > 0) then Seq.append bs (g nb rem last) else bs in
res == map_blocks #a blocksize inp f g)
(* Computes the block of the i-th element of (map_blocks blocksize input f g) *)
let get_block
(#a:Type)
(#len:nat)
(blocksize:size_pos)
(inp:seq a{length inp == len})
(f:(block len blocksize -> lseq a blocksize -> lseq a blocksize))
(i:nat{i < (len / blocksize) * blocksize}) :
Pure (lseq a blocksize) True (fun _ -> i / blocksize < len / blocksize) | false | false | Lib.Sequence.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_block
(#a: Type)
(#len: nat)
(blocksize: size_pos)
(inp: seq a {length inp == len})
(f: (block len blocksize -> lseq a blocksize -> lseq a blocksize))
(i: nat{i < (len / blocksize) * blocksize})
: Pure (lseq a blocksize) True (fun _ -> i / blocksize < len / blocksize) | [] | Lib.Sequence.get_block | {
"file_name": "lib/Lib.Sequence.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == len} ->
f:
(_: Lib.Sequence.block len blocksize -> _: Lib.Sequence.lseq a blocksize
-> Lib.Sequence.lseq a blocksize) ->
i: Prims.nat{i < (len / blocksize) * blocksize}
-> Prims.Pure (Lib.Sequence.lseq a blocksize) | {
"end_col": 7,
"end_line": 478,
"start_col": 2,
"start_line": 475
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y) | let inverses #a #b (f: (a -> GTot b)) (g: (b -> GTot a)) = | false | null | false | (forall x. g (f x) == x) /\ (forall y. f (g y) == y) | {
"checked_file": "LowStar.BufferView.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.fsti"
} | [
"total"
] | [
"Prims.l_and",
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView
(**
* A "view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a view requires providing a pair of mutually inverse functions
* from sequences of `a` (sub-sequences of the source buffer)
* to elements of `b`.
*
**)
open LowStar.Monotonic.Buffer
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b)) | false | false | LowStar.BufferView.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val inverses : f: (_: a -> Prims.GTot b) -> g: (_: b -> Prims.GTot a) -> Prims.logical | [] | LowStar.BufferView.inverses | {
"file_name": "ulib/LowStar.BufferView.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a -> Prims.GTot b) -> g: (_: b -> Prims.GTot a) -> Prims.logical | {
"end_col": 26,
"end_line": 43,
"start_col": 2,
"start_line": 42
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_buffer_t (#dest:Type) (b:buffer dest) = B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b) | let as_buffer_t (#dest: Type) (b: buffer dest) = | false | null | false | B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b) | {
"checked_file": "LowStar.BufferView.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.fsti"
} | [
"total"
] | [
"LowStar.BufferView.buffer",
"LowStar.Monotonic.Buffer.mbuffer",
"FStar.Pervasives.__proj__Mkdtuple4__item___1",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.buffer_view",
"FStar.Pervasives.__proj__Mkdtuple4__item___2",
"FStar.Pervasives.__proj__Mkdtuple4__item___3"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView
(**
* A "view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a view requires providing a pair of mutually inverse functions
* from sequences of `a` (sub-sequences of the source buffer)
* to elements of `b`.
*
**)
open LowStar.Monotonic.Buffer
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps `n`-lengthed sequences of `a` to a single `b`
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(Seq.lseq a n -> GTot b) ->
put:(b -> GTot (Seq.lseq a n)) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type has a higher universe, and
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe)
let buffer (dest:Type u#a) : Type u#(max a 1) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest) | false | false | LowStar.BufferView.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_buffer_t : b: LowStar.BufferView.buffer dest -> Type0 | [] | LowStar.BufferView.as_buffer_t | {
"file_name": "ulib/LowStar.BufferView.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.BufferView.buffer dest -> Type0 | {
"end_col": 110,
"end_line": 82,
"start_col": 47,
"start_line": 82
} |
|
Prims.Tot | val buffer (dest: Type u#a) : Type u#(max a 1) | [
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let buffer (dest:Type u#a) : Type u#(max a 1) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest) | val buffer (dest: Type u#a) : Type u#(max a 1)
let buffer (dest: Type u#a) : Type u#(max a 1) = | false | null | false | (src: Type0 & rrel: B.srel src & rel: B.srel src & buffer_view src rrel rel dest) | {
"checked_file": "LowStar.BufferView.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.fsti"
} | [
"total"
] | [
"FStar.Pervasives.dtuple4",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.buffer_view"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView
(**
* A "view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a view requires providing a pair of mutually inverse functions
* from sequences of `a` (sub-sequences of the source buffer)
* to elements of `b`.
