effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64) | val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
let uint64_to_int64 x = | false | null | false | I64.int_to_t (U64.v x @% pow2 64) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.Int64.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.UInt64.v",
"Prims.pow2",
"FStar.Int64.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int64.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)}) | [] | FStar.Int.Cast.uint64_to_int64 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt64.t -> b: FStar.Int64.t{FStar.Int64.v b = FStar.UInt64.v a @% Prims.pow2 64} | {
"end_col": 57,
"end_line": 170,
"start_col": 24,
"start_line": 170
} |
Prims.Tot | val int64_to_uint32: a:I64.t -> Tot (b:U32.t{U32.v b = I64.v a % pow2 32}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int64_to_uint32 x = U32.uint_to_t (I64.v x % pow2 32) | val int64_to_uint32: a:I64.t -> Tot (b:U32.t{U32.v b = I64.v a % pow2 32})
let int64_to_uint32 x = | false | null | false | U32.uint_to_t (I64.v x % pow2 32) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int64.t",
"FStar.UInt32.uint_to_t",
"Prims.op_Modulus",
"FStar.Int64.v",
"Prims.pow2",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt32.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int32 x = I32.int_to_t (U64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int16: a:U64.t -> Tot (b:I16.t{I16.v b = (U64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int16 x = I16.int_to_t (U64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int8 x = I8.int_to_t (U64.v x @% pow2 8)
/// Signed to unsigned
val int8_to_uint64: a:I8.t -> Tot (b:U64.t{U64.v b = I8.v a % pow2 64})
let int8_to_uint64 x = U64.uint_to_t (I8.v x % pow2 64)
val int8_to_uint32: a:I8.t -> Tot (b:U32.t{U32.v b = I8.v a % pow2 32})
let int8_to_uint32 x = U32.uint_to_t (I8.v x % pow2 32)
val int8_to_uint16: a:I8.t -> Tot (b:U16.t{U16.v b = I8.v a % pow2 16})
let int8_to_uint16 x = U16.uint_to_t (I8.v x % pow2 16)
val int8_to_uint8 : a:I8.t -> Tot (b:U8.t {U8.v b = I8.v a % pow2 8})
let int8_to_uint8 x = U8.uint_to_t (I8.v x % pow2 8)
val int16_to_uint64: a:I16.t -> Tot (b:U64.t{U64.v b = I16.v a % pow2 64})
let int16_to_uint64 x = U64.uint_to_t (I16.v x % pow2 64)
val int16_to_uint32: a:I16.t -> Tot (b:U32.t{U32.v b = I16.v a % pow2 32})
let int16_to_uint32 x = U32.uint_to_t (I16.v x % pow2 32)
val int16_to_uint16: a:I16.t -> Tot (b:U16.t{U16.v b = I16.v a % pow2 16})
let int16_to_uint16 x = U16.uint_to_t (I16.v x % pow2 16)
val int16_to_uint8 : a:I16.t -> Tot (b:U8.t {U8.v b = I16.v a % pow2 8})
let int16_to_uint8 x = U8.uint_to_t (I16.v x % pow2 8)
val int32_to_uint64: a:I32.t -> Tot (b:U64.t{U64.v b = I32.v a % pow2 64})
let int32_to_uint64 x = U64.uint_to_t (I32.v x % pow2 64)
val int32_to_uint32: a:I32.t -> Tot (b:U32.t{U32.v b = I32.v a % pow2 32})
let int32_to_uint32 x = U32.uint_to_t (I32.v x % pow2 32)
val int32_to_uint16: a:I32.t -> Tot (b:U16.t{U16.v b = I32.v a % pow2 16})
let int32_to_uint16 x = U16.uint_to_t (I32.v x % pow2 16)
val int32_to_uint8 : a:I32.t -> Tot (b:U8.t {U8.v b = I32.v a % pow2 8})
let int32_to_uint8 x = U8.uint_to_t (I32.v x % pow2 8)
val int64_to_uint64: a:I64.t -> Tot (b:U64.t{U64.v b = I64.v a % pow2 64})
let int64_to_uint64 x = U64.uint_to_t (I64.v x % pow2 64) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int64_to_uint32: a:I64.t -> Tot (b:U32.t{U32.v b = I64.v a % pow2 32}) | [] | FStar.Int.Cast.int64_to_uint32 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int64.t -> b: FStar.UInt32.t{FStar.UInt32.v b = FStar.Int64.v a % Prims.pow2 32} | {
"end_col": 57,
"end_line": 229,
"start_col": 24,
"start_line": 229
} |
Prims.Tot | val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8) | val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
let uint16_to_int8 x = | false | null | false | I8.int_to_t (U16.v x @% pow2 8) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"FStar.Int8.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.UInt16.v",
"Prims.pow2",
"FStar.Int8.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int8.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)}) | [] | FStar.Int.Cast.uint16_to_int8 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt16.t -> b: FStar.Int8.t{FStar.Int8.v b = FStar.UInt16.v a @% Prims.pow2 8} | {
"end_col": 54,
"end_line": 147,
"start_col": 23,
"start_line": 147
} |
Prims.Tot | val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8) | val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
let uint32_to_int8 x = | false | null | false | I8.int_to_t (U32.v x @% pow2 8) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"FStar.Int8.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.UInt32.v",
"Prims.pow2",
"FStar.Int8.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int8.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)}) | [] | FStar.Int.Cast.uint32_to_int8 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt32.t -> b: FStar.Int8.t{FStar.Int8.v b = FStar.UInt32.v a @% Prims.pow2 8} | {
"end_col": 54,
"end_line": 165,
"start_col": 23,
"start_line": 165
} |
Prims.Tot | val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint64_to_int32 x = I32.int_to_t (U64.v x @% pow2 32) | val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)})
let uint64_to_int32 x = | false | null | false | I32.int_to_t (U64.v x @% pow2 32) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.Int32.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.UInt64.v",
"Prims.pow2",
"FStar.Int32.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int32.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)}) | [] | FStar.Int.Cast.uint64_to_int32 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt64.t -> b: FStar.Int32.t{FStar.Int32.v b = FStar.UInt64.v a @% Prims.pow2 32} | {
"end_col": 57,
"end_line": 175,
"start_col": 24,
"start_line": 175
} |
Prims.Tot | val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint64_to_int8 x = I8.int_to_t (U64.v x @% pow2 8) | val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)})
let uint64_to_int8 x = | false | null | false | I8.int_to_t (U64.v x @% pow2 8) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.Int8.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.UInt64.v",
"Prims.pow2",
"FStar.Int8.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int8.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int32 x = I32.int_to_t (U64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int16: a:U64.t -> Tot (b:I16.t{I16.v b = (U64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int16 x = I16.int_to_t (U64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)}) | [] | FStar.Int.Cast.uint64_to_int8 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt64.t -> b: FStar.Int8.t{FStar.Int8.v b = FStar.UInt64.v a @% Prims.pow2 8} | {
"end_col": 54,
"end_line": 185,
"start_col": 23,
"start_line": 185
} |
Prims.Tot | val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16) | val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
let int64_to_int16 x = | false | null | false | I16.int_to_t (I64.v x @% pow2 16) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int64.t",