*
**)
open LowStar.Monotonic.Buffer
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps `n`-lengthed sequences of `a` to a single `b`
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(Seq.lseq a n -> GTot b) ->
put:(b -> GTot (Seq.lseq a n)) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type has a higher universe, and
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe) | false | true | LowStar.BufferView.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val buffer (dest: Type u#a) : Type u#(max a 1) | [] | LowStar.BufferView.buffer | {
"file_name": "ulib/LowStar.BufferView.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | dest: Type -> Type | {
"end_col": 126,
"end_line": 80,
"start_col": 48,
"start_line": 80
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let live #b h (vb:buffer b) = live h (as_buffer vb) | let live #b h (vb: buffer b) = | false | null | false | live h (as_buffer vb) | {
"checked_file": "LowStar.BufferView.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.fsti"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowStar.BufferView.buffer",
"LowStar.Monotonic.Buffer.live",
"FStar.Pervasives.__proj__Mkdtuple4__item___1",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.buffer_view",
"FStar.Pervasives.__proj__Mkdtuple4__item___2",
"FStar.Pervasives.__proj__Mkdtuple4__item___3",
"LowStar.BufferView.as_buffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView
(**
* A "view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a view requires providing a pair of mutually inverse functions
* from sequences of `a` (sub-sequences of the source buffer)
* to elements of `b`.
*
**)
open LowStar.Monotonic.Buffer
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps `n`-lengthed sequences of `a` to a single `b`
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(Seq.lseq a n -> GTot b) ->
put:(b -> GTot (Seq.lseq a n)) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type has a higher universe, and
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe)
let buffer (dest:Type u#a) : Type u#(max a 1) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest)
let as_buffer_t (#dest:Type) (b:buffer dest) = B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b)
/// `mk_buffer_view`: The main constructor
val mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest{
length b % View?.n v == 0
})
: GTot (buffer dest)
/// `as_buffer`: Projecting the underlying B.buffer from its view
val as_buffer (#b:Type) (v:buffer b) : as_buffer_t v
/// A lemma-relating projector to constructor
val as_buffer_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest{
length b % View?.n v == 0
})
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
Mkdtuple4?._2 bv == rrel /\
Mkdtuple4?._3 bv == rel /\
as_buffer bv == b)
[SMTPat (as_buffer (mk_buffer_view b v))]
/// `get_view`: Projecting the view functions itself
val get_view (#b : Type) (v:buffer b) : view (Mkdtuple4?._1 v) b
/// A lemma-relating projector to constructor
val get_view_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest{
length b % View?.n v == 0
})
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
get_view bv == v)
[SMTPat (get_view (mk_buffer_view b v))]
/// `live h vb`: liveness of a buffer view corresponds to liveness of
/// the underlying buffer | false | false | LowStar.BufferView.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val live : h: FStar.Monotonic.HyperStack.mem -> vb: LowStar.BufferView.buffer b -> Type0 | [] | LowStar.BufferView.live | {
"file_name": "ulib/LowStar.BufferView.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | h: FStar.Monotonic.HyperStack.mem -> vb: LowStar.BufferView.buffer b -> Type0 | {
"end_col": 51,
"end_line": 126,
"start_col": 30,
"start_line": 126
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modifies (#b: _)
(vb:buffer b)
(h h':HS.mem)
= B.modifies (B.loc_buffer (as_buffer vb)) h h' | let modifies (#b: _) (vb: buffer b) (h h': HS.mem) = | false | null | false | B.modifies (B.loc_buffer (as_buffer vb)) h h' | {
"checked_file": "LowStar.BufferView.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferView.fsti"
} | [
"total"
] | [
"LowStar.BufferView.buffer",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Pervasives.__proj__Mkdtuple4__item___1",
"LowStar.Monotonic.Buffer.srel",
"LowStar.BufferView.buffer_view",
"FStar.Pervasives.__proj__Mkdtuple4__item___2",
"FStar.Pervasives.__proj__Mkdtuple4__item___3",
"LowStar.BufferView.as_buffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferView
(**
* A "view" on a buffer allows treating a
* `Buffer.buffer a` as a
* `BufferView.buffer b`
*
* A "view" on a buffer is intended for specification purposes only
* It does not correspond to a pointer cast in C.
*
* Building a view requires providing a pair of mutually inverse functions
* from sequences of `a` (sub-sequences of the source buffer)
* to elements of `b`.
*
**)
open LowStar.Monotonic.Buffer
module HS=FStar.HyperStack
module B=LowStar.Monotonic.Buffer
(** Definition of a view **)
/// `f` and `g` are mutual inverses
let inverses #a #b
(f: (a -> GTot b))
(g: (b -> GTot a)) =
(forall x. g (f x) == x) /\
(forall y. f (g y) == y)
/// `view a b` maps `n`-lengthed sequences of `a` to a single `b`
noeq
type view (a:Type) (b:Type) =
| View : n:pos ->
get:(Seq.lseq a n -> GTot b) ->
put:(b -> GTot (Seq.lseq a n)) {
inverses get put
} ->
view a b
/// `buffer_views src dest`:
///
/// The main abstract type provided by this module. This type is
/// indexed by both the `src` and `dest` types. The former (`src`) is
/// the type of the underlying B.buffer's contents: as such, it is
/// forced to be in universe 0.
///
/// The destination type `dest` is for specification only and is not
/// subject to the same universe constraints by the memory model.
val buffer_view (src:Type0) (rrel rel:B.srel src) (dest:Type u#b) : Type u#b
/// `buffer b`: In contrast to `buffer_view`, `buffer b` hides the
/// source type of the view. As such, it is likely more convenient to
/// use in specifications and the rest of this interface is designed
/// around this type.
///
/// However, the type has a higher universe, and
/// this means, for instance, that values of `buffer b` cannot be
/// stored in the heap.
///
/// We leave its definition transparent in case clients wish to
/// manipulate both the `src` and `dest` types explicitly (e.g., to
/// stay in a lower universe)
let buffer (dest:Type u#a) : Type u#(max a 1) = (src:Type0 & rrel:B.srel src & rel:B.srel src & buffer_view src rrel rel dest)
let as_buffer_t (#dest:Type) (b:buffer dest) = B.mbuffer (Mkdtuple4?._1 b) (Mkdtuple4?._2 b) (Mkdtuple4?._3 b)
/// `mk_buffer_view`: The main constructor
val mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest{
length b % View?.n v == 0
})
: GTot (buffer dest)
/// `as_buffer`: Projecting the underlying B.buffer from its view
val as_buffer (#b:Type) (v:buffer b) : as_buffer_t v
/// A lemma-relating projector to constructor
val as_buffer_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest{
length b % View?.n v == 0
})
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
Mkdtuple4?._2 bv == rrel /\
Mkdtuple4?._3 bv == rel /\
as_buffer bv == b)
[SMTPat (as_buffer (mk_buffer_view b v))]
/// `get_view`: Projecting the view functions itself
val get_view (#b : Type) (v:buffer b) : view (Mkdtuple4?._1 v) b
/// A lemma-relating projector to constructor
val get_view_mk_buffer_view (#src:Type0) (#rrel #rel:B.srel src) (#dest:Type)
(b:B.mbuffer src rrel rel)
(v:view src dest{
length b % View?.n v == 0
})
: Lemma (let bv = mk_buffer_view b v in
Mkdtuple4?._1 bv == src /\
get_view bv == v)
[SMTPat (get_view (mk_buffer_view b v))]
/// `live h vb`: liveness of a buffer view corresponds to liveness of
/// the underlying buffer
unfold
let live #b h (vb:buffer b) = live h (as_buffer vb)
/// `length vb`: is defined in terms of the underlying buffer
///
/// Internally, it is defined as
///
/// ```
/// length (as_buffer vb) / View?.n (get_view vb)
/// ```
///
/// However, rather than expose this definition (which uses non-linear
/// arithmetic) to callers, we treat length abstractly.
///
/// To reveal its definition explicitly, use the `length_eq` lemma below.
val length (#b: _) (vb:buffer b)
: GTot nat
/// `length_eq`: Reveals the definition of the `length` function
val length_eq (#b: _) (vb:buffer b)
: Lemma (length vb = B.length (as_buffer vb) / View?.n (get_view vb))
/// `view_indexing`: A lemma that requires a bit of non-linear
/// arithmetic, necessary for some of the specs below and convenient
/// when relating the underlying buffer to its view.