"FStar.Int16.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.Int64.v",
"Prims.pow2",
"FStar.Int16.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int16.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)}) | [] | FStar.Int.Cast.int64_to_int16 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int64.t -> b: FStar.Int16.t{FStar.Int16.v b = FStar.Int64.v a @% Prims.pow2 16} | {
"end_col": 56,
"end_line": 110,
"start_col": 23,
"start_line": 110
} |
Prims.Tot | val int64_to_uint8 : a:I64.t -> Tot (b:U8.t {U8.v b = I64.v a % pow2 8}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int64_to_uint8 x = U8.uint_to_t (I64.v x % pow2 8) | val int64_to_uint8 : a:I64.t -> Tot (b:U8.t {U8.v b = I64.v a % pow2 8})
let int64_to_uint8 x = | false | null | false | U8.uint_to_t (I64.v x % pow2 8) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int64.t",
"FStar.UInt8.uint_to_t",
"Prims.op_Modulus",
"FStar.Int64.v",
"Prims.pow2",
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int32 x = I32.int_to_t (U64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int16: a:U64.t -> Tot (b:I16.t{I16.v b = (U64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int16 x = I16.int_to_t (U64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int8 x = I8.int_to_t (U64.v x @% pow2 8)
/// Signed to unsigned
val int8_to_uint64: a:I8.t -> Tot (b:U64.t{U64.v b = I8.v a % pow2 64})
let int8_to_uint64 x = U64.uint_to_t (I8.v x % pow2 64)
val int8_to_uint32: a:I8.t -> Tot (b:U32.t{U32.v b = I8.v a % pow2 32})
let int8_to_uint32 x = U32.uint_to_t (I8.v x % pow2 32)
val int8_to_uint16: a:I8.t -> Tot (b:U16.t{U16.v b = I8.v a % pow2 16})
let int8_to_uint16 x = U16.uint_to_t (I8.v x % pow2 16)
val int8_to_uint8 : a:I8.t -> Tot (b:U8.t {U8.v b = I8.v a % pow2 8})
let int8_to_uint8 x = U8.uint_to_t (I8.v x % pow2 8)
val int16_to_uint64: a:I16.t -> Tot (b:U64.t{U64.v b = I16.v a % pow2 64})
let int16_to_uint64 x = U64.uint_to_t (I16.v x % pow2 64)
val int16_to_uint32: a:I16.t -> Tot (b:U32.t{U32.v b = I16.v a % pow2 32})
let int16_to_uint32 x = U32.uint_to_t (I16.v x % pow2 32)
val int16_to_uint16: a:I16.t -> Tot (b:U16.t{U16.v b = I16.v a % pow2 16})
let int16_to_uint16 x = U16.uint_to_t (I16.v x % pow2 16)
val int16_to_uint8 : a:I16.t -> Tot (b:U8.t {U8.v b = I16.v a % pow2 8})
let int16_to_uint8 x = U8.uint_to_t (I16.v x % pow2 8)
val int32_to_uint64: a:I32.t -> Tot (b:U64.t{U64.v b = I32.v a % pow2 64})
let int32_to_uint64 x = U64.uint_to_t (I32.v x % pow2 64)
val int32_to_uint32: a:I32.t -> Tot (b:U32.t{U32.v b = I32.v a % pow2 32})
let int32_to_uint32 x = U32.uint_to_t (I32.v x % pow2 32)
val int32_to_uint16: a:I32.t -> Tot (b:U16.t{U16.v b = I32.v a % pow2 16})
let int32_to_uint16 x = U16.uint_to_t (I32.v x % pow2 16)
val int32_to_uint8 : a:I32.t -> Tot (b:U8.t {U8.v b = I32.v a % pow2 8})
let int32_to_uint8 x = U8.uint_to_t (I32.v x % pow2 8)
val int64_to_uint64: a:I64.t -> Tot (b:U64.t{U64.v b = I64.v a % pow2 64})
let int64_to_uint64 x = U64.uint_to_t (I64.v x % pow2 64)
val int64_to_uint32: a:I64.t -> Tot (b:U32.t{U32.v b = I64.v a % pow2 32})
let int64_to_uint32 x = U32.uint_to_t (I64.v x % pow2 32)
val int64_to_uint16: a:I64.t -> Tot (b:U16.t{U16.v b = I64.v a % pow2 16})
let int64_to_uint16 x = U16.uint_to_t (I64.v x % pow2 16) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int64_to_uint8 : a:I64.t -> Tot (b:U8.t {U8.v b = I64.v a % pow2 8}) | [] | FStar.Int.Cast.int64_to_uint8 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int64.t -> b: FStar.UInt8.t{FStar.UInt8.v b = FStar.Int64.v a % Prims.pow2 8} | {
"end_col": 54,
"end_line": 235,
"start_col": 23,
"start_line": 235
} |
Prims.Tot | val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32) | val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
let uint32_to_int32 x = | false | null | false | I32.int_to_t (U32.v x @% pow2 32) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"FStar.Int32.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.UInt32.v",
"Prims.pow2",
"FStar.Int32.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int32.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)}) | [] | FStar.Int.Cast.uint32_to_int32 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt32.t -> b: FStar.Int32.t{FStar.Int32.v b = FStar.UInt32.v a @% Prims.pow2 32} | {
"end_col": 57,
"end_line": 155,
"start_col": 24,
"start_line": 155
} |
Prims.Tot | val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16) | val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
let uint16_to_int16 x = | false | null | false | I16.int_to_t (U16.v x @% pow2 16) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"FStar.Int16.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.UInt16.v",
"Prims.pow2",
"FStar.Int16.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int16.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)}) | [] | FStar.Int.Cast.uint16_to_int16 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt16.t -> b: FStar.Int16.t{FStar.Int16.v b = FStar.UInt16.v a @% Prims.pow2 16} | {
"end_col": 57,
"end_line": 142,
"start_col": 24,
"start_line": 142
} |
Prims.Tot | val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint8_to_int16 x = I16.int_to_t (U8.v x) | val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = | false | null | false | I16.int_to_t (U8.v x) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"FStar.Int16.int_to_t",
"FStar.UInt8.v",
"FStar.Int16.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int16.n",
"FStar.UInt.size",
"FStar.UInt8.n",
"FStar.Int16.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a}) | [] | FStar.Int.Cast.uint8_to_int16 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.Int16.t{FStar.Int16.v b = FStar.UInt8.v a} | {
"end_col": 44,
"end_line": 126,
"start_col": 23,
"start_line": 126
} |
Prims.Tot | val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int8_to_int16 x = I16.int_to_t (I8.v x) | val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = | false | null | false | I16.int_to_t (I8.v x) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int16.int_to_t",
"FStar.Int8.v",
"FStar.Int16.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int16.n",
"FStar.Int8.n",
"FStar.Int16.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a}) | [] | FStar.Int.Cast.int8_to_int16 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int16.t{FStar.Int16.v b = FStar.Int8.v a} | {
"end_col": 43,
"end_line": 76,
"start_col": 22,
"start_line": 76
} |
Prims.Tot | val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int8_to_int64 x = I64.int_to_t (I8.v x) | val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = | false | null | false | I64.int_to_t (I8.v x) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int64.int_to_t",
"FStar.Int8.v",
"FStar.Int64.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int64.n",
"FStar.Int8.n",
"FStar.Int64.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a}) | [] | FStar.Int.Cast.int8_to_int64 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int64.t{FStar.Int64.v b = FStar.Int8.v a} | {
"end_col": 43,
"end_line": 70,
"start_col": 22,
"start_line": 70
} |