val view_indexing (#b: _) (vb:buffer b) (i:nat{i < length vb})
: Lemma (let open FStar.Mul in
let n = View?.n (get_view vb) in
n <= length vb * n - i * n)
/// `sel h vb i` : selects element at index `i` from the buffer `vb` in heap `h`
val sel (#b: _)
(h:HS.mem)
(vb:buffer b)
(i:nat{i < length vb})
: GTot b
/// `upd h vb i x`: stores `x` at index `i` in the buffer `vb` in heap `h`
val upd (#b: _)
(h:HS.mem)
(vb:buffer b{live h vb})
(i:nat{i < length vb})
(x:b)
: GTot HS.mem
/// `sel_upd`: A classic select/update lemma for reasoning about maps
val sel_upd (#b:_)
(vb:buffer b)
(i:nat{i < length vb})
(j:nat{j < length vb})
(x:b)
(h:HS.mem{live h vb})
: Lemma (if i = j
then sel (upd h vb i x) vb j == x
else sel (upd h vb i x) vb j == sel h vb j)
[SMTPat (sel (upd h vb i x) vb j)]
val lemma_upd_with_sel (#b:_)
(vb:buffer b)
(i:nat{i < length vb})
(h:HS.mem{live h vb})
:Lemma (upd h vb i (sel h vb i) == h)
/// `modifies` on views is just defined in terms of the underlying buffer
unfold
let modifies (#b: _)
(vb:buffer b) | false | false | LowStar.BufferView.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modifies : vb: LowStar.BufferView.buffer b ->
h: FStar.Monotonic.HyperStack.mem ->
h': FStar.Monotonic.HyperStack.mem
-> Type0 | [] | LowStar.BufferView.modifies | {
"file_name": "ulib/LowStar.BufferView.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
vb: LowStar.BufferView.buffer b ->
h: FStar.Monotonic.HyperStack.mem ->
h': FStar.Monotonic.HyperStack.mem
-> Type0 | {
"end_col": 51,
"end_line": 193,
"start_col": 6,
"start_line": 193
} |
|
Prims.Tot | val blake2_update'
(a: alg)
(kk: size_nat{kk <= max_key a})
(k: lbytes kk)
(d: bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a})
(s: state a)
: Tot (state a) | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2_update'
(a:alg)
(kk:size_nat{kk <= max_key a})
(k:lbytes kk)
(d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a})
(s:state a): Tot (state a)
= let ll = length d in
let key_block: bytes = if kk > 0 then blake2_key_block a kk k else Seq.empty in
blake2_update_blocks a 0 (key_block `Seq.append` d) s | val blake2_update'
(a: alg)
(kk: size_nat{kk <= max_key a})
(k: lbytes kk)
(d: bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a})
(s: state a)
: Tot (state a)
let blake2_update'
(a: alg)
(kk: size_nat{kk <= max_key a})
(k: lbytes kk)
(d: bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a})
(s: state a)
: Tot (state a) = | false | null | false | let ll = length d in
let key_block:bytes = if kk > 0 then blake2_key_block a kk k else Seq.empty in
blake2_update_blocks a 0 (key_block `Seq.append` d) s | {
"checked_file": "Spec.Blake2.Alternative.fsti.checked",
"dependencies": [
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.Blake2.Alternative.fsti"
} | [
"total"
] | [
"Spec.Blake2.alg",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Blake2.max_key",
"Lib.ByteSequence.lbytes",
"Lib.ByteSequence.bytes",
"Prims.op_Equality",
"Prims.int",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Blake2.max_limb",
"Prims.bool",
"Prims.op_Addition",
"Spec.Blake2.size_block",
"Spec.Blake2.state",
"Spec.Blake2.blake2_update_blocks",
"FStar.Seq.Base.append",
"Lib.IntTypes.int_t",
"Lib.Sequence.seq",
"Prims.op_GreaterThan",
"Spec.Blake2.blake2_key_block",
"FStar.Seq.Base.empty",
"Prims.nat"
] | [] | module Spec.Blake2.Alternative
open Spec.Blake2
open Lib.IntTypes
open Lib.ByteSequence
open Lib.Sequence
let blake2_update'
(a:alg)
(kk:size_nat{kk <= max_key a})
(k:lbytes kk)
(d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a}) | false | false | Spec.Blake2.Alternative.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2_update'
(a: alg)
(kk: size_nat{kk <= max_key a})
(k: lbytes kk)
(d: bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a})
(s: state a)
: Tot (state a) | [] | Spec.Blake2.Alternative.blake2_update' | {
"file_name": "specs/lemmas/Spec.Blake2.Alternative.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Blake2.alg ->
kk: Lib.IntTypes.size_nat{kk <= Spec.Blake2.max_key a} ->
k: Lib.ByteSequence.lbytes kk ->
d:
Lib.ByteSequence.bytes
{ (match kk = 0 with
| true -> Lib.Sequence.length d <= Spec.Blake2.max_limb a
| _ -> Lib.Sequence.length d + Spec.Blake2.size_block a <= Spec.Blake2.max_limb a)
<:
Type0 } ->
s: Spec.Blake2.state a
-> Spec.Blake2.state a | {
"end_col": 55,
"end_line": 17,
"start_col": 1,
"start_line": 15
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.GhostPCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.GhostPCMReference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pts_to_body #a #p (r:ref a p) (f:perm) (v:a) (h:history a p) =
PR.pts_to r h `star`
pure (history_val h v f) | let pts_to_body #a #p (r: ref a p) (f: perm) (v: a) (h: history a p) = | false | null | false | (PR.pts_to r h) `star` (pure (history_val h v f)) | {
"checked_file": "Steel.GhostMonotonicHigherReference.fst.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.GhostPCMReference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.GhostMonotonicHigherReference.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.GhostMonotonicHigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.Preorder.history",
"Steel.Effect.Common.star",
"Steel.GhostPCMReference.pts_to",
"Steel.Preorder.pcm_history",
"Steel.Effect.Common.pure",
"Steel.Preorder.history_val",
"FStar.Ghost.hide",
"Steel.Effect.Common.vprop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.GhostMonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.GhostPCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.GhostPCMReference
module A = Steel.Effect.Atomic
open FStar.Real
#set-options "--ide_id_info_off"
let ref a p = PR.ref (history a p) pcm_history
[@@__reduce__] | false | false | Steel.GhostMonotonicHigherReference.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pts_to_body : r: Steel.GhostMonotonicHigherReference.ref a p ->
f: Steel.FractionalPermission.perm ->
v: a ->
h: Steel.Preorder.history a p
-> Steel.Effect.Common.vprop | [] | Steel.GhostMonotonicHigherReference.pts_to_body | {
"file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
r: Steel.GhostMonotonicHigherReference.ref a p ->
f: Steel.FractionalPermission.perm ->
v: a ->
h: Steel.Preorder.history a p
-> Steel.Effect.Common.vprop | {
"end_col": 30,
"end_line": 42,
"start_col": 6,
"start_line": 41
} |
|
Prims.Tot | val ref (a:Type u#1) (p:Preorder.preorder a)
: Type u#0 | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.GhostPCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.GhostPCMReference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ref a p = PR.ref (history a p) pcm_history | val ref (a:Type u#1) (p:Preorder.preorder a)
: Type u#0
let ref a p = | false | null | false | PR.ref (history a p) pcm_history | {
"checked_file": "Steel.GhostMonotonicHigherReference.fst.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.GhostPCMReference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.GhostMonotonicHigherReference.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.GhostPCMReference.ref",
"Steel.Preorder.history",
"Steel.Preorder.pcm_history"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.GhostMonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.GhostPCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.GhostPCMReference
module A = Steel.Effect.Atomic
open FStar.Real
#set-options "--ide_id_info_off" | false | false | Steel.GhostMonotonicHigherReference.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ref (a:Type u#1) (p:Preorder.preorder a)
: Type u#0 | [] | Steel.GhostMonotonicHigherReference.ref | {
"file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | a: Type -> p: FStar.Preorder.preorder a -> Type0 | {
"end_col": 46,
"end_line": 37,
"start_col": 14,
"start_line": 37
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.GhostPCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.GhostPCMReference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v: a) =
h_exists (pts_to_body r f v) | let pts_to' (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: a) = | false | null | false | h_exists (pts_to_body r f v) | {
"checked_file": "Steel.GhostMonotonicHigherReference.fst.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.GhostPCMReference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.GhostMonotonicHigherReference.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.GhostMonotonicHigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.Effect.Atomic.h_exists",
"Steel.Preorder.history",
"Steel.GhostMonotonicHigherReference.pts_to_body",
"Steel.Effect.Common.vprop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.GhostMonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.GhostPCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.GhostPCMReference
module A = Steel.Effect.Atomic
open FStar.Real
#set-options "--ide_id_info_off"
let ref a p = PR.ref (history a p) pcm_history
[@@__reduce__]
let pts_to_body #a #p (r:ref a p) (f:perm) (v:a) (h:history a p) =
PR.pts_to r h `star`
pure (history_val h v f) | false | false | Steel.GhostMonotonicHigherReference.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pts_to' : r: Steel.GhostMonotonicHigherReference.ref a p -> f: Steel.FractionalPermission.perm -> v: a
-> Steel.Effect.Common.vprop | [] | Steel.GhostMonotonicHigherReference.pts_to' | {
"file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | r: Steel.GhostMonotonicHigherReference.ref a p -> f: Steel.FractionalPermission.perm -> v: a
-> Steel.Effect.Common.vprop | {
"end_col": 32,
"end_line": 45,
"start_col": 4,
"start_line": 45
} |
|
Prims.Tot | val pts_to_sl (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a)