Prims.Tot | val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint32_to_uint64 x = U64.uint_to_t (U32.v x) | val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = | false | null | false | U64.uint_to_t (U32.v x) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"FStar.UInt64.uint_to_t",
"FStar.UInt32.v",
"FStar.UInt64.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt64.n",
"FStar.UInt32.n",
"FStar.UInt64.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a}) | [] | FStar.Int.Cast.uint32_to_uint64 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt32.t -> b: FStar.UInt64.t{FStar.UInt64.v b = FStar.UInt32.v a} | {
"end_col": 48,
"end_line": 50,
"start_col": 25,
"start_line": 50
} |
Prims.Tot | val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int8_to_int32 x = I32.int_to_t (I8.v x) | val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = | false | null | false | I32.int_to_t (I8.v x) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.Int32.int_to_t",
"FStar.Int8.v",
"FStar.Int32.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int32.n",
"FStar.Int8.n",
"FStar.Int32.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a}) | [] | FStar.Int.Cast.int8_to_int32 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.Int32.t{FStar.Int32.v b = FStar.Int8.v a} | {
"end_col": 43,
"end_line": 73,
"start_col": 22,
"start_line": 73
} |
Prims.Tot | val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32) | val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = | false | null | false | I32.int_to_t (I16.v x @% pow2 32) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int16.t",
"FStar.Int32.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.Int16.v",
"Prims.pow2",
"FStar.Int32.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int32.n",
"FStar.Int16.n",
"FStar.Int32.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a}) | [] | FStar.Int.Cast.int16_to_int32 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int16.t -> b: FStar.Int32.t{FStar.Int32.v b = FStar.Int16.v a} | {
"end_col": 56,
"end_line": 82,
"start_col": 23,
"start_line": 82
} |
Prims.Tot | val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64) | val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = | false | null | false | I64.int_to_t (I16.v x @% pow2 64) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int16.t",
"FStar.Int64.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.Int16.v",
"Prims.pow2",
"FStar.Int64.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int64.n",
"FStar.Int16.n",
"FStar.Int64.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a}) | [] | FStar.Int.Cast.int16_to_int64 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int16.t -> b: FStar.Int64.t{FStar.Int64.v b = FStar.Int16.v a} | {
"end_col": 56,
"end_line": 79,
"start_col": 23,
"start_line": 79
} |
Prims.Tot | val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint8_to_int32 x = I32.int_to_t (U8.v x) | val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = | false | null | false | I32.int_to_t (U8.v x) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"FStar.Int32.int_to_t",
"FStar.UInt8.v",
"FStar.Int32.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int32.n",
"FStar.UInt.size",
"FStar.UInt8.n",
"FStar.Int32.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a}) | [] | FStar.Int.Cast.uint8_to_int32 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.Int32.t{FStar.Int32.v b = FStar.UInt8.v a} | {
"end_col": 44,
"end_line": 123,
"start_col": 23,
"start_line": 123
} |
Prims.Tot | val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint16_to_int32 x = I32.int_to_t (U16.v x) | val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = | false | null | false | I32.int_to_t (U16.v x) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"FStar.Int32.int_to_t",
"FStar.UInt16.v",
"FStar.Int32.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"FStar.Int.size",
"FStar.Int32.n",
"FStar.UInt.size",
"FStar.UInt16.n",
"FStar.Int32.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a}) | [] | FStar.Int.Cast.uint16_to_int32 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt16.t -> b: FStar.Int32.t{FStar.Int32.v b = FStar.UInt16.v a} | {
"end_col": 46,
"end_line": 137,
"start_col": 24,
"start_line": 137
} |
Prims.Tot | val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8) | val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
let int16_to_int8 x = | false | null | false | I8.int_to_t (I16.v x @% pow2 8) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int16.t",
"FStar.Int8.int_to_t",
"FStar.Int.Cast.op_At_Percent",
"FStar.Int16.v",
"Prims.pow2",
"FStar.Int8.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Int8.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)}) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)}) | [] | FStar.Int.Cast.int16_to_int8 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int16.t -> b: FStar.Int8.t{FStar.Int8.v b = FStar.Int16.v a @% Prims.pow2 8} | {
"end_col": 53,
"end_line": 87,
"start_col": 22,
"start_line": 87
} |
Prims.Tot | val int16_to_uint16: a:I16.t -> Tot (b:U16.t{U16.v b = I16.v a % pow2 16}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int16_to_uint16 x = U16.uint_to_t (I16.v x % pow2 16) | val int16_to_uint16: a:I16.t -> Tot (b:U16.t{U16.v b = I16.v a % pow2 16})
let int16_to_uint16 x = | false | null | false | U16.uint_to_t (I16.v x % pow2 16) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int16.t",
"FStar.UInt16.uint_to_t",
"Prims.op_Modulus",
"FStar.Int16.v",
"Prims.pow2",
"FStar.UInt16.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt16.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int32 x = I32.int_to_t (U64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int16: a:U64.t -> Tot (b:I16.t{I16.v b = (U64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int16 x = I16.int_to_t (U64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int8 x = I8.int_to_t (U64.v x @% pow2 8)
/// Signed to unsigned
val int8_to_uint64: a:I8.t -> Tot (b:U64.t{U64.v b = I8.v a % pow2 64})
let int8_to_uint64 x = U64.uint_to_t (I8.v x % pow2 64)
val int8_to_uint32: a:I8.t -> Tot (b:U32.t{U32.v b = I8.v a % pow2 32})
let int8_to_uint32 x = U32.uint_to_t (I8.v x % pow2 32)
val int8_to_uint16: a:I8.t -> Tot (b:U16.t{U16.v b = I8.v a % pow2 16})
let int8_to_uint16 x = U16.uint_to_t (I8.v x % pow2 16)
val int8_to_uint8 : a:I8.t -> Tot (b:U8.t {U8.v b = I8.v a % pow2 8})
let int8_to_uint8 x = U8.uint_to_t (I8.v x % pow2 8)
val int16_to_uint64: a:I16.t -> Tot (b:U64.t{U64.v b = I16.v a % pow2 64})
let int16_to_uint64 x = U64.uint_to_t (I16.v x % pow2 64)
val int16_to_uint32: a:I16.t -> Tot (b:U32.t{U32.v b = I16.v a % pow2 32})
let int16_to_uint32 x = U32.uint_to_t (I16.v x % pow2 32) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int16_to_uint16: a:I16.t -> Tot (b:U16.t{U16.v b = I16.v a % pow2 16}) | [] | FStar.Int.Cast.int16_to_uint16 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int16.t -> b: FStar.UInt16.t{FStar.UInt16.v b = FStar.Int16.v a % Prims.pow2 16} | {
"end_col": 57,
"end_line": 208,
"start_col": 24,
"start_line": 208
} |
Prims.Tot | val int8_to_uint8 : a:I8.t -> Tot (b:U8.t {U8.v b = I8.v a % pow2 8}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int8_to_uint8 x = U8.uint_to_t (I8.v x % pow2 8) | val int8_to_uint8 : a:I8.t -> Tot (b:U8.t {U8.v b = I8.v a % pow2 8})