: slprop u#1 | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.GhostPCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.GhostPCMReference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pts_to_sl r f v = hp_of (pts_to' r f v) | val pts_to_sl (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a)
: slprop u#1
let pts_to_sl r f v = | false | null | false | hp_of (pts_to' r f v) | {
"checked_file": "Steel.GhostMonotonicHigherReference.fst.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.GhostPCMReference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.GhostMonotonicHigherReference.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.GhostMonotonicHigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.Effect.Common.hp_of",
"Steel.GhostMonotonicHigherReference.pts_to'",
"Steel.Memory.slprop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.GhostMonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.GhostPCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.GhostPCMReference
module A = Steel.Effect.Atomic
open FStar.Real
#set-options "--ide_id_info_off"
let ref a p = PR.ref (history a p) pcm_history
[@@__reduce__]
let pts_to_body #a #p (r:ref a p) (f:perm) (v:a) (h:history a p) =
PR.pts_to r h `star`
pure (history_val h v f)
let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v: a) =
h_exists (pts_to_body r f v) | false | false | Steel.GhostMonotonicHigherReference.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pts_to_sl (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a)
: slprop u#1 | [] | Steel.GhostMonotonicHigherReference.pts_to_sl | {
"file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | r: Steel.GhostMonotonicHigherReference.ref a p -> f: Steel.FractionalPermission.perm -> v: a
-> Steel.Memory.slprop | {
"end_col": 43,
"end_line": 47,
"start_col": 22,
"start_line": 47
} |
Prims.Tot | val witnessed (#a:Type u#1) (#p:Preorder.preorder a) (r:ref a p) (fact:property a)
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.GhostPCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.GhostPCMReference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let witnessed #a #p r fact =
PR.witnessed r (lift_fact fact) | val witnessed (#a:Type u#1) (#p:Preorder.preorder a) (r:ref a p) (fact:property a)
: Type0
let witnessed #a #p r fact = | false | null | false | PR.witnessed r (lift_fact fact) | {
"checked_file": "Steel.GhostMonotonicHigherReference.fst.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.GhostPCMReference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.GhostMonotonicHigherReference.fst"
} | [
"total"
] | [
"FStar.Preorder.preorder",
"Steel.GhostMonotonicHigherReference.ref",
"Steel.GhostMonotonicHigherReference.property",
"Steel.GhostPCMReference.witnessed",
"Steel.Preorder.history",
"Steel.Preorder.pcm_history",
"Steel.Preorder.lift_fact"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.GhostMonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.GhostPCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.GhostPCMReference
module A = Steel.Effect.Atomic
open FStar.Real
#set-options "--ide_id_info_off"
let ref a p = PR.ref (history a p) pcm_history
[@@__reduce__]
let pts_to_body #a #p (r:ref a p) (f:perm) (v:a) (h:history a p) =
PR.pts_to r h `star`
pure (history_val h v f)
let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v: a) =
h_exists (pts_to_body r f v)
let pts_to_sl r f v = hp_of (pts_to' r f v)
let intro_pure #opened #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelGhostT unit opened
(PR.pts_to r h)
(fun _ -> pts_to_body r f v h)
= A.intro_pure (history_val h v f)
let intro_pure_full #opened #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelGhostT unit opened
(PR.pts_to r h)
(fun _ -> pts_to r f v)
= intro_pure #_ #a #p #f r v h;
intro_exists h (pts_to_body r f v)
let alloc #_ (#a:Type) (p:Preorder.preorder a) (v:a)
= let h = Current [v] full_perm in
assert (compatible pcm_history h h);
let x : ref a p = alloc h in
intro_pure_full x v h;
x
let extract_pure #a #uses #p #f
(r:ref a p)
(v:a)
(h:(history a p))
: SteelGhostT (_:unit{history_val h v f})
uses
(pts_to_body r f v h)
(fun _ -> pts_to_body r f v h)
= elim_pure (history_val h v f);
A.intro_pure (history_val h v f)
let elim_pure #a #uses #p #f
(r:ref a p)
(v:a)
(h:(history a p))
: SteelGhostT (_:unit{history_val h v f})
uses
(pts_to_body r f v h)
(fun _ -> PR.pts_to r h)
= let _ = extract_pure r v h in
drop (pure (history_val h v f))
let write (#opened: _) (#a:Type) (#p:Preorder.preorder a) (#v:a)
(r:ref a p) (x:a)
: SteelGhost unit opened (pts_to r full_perm v)
(fun v -> pts_to r full_perm x)
(requires fun _ -> p v x /\ True)
(ensures fun _ _ _ -> True)
= let h_old_e = witness_exists #_ #_ #(pts_to_body r full_perm v) () in
let _ = elim_pure r v h_old_e in
let h_old = read r in
let h: history a p = extend_history' h_old x in
write r h_old_e h;
intro_pure_full r x h | false | false | Steel.GhostMonotonicHigherReference.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val witnessed (#a:Type u#1) (#p:Preorder.preorder a) (r:ref a p) (fact:property a)
: Type0 | [] | Steel.GhostMonotonicHigherReference.witnessed | {
"file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
r: Steel.GhostMonotonicHigherReference.ref a p ->
fact: Steel.GhostMonotonicHigherReference.property a
-> Type0 | {
"end_col": 33,
"end_line": 113,
"start_col": 2,
"start_line": 113
} |
Steel.Effect.Atomic.SteelGhostT | val intro_pts_to (#o: _) (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: a)
: SteelGhostT unit o (pts_to' r f v) (fun _ -> pts_to' r f v) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.GhostPCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.GhostPCMReference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intro_pts_to #o (#a:Type)
(#p:Preorder.preorder a)
(r:ref a p)
(f:perm)
(v:a)
: SteelGhostT unit o
(pts_to' r f v)
(fun _ -> pts_to' r f v)
= rewrite_slprop _ _ (fun _ -> ()) | val intro_pts_to (#o: _) (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: a)
: SteelGhostT unit o (pts_to' r f v) (fun _ -> pts_to' r f v)
let intro_pts_to #o (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: a)
: SteelGhostT unit o (pts_to' r f v) (fun _ -> pts_to' r f v) = | true | null | false | rewrite_slprop _ _ (fun _ -> ()) | {
"checked_file": "Steel.GhostMonotonicHigherReference.fst.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.GhostPCMReference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.GhostMonotonicHigherReference.fst"
} | [] | [
"Steel.Memory.inames",
"FStar.Preorder.preorder",
"Steel.GhostMonotonicHigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.Effect.Atomic.rewrite_slprop",
"Steel.GhostMonotonicHigherReference.pts_to'",
"Steel.Memory.mem",
"Prims.unit",
"Steel.Effect.Common.vprop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.GhostMonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.GhostPCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.GhostPCMReference
module A = Steel.Effect.Atomic
open FStar.Real
#set-options "--ide_id_info_off"
let ref a p = PR.ref (history a p) pcm_history
[@@__reduce__]
let pts_to_body #a #p (r:ref a p) (f:perm) (v:a) (h:history a p) =
PR.pts_to r h `star`
pure (history_val h v f)
let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v: a) =
h_exists (pts_to_body r f v)
let pts_to_sl r f v = hp_of (pts_to' r f v)
let intro_pure #opened #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelGhostT unit opened
(PR.pts_to r h)
(fun _ -> pts_to_body r f v h)
= A.intro_pure (history_val h v f)
let intro_pure_full #opened #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelGhostT unit opened
(PR.pts_to r h)
(fun _ -> pts_to r f v)
= intro_pure #_ #a #p #f r v h;
intro_exists h (pts_to_body r f v)
let alloc #_ (#a:Type) (p:Preorder.preorder a) (v:a)
= let h = Current [v] full_perm in
assert (compatible pcm_history h h);
let x : ref a p = alloc h in
intro_pure_full x v h;
x
let extract_pure #a #uses #p #f
(r:ref a p)
(v:a)
(h:(history a p))
: SteelGhostT (_:unit{history_val h v f})
uses
(pts_to_body r f v h)
(fun _ -> pts_to_body r f v h)
= elim_pure (history_val h v f);
A.intro_pure (history_val h v f)
let elim_pure #a #uses #p #f
(r:ref a p)
(v:a)
(h:(history a p))
: SteelGhostT (_:unit{history_val h v f})
uses
(pts_to_body r f v h)
(fun _ -> PR.pts_to r h)
= let _ = extract_pure r v h in
drop (pure (history_val h v f))
let write (#opened: _) (#a:Type) (#p:Preorder.preorder a) (#v:a)
(r:ref a p) (x:a)
: SteelGhost unit opened (pts_to r full_perm v)
(fun v -> pts_to r full_perm x)
(requires fun _ -> p v x /\ True)
(ensures fun _ _ _ -> True)
= let h_old_e = witness_exists #_ #_ #(pts_to_body r full_perm v) () in
let _ = elim_pure r v h_old_e in
let h_old = read r in
let h: history a p = extend_history' h_old x in
write r h_old_e h;
intro_pure_full r x h
let witnessed #a #p r fact =
PR.witnessed r (lift_fact fact)
let get_squash (#p:prop) (_:unit{p}) : squash p = ()
let witness_thunk (#inames: _) (#a:Type) (#pcm:FStar.PCM.pcm a)
(r:PR.ref a pcm)
(fact:M.stable_property pcm)
(v:erased a)
(sq:squash (fact_valid_compat #_ #pcm fact v))
(_:unit)
: SteelAtomicUT (PR.witnessed r fact) inames
(PR.pts_to r v)
(fun _ -> PR.pts_to r v)
= witness r fact v sq
let witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a)
(r:ref a p)
(fact:stable_property p)
(v:erased a)
(_:squash (fact v))
: SteelAtomicUT (witnessed r fact) inames
(pts_to r q v)
(fun _ -> pts_to r q v)
= let h = witness_exists #_ #_ #(pts_to_body r q v) () in
let _ = elim_pure #_ #_ #_ #q r v h in
assert (forall h'. compatible pcm_history h h' ==> lift_fact fact h');