let int8_to_uint8 x = | false | null | false | U8.uint_to_t (I8.v x % pow2 8) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int8.t",
"FStar.UInt8.uint_to_t",
"Prims.op_Modulus",
"FStar.Int8.v",
"Prims.pow2",
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int32 x = I32.int_to_t (U64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int16: a:U64.t -> Tot (b:I16.t{I16.v b = (U64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int16 x = I16.int_to_t (U64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int8 x = I8.int_to_t (U64.v x @% pow2 8)
/// Signed to unsigned
val int8_to_uint64: a:I8.t -> Tot (b:U64.t{U64.v b = I8.v a % pow2 64})
let int8_to_uint64 x = U64.uint_to_t (I8.v x % pow2 64)
val int8_to_uint32: a:I8.t -> Tot (b:U32.t{U32.v b = I8.v a % pow2 32})
let int8_to_uint32 x = U32.uint_to_t (I8.v x % pow2 32)
val int8_to_uint16: a:I8.t -> Tot (b:U16.t{U16.v b = I8.v a % pow2 16})
let int8_to_uint16 x = U16.uint_to_t (I8.v x % pow2 16) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int8_to_uint8 : a:I8.t -> Tot (b:U8.t {U8.v b = I8.v a % pow2 8}) | [] | FStar.Int.Cast.int8_to_uint8 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int8.t -> b: FStar.UInt8.t{FStar.UInt8.v b = FStar.Int8.v a % Prims.pow2 8} | {
"end_col": 52,
"end_line": 199,
"start_col": 22,
"start_line": 199
} |
Prims.Tot | val int64_to_uint16: a:I64.t -> Tot (b:U16.t{U16.v b = I64.v a % pow2 16}) | [
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int32",
"short_module": "I32"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": true,
"full_module": "FStar.Int8",
"short_module": "I8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int64_to_uint16 x = U16.uint_to_t (I64.v x % pow2 16) | val int64_to_uint16: a:I64.t -> Tot (b:U16.t{U16.v b = I64.v a % pow2 16})
let int64_to_uint16 x = | false | null | false | U16.uint_to_t (I64.v x % pow2 16) | {
"checked_file": "FStar.Int.Cast.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Int.Cast.fst"
} | [
"total"
] | [
"FStar.Int64.t",
"FStar.UInt16.uint_to_t",
"Prims.op_Modulus",
"FStar.Int64.v",
"Prims.pow2",
"FStar.UInt16.t",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt16.v"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Int.Cast
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module I8 = FStar.Int8
module I16 = FStar.Int16
module I32 = FStar.Int32
module I64 = FStar.Int64
let op_At_Percent = FStar.Int.op_At_Percent
/// Unsigned to unsigned
val uint8_to_uint64: a:U8.t -> Tot (b:U64.t{U64.v b = U8.v a})
let uint8_to_uint64 a = U64.uint_to_t (U8.v a)
val uint8_to_uint32: a:U8.t -> Tot (b:U32.t{U32.v b = U8.v a})
let uint8_to_uint32 x = U32.uint_to_t (U8.v x)
val uint8_to_uint16: a:U8.t -> Tot (b:U16.t{U16.v b = U8.v a})
let uint8_to_uint16 x = U16.uint_to_t (U8.v x)
val uint16_to_uint64: a:U16.t -> Tot (b:U64.t{U64.v b = U16.v a})
let uint16_to_uint64 x = U64.uint_to_t (U16.v x)
val uint16_to_uint32: a:U16.t -> Tot (b:U32.t{U32.v b = U16.v a})
let uint16_to_uint32 x = U32.uint_to_t (U16.v x)
val uint16_to_uint8 : a:U16.t -> Tot (b:U8.t{U8.v b = U16.v a % pow2 8})
let uint16_to_uint8 x = U8.uint_to_t (U16.v x % pow2 8)
val uint32_to_uint64: a:U32.t -> Tot (b:U64.t{U64.v b = U32.v a})
let uint32_to_uint64 x = U64.uint_to_t (U32.v x)
val uint32_to_uint16: a:U32.t -> Tot (b:U16.t{U16.v b = U32.v a % pow2 16})
let uint32_to_uint16 x = U16.uint_to_t (U32.v x % pow2 16)
val uint32_to_uint8 : a:U32.t -> Tot (b:U8.t{U8.v b = U32.v a % pow2 8})
let uint32_to_uint8 x = U8.uint_to_t (U32.v x % pow2 8)
val uint64_to_uint32: a:U64.t -> Tot (b:U32.t{U32.v b = U64.v a % pow2 32})
let uint64_to_uint32 x = U32.uint_to_t (U64.v x % pow2 32)
val uint64_to_uint16: a:U64.t -> Tot (b:U16.t{U16.v b = U64.v a % pow2 16})
let uint64_to_uint16 x = U16.uint_to_t (U64.v x % pow2 16)
val uint64_to_uint8 : a:U64.t -> Tot (b:U8.t{U8.v b = U64.v a % pow2 8})
let uint64_to_uint8 x = U8.uint_to_t (U64.v x % pow2 8)
/// Signed to signed
val int8_to_int64: a:I8.t -> Tot (b:I64.t{I64.v b = I8.v a})
let int8_to_int64 x = I64.int_to_t (I8.v x)
val int8_to_int32: a:I8.t -> Tot (b:I32.t{I32.v b = I8.v a})
let int8_to_int32 x = I32.int_to_t (I8.v x)
val int8_to_int16: a:I8.t -> Tot (b:I16.t{I16.v b = I8.v a})
let int8_to_int16 x = I16.int_to_t (I8.v x)
val int16_to_int64: a:I16.t -> Tot (b:I64.t{I64.v b = I16.v a})
let int16_to_int64 x = I64.int_to_t (I16.v x @% pow2 64)
val int16_to_int32: a:I16.t -> Tot (b:I32.t{I32.v b = I16.v a})
let int16_to_int32 x = I32.int_to_t (I16.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int16_to_int8 : a:I16.t -> Tot (b:I8.t {I8.v b = (I16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int16_to_int8 x = I8.int_to_t (I16.v x @% pow2 8)
val int32_to_int64: a:I32.t -> Tot (b:I64.t{I64.v b = I32.v a})
let int32_to_int64 x = I64.int_to_t (I32.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int16: a:I32.t -> Tot (b:I16.t{I16.v b = (I32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int16 x = I16.int_to_t (I32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int32_to_int8 : a:I32.t -> Tot (b:I8.t {I8.v b = (I32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int32_to_int8 x = I8.int_to_t (I32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int32: a:I64.t -> Tot (b:I32.t{I32.v b = (I64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int32 x = I32.int_to_t (I64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int16: a:I64.t -> Tot (b:I16.t{I16.v b = (I64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int16 x = I16.int_to_t (I64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val int64_to_int8 : a:I64.t -> Tot (b:I8.t {I8.v b = (I64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let int64_to_int8 x = I8.int_to_t (I64.v x @% pow2 8)
/// Unsigned to signed
val uint8_to_int64: a:U8.t -> Tot (b:I64.t{I64.v b = U8.v a})
let uint8_to_int64 x = I64.int_to_t (U8.v x)
val uint8_to_int32: a:U8.t -> Tot (b:I32.t{I32.v b = U8.v a})
let uint8_to_int32 x = I32.int_to_t (U8.v x)
val uint8_to_int16: a:U8.t -> Tot (b:I16.t{I16.v b = U8.v a})
let uint8_to_int16 x = I16.int_to_t (U8.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint8_to_int8 : a:U8.t -> Tot (b:I8.t {I8.v b = (U8.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint8_to_int8 x = I8.int_to_t (U8.v x @% pow2 8)
val uint16_to_int64: a:U16.t -> Tot (b:I64.t{I64.v b = U16.v a})
let uint16_to_int64 x = I64.int_to_t (U16.v x)
val uint16_to_int32: a:U16.t -> Tot (b:I32.t{I32.v b = U16.v a})
let uint16_to_int32 x = I32.int_to_t (U16.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int16: a:U16.t -> Tot (b:I16.t{I16.v b = (U16.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int16 x = I16.int_to_t (U16.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint16_to_int8 : a:U16.t -> Tot (b:I8.t {I8.v b = (U16.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint16_to_int8 x = I8.int_to_t (U16.v x @% pow2 8)
val uint32_to_int64: a:U32.t -> Tot (b:I64.t{I64.v b = U32.v a})
let uint32_to_int64 x = I64.int_to_t (U32.v x)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int32: a:U32.t -> Tot (b:I32.t{I32.v b = (U32.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int32 x = I32.int_to_t (U32.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int16: a:U32.t -> Tot (b:I16.t{I16.v b = (U32.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int16 x = I16.int_to_t (U32.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint32_to_int8 : a:U32.t -> Tot (b:I8.t {I8.v b = (U32.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint32_to_int8 x = I8.int_to_t (U32.v x @% pow2 8)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int64: a:U64.t -> Tot (b:I64.t{I64.v b = (U64.v a @% pow2 64)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int64 x = I64.int_to_t (U64.v x @% pow2 64)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int32: a:U64.t -> Tot (b:I32.t{I32.v b = (U64.v a @% pow2 32)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int32 x = I32.int_to_t (U64.v x @% pow2 32)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int16: a:U64.t -> Tot (b:I16.t{I16.v b = (U64.v a @% pow2 16)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int16 x = I16.int_to_t (U64.v x @% pow2 16)
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
val uint64_to_int8 : a:U64.t -> Tot (b:I8.t {I8.v b = (U64.v a @% pow2 8)})
[@@(deprecated "with care; in C the result is implementation-defined when not representable")]
let uint64_to_int8 x = I8.int_to_t (U64.v x @% pow2 8)
/// Signed to unsigned
val int8_to_uint64: a:I8.t -> Tot (b:U64.t{U64.v b = I8.v a % pow2 64})
let int8_to_uint64 x = U64.uint_to_t (I8.v x % pow2 64)
val int8_to_uint32: a:I8.t -> Tot (b:U32.t{U32.v b = I8.v a % pow2 32})
let int8_to_uint32 x = U32.uint_to_t (I8.v x % pow2 32)
val int8_to_uint16: a:I8.t -> Tot (b:U16.t{U16.v b = I8.v a % pow2 16})
let int8_to_uint16 x = U16.uint_to_t (I8.v x % pow2 16)
val int8_to_uint8 : a:I8.t -> Tot (b:U8.t {U8.v b = I8.v a % pow2 8})
let int8_to_uint8 x = U8.uint_to_t (I8.v x % pow2 8)
val int16_to_uint64: a:I16.t -> Tot (b:U64.t{U64.v b = I16.v a % pow2 64})
let int16_to_uint64 x = U64.uint_to_t (I16.v x % pow2 64)
val int16_to_uint32: a:I16.t -> Tot (b:U32.t{U32.v b = I16.v a % pow2 32})
let int16_to_uint32 x = U32.uint_to_t (I16.v x % pow2 32)
val int16_to_uint16: a:I16.t -> Tot (b:U16.t{U16.v b = I16.v a % pow2 16})
let int16_to_uint16 x = U16.uint_to_t (I16.v x % pow2 16)
val int16_to_uint8 : a:I16.t -> Tot (b:U8.t {U8.v b = I16.v a % pow2 8})
let int16_to_uint8 x = U8.uint_to_t (I16.v x % pow2 8)
val int32_to_uint64: a:I32.t -> Tot (b:U64.t{U64.v b = I32.v a % pow2 64})
let int32_to_uint64 x = U64.uint_to_t (I32.v x % pow2 64)
val int32_to_uint32: a:I32.t -> Tot (b:U32.t{U32.v b = I32.v a % pow2 32})
let int32_to_uint32 x = U32.uint_to_t (I32.v x % pow2 32)
val int32_to_uint16: a:I32.t -> Tot (b:U16.t{U16.v b = I32.v a % pow2 16})
let int32_to_uint16 x = U16.uint_to_t (I32.v x % pow2 16)
val int32_to_uint8 : a:I32.t -> Tot (b:U8.t {U8.v b = I32.v a % pow2 8})
let int32_to_uint8 x = U8.uint_to_t (I32.v x % pow2 8)
val int64_to_uint64: a:I64.t -> Tot (b:U64.t{U64.v b = I64.v a % pow2 64})
let int64_to_uint64 x = U64.uint_to_t (I64.v x % pow2 64)
val int64_to_uint32: a:I64.t -> Tot (b:U32.t{U32.v b = I64.v a % pow2 32})
let int64_to_uint32 x = U32.uint_to_t (I64.v x % pow2 32) | false | false | FStar.Int.Cast.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int64_to_uint16: a:I64.t -> Tot (b:U16.t{U16.v b = I64.v a % pow2 16}) | [] | FStar.Int.Cast.int64_to_uint16 | {
"file_name": "ulib/FStar.Int.Cast.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.Int64.t -> b: FStar.UInt16.t{FStar.UInt16.v b = FStar.Int64.v a % Prims.pow2 16} | {
"end_col": 57,
"end_line": 232,
"start_col": 24,
"start_line": 232
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( /% ) (x:elem) (y:elem) = x *% finv y | let op_Slash_Percent (x y: elem) = | false | null | false | x *% finv y | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Spec.Curve25519.op_Star_Percent",
"Spec.Curve25519.finv"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Slash_Percent : x: Spec.Curve25519.elem -> y: Spec.Curve25519.elem -> Spec.Curve25519.elem | [] | Spec.Curve25519.op_Slash_Percent | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Curve25519.elem -> y: Spec.Curve25519.elem -> Spec.Curve25519.elem | {
"end_col": 42,
"end_line": 31,
"start_col": 31,
"start_line": 31
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cswap2 (sw:uint64) (nq:proj_point) (nqp1:proj_point) =
let open Lib.RawIntTypes in
if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1) | let cswap2 (sw: uint64) (nq nqp1: proj_point) = | false | null | false | let open Lib.RawIntTypes in if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1) | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Lib.IntTypes.uint64",
"Spec.Curve25519.proj_point",
"Prims.op_Equality",
"Prims.int",
"Lib.RawIntTypes.uint_to_nat",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Pervasives.Native.Mktuple2",
"Prims.bool",
"FStar.Pervasives.Native.tuple2"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2 | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cswap2 : sw: Lib.IntTypes.uint64 -> nq: Spec.Curve25519.proj_point -> nqp1: Spec.Curve25519.proj_point
-> Spec.Curve25519.proj_point * Spec.Curve25519.proj_point | [] | Spec.Curve25519.cswap2 | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | sw: Lib.IntTypes.uint64 -> nq: Spec.Curve25519.proj_point -> nqp1: Spec.Curve25519.proj_point
-> Spec.Curve25519.proj_point * Spec.Curve25519.proj_point | {
"end_col": 55,
"end_line": 94,
"start_col": 2,
"start_line": 93
} |
|
Prims.Tot | val basepoint_list:x: list byte_t {List.Tot.length x == 32} | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let basepoint_list : x:list byte_t{List.Tot.length x == 32} =
[@inline_let]
let l =
[9uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy] in
assert_norm (List.Tot.length l == 32);
l | val basepoint_list:x: list byte_t {List.Tot.length x == 32}
let basepoint_list:x: list byte_t {List.Tot.length x == 32} = | false | null | false | [@@ inline_let ]let l =
[
9uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy
]
in
assert_norm (List.Tot.length l == 32);
l | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.PUB",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2
let cswap2 (sw:uint64) (nq:proj_point) (nqp1:proj_point) =
let open Lib.RawIntTypes in
if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1)
let ladder_step (k:scalar) (q:proj_point) (i:nat{i < 251}) (nq, nqp1, swap) =
let bit = ith_bit k (253-i) in
let sw = swap ^. bit in
let nq, nqp1 = cswap2 sw nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
(nq, nqp1, bit)
let montgomery_ladder (init:elem) (k:scalar) : Tot proj_point =
let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
// bits 253-3 depend on scalar
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
// bits 2-0 are 0
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq
let scalarmult (k:scalar) (u:serialized_point) : Tot serialized_point =
let u = decodePoint u in
let res = montgomery_ladder u k in
encodePoint res
inline_for_extraction | false | false | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val basepoint_list:x: list byte_t {List.Tot.length x == 32} | [] | Spec.Curve25519.basepoint_list | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