lift_fact_is_stable #a #p fact;
let w = witness_thunk #_ #_ #(pcm_history #a #p) r (lift_fact fact) h () () in
intro_pure_full r v h;
rewrite_slprop (pts_to _ q _) (pts_to r q v) (fun _ -> ());
return w
let recall (#inames: _) (#a:Type u#1) (#q:perm) (#p:Preorder.preorder a) (fact:property a)
(r:ref a p) (v:erased a) (w:witnessed r fact)
= let h = witness_exists #_ #_ #(pts_to_body r q v) () in
let _ = elim_pure #_ #_ #_ #q r v h in
let h1 = recall (lift_fact fact) r h w in
intro_pure_full r v h;
rewrite_slprop (pts_to _ q _) (pts_to r q v) (fun _ -> ())
let elim_pts_to #o (#a:Type)
(#p:Preorder.preorder a)
(r:ref a p)
(f:perm)
(v:a)
: SteelGhostT unit o
(pts_to r f v)
(fun _ -> pts_to' r f v)
= rewrite_slprop _ _ (fun _ -> ())
let intro_pts_to #o (#a:Type)
(#p:Preorder.preorder a)
(r:ref a p)
(f:perm)
(v:a)
: SteelGhostT unit o
(pts_to' r f v) | false | false | Steel.GhostMonotonicHigherReference.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intro_pts_to (#o: _) (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: a)
: SteelGhostT unit o (pts_to' r f v) (fun _ -> pts_to' r f v) | [] | Steel.GhostMonotonicHigherReference.intro_pts_to | {
"file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | r: Steel.GhostMonotonicHigherReference.ref a p -> f: Steel.FractionalPermission.perm -> v: a
-> Steel.Effect.Atomic.SteelGhostT Prims.unit | {
"end_col": 38,
"end_line": 178,
"start_col": 6,
"start_line": 178
} |
Steel.Effect.Atomic.SteelGhostT | val intro_pure (#opened #a #p #f: _) (r: ref a p) (v: a) (h: history a p {history_val h v f})
: SteelGhostT unit opened (PR.pts_to r h) (fun _ -> pts_to_body r f v h) | [
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.GhostPCMReference",
"short_module": "PR"
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.Preorder",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.GhostPCMReference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Preorder",
"short_module": "Preorder"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let intro_pure #opened #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelGhostT unit opened
(PR.pts_to r h)
(fun _ -> pts_to_body r f v h)
= A.intro_pure (history_val h v f) | val intro_pure (#opened #a #p #f: _) (r: ref a p) (v: a) (h: history a p {history_val h v f})
: SteelGhostT unit opened (PR.pts_to r h) (fun _ -> pts_to_body r f v h)
let intro_pure #opened #a #p #f (r: ref a p) (v: a) (h: history a p {history_val h v f})
: SteelGhostT unit opened (PR.pts_to r h) (fun _ -> pts_to_body r f v h) = | true | null | false | A.intro_pure (history_val h v f) | {
"checked_file": "Steel.GhostMonotonicHigherReference.fst.checked",
"dependencies": [
"Steel.Preorder.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.GhostPCMReference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.GhostMonotonicHigherReference.fst"
} | [] | [
"Steel.Memory.inames",
"FStar.Preorder.preorder",
"Steel.FractionalPermission.perm",
"Steel.GhostMonotonicHigherReference.ref",
"Steel.Preorder.history",
"Steel.Preorder.history_val",
"FStar.Ghost.hide",
"Steel.Effect.Atomic.intro_pure",
"Prims.unit",
"Steel.GhostPCMReference.pts_to",
"Steel.Preorder.pcm_history",
"Steel.GhostMonotonicHigherReference.pts_to_body",
"Steel.Effect.Common.vprop"
] | [] | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.GhostMonotonicHigherReference
open FStar.Ghost
open FStar.PCM
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.GhostPCMReference
open Steel.FractionalPermission
open Steel.Preorder
module Preorder = FStar.Preorder
module Q = Steel.Preorder
module M = Steel.Memory
module PR = Steel.GhostPCMReference
module A = Steel.Effect.Atomic
open FStar.Real
#set-options "--ide_id_info_off"
let ref a p = PR.ref (history a p) pcm_history
[@@__reduce__]
let pts_to_body #a #p (r:ref a p) (f:perm) (v:a) (h:history a p) =
PR.pts_to r h `star`
pure (history_val h v f)
let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v: a) =
h_exists (pts_to_body r f v)
let pts_to_sl r f v = hp_of (pts_to' r f v)
let intro_pure #opened #a #p #f
(r:ref a p)
(v:a)
(h:history a p { history_val h v f })
: SteelGhostT unit opened
(PR.pts_to r h) | false | false | Steel.GhostMonotonicHigherReference.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val intro_pure (#opened #a #p #f: _) (r: ref a p) (v: a) (h: history a p {history_val h v f})
: SteelGhostT unit opened (PR.pts_to r h) (fun _ -> pts_to_body r f v h) | [] | Steel.GhostMonotonicHigherReference.intro_pure | {
"file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
r: Steel.GhostMonotonicHigherReference.ref a p ->
v: a ->
h: Steel.Preorder.history a p {Steel.Preorder.history_val h (FStar.Ghost.hide v) f}
-> Steel.Effect.Atomic.SteelGhostT Prims.unit | {
"end_col": 36,
"end_line": 56,
"start_col": 4,
"start_line": 56
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.