Prims.list (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB)
{FStar.List.Tot.Base.length x == 32} | {
"end_col": 3,
"end_line": 134,
"start_col": 2,
"start_line": 127
} |
Prims.Tot | val fpow (x: elem) (b: nat) : elem | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b | val fpow (x: elem) (b: nat) : elem
let fpow (x: elem) (b: nat) : elem = | false | null | false | Lib.NatMod.pow_mod #prime x b | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Prims.nat",
"Lib.NatMod.pow_mod",
"Spec.Curve25519.prime"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fpow (x: elem) (b: nat) : elem | [] | Spec.Curve25519.fpow | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Curve25519.elem -> b: Prims.nat -> Spec.Curve25519.elem | {
"end_col": 64,
"end_line": 27,
"start_col": 35,
"start_line": 27
} |
Prims.Tot | val zero:elem | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let zero : elem = 0 | val zero:elem
let zero:elem = | false | null | false | 0 | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19 | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val zero:elem | [] | Spec.Curve25519.zero | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Curve25519.elem | {
"end_col": 19,
"end_line": 16,
"start_col": 18,
"start_line": 16
} |
Prims.Tot | val prime:pos | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let prime : pos = pow2 255 - 19 | val prime:pos
let prime:pos = | false | null | false | pow2 255 - 19 | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0" | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val prime:pos | [] | Spec.Curve25519.prime | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 31,
"end_line": 13,
"start_col": 18,
"start_line": 13
} |
Prims.Tot | val fadd (x y: elem) : elem | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fadd (x:elem) (y:elem) : elem = (x + y) % prime | val fadd (x y: elem) : elem
let fadd (x y: elem) : elem = | false | null | false | (x + y) % prime | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Prims.op_Modulus",
"Prims.op_Addition",
"Spec.Curve25519.prime"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1 | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fadd (x y: elem) : elem | [] | Spec.Curve25519.fadd | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Curve25519.elem -> y: Spec.Curve25519.elem -> Spec.Curve25519.elem | {
"end_col": 51,
"end_line": 19,
"start_col": 36,
"start_line": 19
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2 | let double nq = | false | null | false | let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2 | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.tuple2",
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Curve25519.op_Star_Percent",
"Spec.Curve25519.op_Plus_Percent",
"Spec.Curve25519.op_Subtraction_Percent"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3) | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val double : nq: (Spec.Curve25519.elem * Spec.Curve25519.elem) -> Spec.Curve25519.elem * Spec.Curve25519.elem | [] | Spec.Curve25519.double | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | nq: (Spec.Curve25519.elem * Spec.Curve25519.elem) -> Spec.Curve25519.elem * Spec.Curve25519.elem | {
"end_col": 10,
"end_line": 90,
"start_col": 15,
"start_line": 79
} |
|
Prims.Tot | val one:elem | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let one : elem = 1 | val one:elem
let one:elem = | false | null | false | 1 | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime} | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val one:elem | [] | Spec.Curve25519.one | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Curve25519.elem | {
"end_col": 19,
"end_line": 17,
"start_col": 18,
"start_line": 17
} |
Prims.Tot | val fmul (x y: elem) : elem | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fmul (x:elem) (y:elem) : elem = (x * y) % prime | val fmul (x y: elem) : elem
let fmul (x y: elem) : elem = | false | null | false | (x * y) % prime | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Spec.Curve25519.prime"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fmul (x y: elem) : elem | [] | Spec.Curve25519.fmul | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Curve25519.elem -> y: Spec.Curve25519.elem -> Spec.Curve25519.elem | {
"end_col": 51,
"end_line": 21,
"start_col": 36,
"start_line": 21
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime | let decodePoint (u: serialized_point) = | false | null | false | (nat_from_bytes_le u % pow2 255) % prime | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.serialized_point",
"Prims.op_Modulus",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Spec.Curve25519.prime",
"Prims.int"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val decodePoint : u23: Spec.Curve25519.serialized_point -> Prims.int | [] | Spec.Curve25519.decodePoint | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | u23: Spec.Curve25519.serialized_point -> Prims.int | {
"end_col": 42,
"end_line": 48,
"start_col": 2,
"start_line": 48
} |
|
Prims.Tot | val fsub (x y: elem) : elem | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fsub (x:elem) (y:elem) : elem = (x - y) % prime | val fsub (x y: elem) : elem
let fsub (x y: elem) : elem = | false | null | false | (x - y) % prime | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Prims.op_Modulus",
"Prims.op_Subtraction",
"Spec.Curve25519.prime"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1 | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fsub (x y: elem) : elem | [] | Spec.Curve25519.fsub | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Curve25519.elem -> y: Spec.Curve25519.elem -> Spec.Curve25519.elem | {
"end_col": 51,
"end_line": 20,
"start_col": 36,
"start_line": 20
} |
Prims.Tot | val finv (x: elem) : elem | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finv (x:elem) : elem = x **% (prime - 2) | val finv (x: elem) : elem
let finv (x: elem) : elem = | false | null | false | x **% (prime - 2) | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Spec.Curve25519.op_Star_Star_Percent",
"Prims.op_Subtraction",
"Spec.Curve25519.prime"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finv (x: elem) : elem | [] | Spec.Curve25519.finv | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Curve25519.elem -> Spec.Curve25519.elem | {
"end_col": 44,
"end_line": 30,
"start_col": 27,
"start_line": 30
} |
Prims.Tot | val montgomery_ladder (init: elem) (k: scalar) : Tot proj_point | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let montgomery_ladder (init:elem) (k:scalar) : Tot proj_point =
let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
// bits 253-3 depend on scalar
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
// bits 2-0 are 0
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq | val montgomery_ladder (init: elem) (k: scalar) : Tot proj_point
let montgomery_ladder (init: elem) (k: scalar) : Tot proj_point = | false | null | false | let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
let nq, nqp1 = cswap2 (u64 1) nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
let nq, nqp1, swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq, nqp1 = cswap2 swap nq nqp1 in
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.elem",
"Spec.Curve25519.scalar",
"Spec.Curve25519.proj_point",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.uint64",
"Spec.Curve25519.double",
"Spec.Curve25519.cswap2",
"FStar.Pervasives.Native.tuple3",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.LoopCombinators.repeati",
"Spec.Curve25519.ladder_step",
"FStar.Pervasives.Native.Mktuple3",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.u64",
"Spec.Curve25519.add_and_double",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Curve25519.one",
"Spec.Curve25519.zero"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2
let cswap2 (sw:uint64) (nq:proj_point) (nqp1:proj_point) =
let open Lib.RawIntTypes in
if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1)
let ladder_step (k:scalar) (q:proj_point) (i:nat{i < 251}) (nq, nqp1, swap) =
let bit = ith_bit k (253-i) in
let sw = swap ^. bit in
let nq, nqp1 = cswap2 sw nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
(nq, nqp1, bit) | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val montgomery_ladder (init: elem) (k: scalar) : Tot proj_point | [] | Spec.Curve25519.montgomery_ladder | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | init: Spec.Curve25519.elem -> k: Spec.Curve25519.scalar -> Spec.Curve25519.proj_point | {
"end_col": 4,
"end_line": 118,
"start_col": 63,
"start_line": 103
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ladder_step (k:scalar) (q:proj_point) (i:nat{i < 251}) (nq, nqp1, swap) =
let bit = ith_bit k (253-i) in
let sw = swap ^. bit in
let nq, nqp1 = cswap2 sw nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
(nq, nqp1, bit) | let ladder_step (k: scalar) (q: proj_point) (i: nat{i < 251}) (nq, nqp1, swap) = | false | null | false | let bit = ith_bit k (253 - i) in
let sw = swap ^. bit in
let nq, nqp1 = cswap2 sw nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
(nq, nqp1, bit) | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.scalar",
"Spec.Curve25519.proj_point",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple3",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Pervasives.Native.tuple2",
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.Mktuple3",
"Lib.IntTypes.uint64",
"Spec.Curve25519.add_and_double",
"Spec.Curve25519.cswap2",
"Lib.IntTypes.op_Hat_Dot",
"Spec.Curve25519.ith_bit",
"Prims.op_Subtraction"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2
let cswap2 (sw:uint64) (nq:proj_point) (nqp1:proj_point) =
let open Lib.RawIntTypes in
if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1) | false | false | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ladder_step : k: Spec.Curve25519.scalar ->
q: Spec.Curve25519.proj_point ->
i: Prims.nat{i < 251} ->
_:
((Spec.Curve25519.proj_point * Spec.Curve25519.proj_point) *
Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC)
-> ((Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem)) *
Lib.IntTypes.uint64 | [] | Spec.Curve25519.ladder_step | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Spec.Curve25519.scalar ->
q: Spec.Curve25519.proj_point ->
i: Prims.nat{i < 251} ->
_:
((Spec.Curve25519.proj_point * Spec.Curve25519.proj_point) *
Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC)
-> ((Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem)) *
Lib.IntTypes.uint64 | {
"end_col": 17,
"end_line": 101,
"start_col": 77,
"start_line": 96
} |
|
Prims.Tot | val scalarmult (k: scalar) (u: serialized_point) : Tot serialized_point | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let scalarmult (k:scalar) (u:serialized_point) : Tot serialized_point =
let u = decodePoint u in
let res = montgomery_ladder u k in
encodePoint res | val scalarmult (k: scalar) (u: serialized_point) : Tot serialized_point
let scalarmult (k: scalar) (u: serialized_point) : Tot serialized_point = | false | null | false | let u = decodePoint u in
let res = montgomery_ladder u k in
encodePoint res | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.scalar",
"Spec.Curve25519.serialized_point",
"Spec.Curve25519.encodePoint",
"Spec.Curve25519.proj_point",
"Spec.Curve25519.montgomery_ladder",
"Prims.int",
"Spec.Curve25519.decodePoint"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2
let cswap2 (sw:uint64) (nq:proj_point) (nqp1:proj_point) =
let open Lib.RawIntTypes in
if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1)
let ladder_step (k:scalar) (q:proj_point) (i:nat{i < 251}) (nq, nqp1, swap) =
let bit = ith_bit k (253-i) in
let sw = swap ^. bit in
let nq, nqp1 = cswap2 sw nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
(nq, nqp1, bit)
let montgomery_ladder (init:elem) (k:scalar) : Tot proj_point =
let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
// bits 253-3 depend on scalar
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
// bits 2-0 are 0
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val scalarmult (k: scalar) (u: serialized_point) : Tot serialized_point | [] | Spec.Curve25519.scalarmult | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.Curve25519.scalar -> u41: Spec.Curve25519.serialized_point
-> Spec.Curve25519.serialized_point | {
"end_col": 17,
"end_line": 123,
"start_col": 71,
"start_line": 120
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3) | let add_and_double q nq nqp1 = | false | null | false | let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3) | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.tuple2",
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Curve25519.op_Star_Percent",
"Spec.Curve25519.op_Plus_Percent",
"Spec.Curve25519.op_Subtraction_Percent"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p | false | false | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_and_double : q: (Spec.Curve25519.elem * _) ->
nq: (Spec.Curve25519.elem * Spec.Curve25519.elem) ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> (Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem) | [] | Spec.Curve25519.add_and_double | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
q: (Spec.Curve25519.elem * _) ->
nq: (Spec.Curve25519.elem * Spec.Curve25519.elem) ->
nqp1: (Spec.Curve25519.elem * Spec.Curve25519.elem)
-> (Spec.Curve25519.elem * Spec.Curve25519.elem) * (Spec.Curve25519.elem * Spec.Curve25519.elem) | {
"end_col": 24,
"end_line": 77,
"start_col": 30,
"start_line": 55
} |
|
Prims.Tot | val encodePoint (p: proj_point) : Tot serialized_point | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p | val encodePoint (p: proj_point) : Tot serialized_point
let encodePoint (p: proj_point) : Tot serialized_point = | false | null | false | let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.proj_point",
"Spec.Curve25519.elem",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.IntTypes.SEC",
"Spec.Curve25519.op_Slash_Percent",
"Spec.Curve25519.serialized_point"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encodePoint (p: proj_point) : Tot serialized_point | [] | Spec.Curve25519.encodePoint | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Spec.Curve25519.proj_point -> Spec.Curve25519.serialized_point | {
"end_col": 22,
"end_line": 53,
"start_col": 55,
"start_line": 50
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k | let decodeScalar (k: scalar) = | false | null | false | let k:scalar = k.[ 0 ] <- (k.[ 0 ] &. u8 248) in
let k:scalar = k.[ 31 ] <- (k.[ 31 ] &. u8 127) in
let k:scalar = k.[ 31 ] <- (k.[ 31 ] |. u8 64) in
k | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.scalar",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Bar_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.u8",
"Lib.IntTypes.op_Amp_Dot"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1) | false | true | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val decodeScalar : k: Spec.Curve25519.scalar -> Spec.Curve25519.scalar | [] | Spec.Curve25519.decodeScalar | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.Curve25519.scalar -> Spec.Curve25519.scalar | {
"end_col": 51,
"end_line": 45,
"start_col": 29,
"start_line": 42
} |
|
Prims.Tot | val ith_bit (k: scalar) (i: nat{i < 256}) : uint64 | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1) | val ith_bit (k: scalar) (i: nat{i < 256}) : uint64
let ith_bit (k: scalar) (i: nat{i < 256}) : uint64 = | false | null | false | let q = i / 8 in
let r = size (i % 8) in
to_u64 ((k.[ q ] >>. r) &. u8 1) | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Spec.Curve25519.scalar",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.to_u64",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.u8",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.IntTypes.size",
"Prims.op_Modulus",
"Prims.int",
"Prims.op_Division",
"Lib.IntTypes.uint64"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem | false | false | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ith_bit (k: scalar) (i: nat{i < 256}) : uint64 | [] | Spec.Curve25519.ith_bit | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.Curve25519.scalar -> i: Prims.nat{i < 256} -> Lib.IntTypes.uint64 | {
"end_col": 32,
"end_line": 40,
"start_col": 50,
"start_line": 38
} |
Prims.Tot | val basepoint_lseq:Lib.Sequence.lseq byte_t 32 | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let basepoint_lseq : Lib.Sequence.lseq byte_t 32 =
Lib.Sequence.of_list basepoint_list | val basepoint_lseq:Lib.Sequence.lseq byte_t 32
let basepoint_lseq:Lib.Sequence.lseq byte_t 32 = | false | null | false | Lib.Sequence.of_list basepoint_list | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Lib.Sequence.of_list",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.PUB",
"Spec.Curve25519.basepoint_list"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2
let cswap2 (sw:uint64) (nq:proj_point) (nqp1:proj_point) =
let open Lib.RawIntTypes in
if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1)
let ladder_step (k:scalar) (q:proj_point) (i:nat{i < 251}) (nq, nqp1, swap) =
let bit = ith_bit k (253-i) in
let sw = swap ^. bit in
let nq, nqp1 = cswap2 sw nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
(nq, nqp1, bit)
let montgomery_ladder (init:elem) (k:scalar) : Tot proj_point =
let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
// bits 253-3 depend on scalar
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
// bits 2-0 are 0
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq
let scalarmult (k:scalar) (u:serialized_point) : Tot serialized_point =
let u = decodePoint u in
let res = montgomery_ladder u k in
encodePoint res
inline_for_extraction
let basepoint_list : x:list byte_t{List.Tot.length x == 32} =
[@inline_let]
let l =
[9uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy] in
assert_norm (List.Tot.length l == 32);
l | false | false | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val basepoint_lseq:Lib.Sequence.lseq byte_t 32 | [] | Spec.Curve25519.basepoint_lseq | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 32 | {
"end_col": 37,
"end_line": 137,
"start_col": 2,
"start_line": 137
} |
Prims.Tot | val secret_to_public: lbytes 32 -> lbytes 32 | [
{
"abbrev": false,
"full_module": "Spec.Curve25519.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let secret_to_public kpriv =
let basepoint = map secret basepoint_lseq in
scalarmult kpriv basepoint | val secret_to_public: lbytes 32 -> lbytes 32
let secret_to_public kpriv = | false | null | false | let basepoint = map secret basepoint_lseq in
scalarmult kpriv basepoint | {
"checked_file": "Spec.Curve25519.fst.checked",
"dependencies": [
"Spec.Curve25519.Lemmas.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Curve25519.fst"
} | [
"total"
] | [
"Lib.ByteSequence.lbytes",
"Spec.Curve25519.scalarmult",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.IntTypes.secret",
"Lib.IntTypes.PUB",
"Spec.Curve25519.basepoint_lseq",
"Lib.Sequence.map",
"Lib.IntTypes.uint_t"
] | [] | module Spec.Curve25519
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Curve25519.Lemmas
#set-options "--z3rlimit 30 --ifuel 0 --fuel 0"
(* Field types and parameters *)
let prime : pos = pow2 255 - 19
type elem = x:nat{x < prime}
let zero : elem = 0
let one : elem = 1
let fadd (x:elem) (y:elem) : elem = (x + y) % prime
let fsub (x:elem) (y:elem) : elem = (x - y) % prime
let fmul (x:elem) (y:elem) : elem = (x * y) % prime
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let fpow (x:elem) (b:nat) : elem = Lib.NatMod.pow_mod #prime x b
let ( **% ) = fpow
let finv (x:elem) : elem = x **% (prime - 2)
let ( /% ) (x:elem) (y:elem) = x *% finv y
(* Type aliases *)
type scalar = lbytes 32
type serialized_point = lbytes 32
type proj_point = elem & elem
let ith_bit (k:scalar) (i:nat{i < 256}) : uint64 =
let q = i / 8 in let r = size (i % 8) in
to_u64 ((k.[q] >>. r) &. u8 1)
let decodeScalar (k:scalar) =
let k : scalar = k.[0] <- (k.[0] &. u8 248) in
let k : scalar = k.[31] <- (k.[31] &. u8 127) in
let k : scalar = k.[31] <- (k.[31] |. u8 64) in k
let decodePoint (u:serialized_point) =
(nat_from_bytes_le u % pow2 255) % prime
let encodePoint (p:proj_point) : Tot serialized_point =
let x, z = p in
let p = x /% z in
nat_to_bytes_le 32 p
let add_and_double q nq nqp1 =
let x_1, z_1 = q in
let x_2, z_2 = nq in
let x_3, z_3 = nqp1 in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let c = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb = c *% b in
let x_3 = da +% cb in
let z_3 = da -% cb in
let aa = a *% a in
let bb = b *% b in
let x_3 = x_3 *% x_3 in
let z_3 = z_3 *% z_3 in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
let z_3 = z_3 *% x_1 in
(x_2, z_2), (x_3, z_3)
let double nq =
let x_2, z_2 = nq in
let a = x_2 +% z_2 in
let b = x_2 -% z_2 in
let aa = a *% a in
let bb = b *% b in
let e = aa -% bb in
let e121665 = e *% 121665 in
let aa_e121665 = e121665 +% aa in
let x_2 = aa *% bb in
let z_2 = e *% aa_e121665 in
x_2, z_2
let cswap2 (sw:uint64) (nq:proj_point) (nqp1:proj_point) =
let open Lib.RawIntTypes in
if uint_to_nat sw = 1 then (nqp1, nq) else (nq, nqp1)
let ladder_step (k:scalar) (q:proj_point) (i:nat{i < 251}) (nq, nqp1, swap) =
let bit = ith_bit k (253-i) in
let sw = swap ^. bit in
let nq, nqp1 = cswap2 sw nq nqp1 in
let nq, nqp1 = add_and_double q nq nqp1 in
(nq, nqp1, bit)
let montgomery_ladder (init:elem) (k:scalar) : Tot proj_point =
let q = (init, one) in
let nq = (one, zero) in
let nqp1 = (init, one) in
// bit 255 is 0 and bit 254 is 1
let nq,nqp1 = cswap2 (u64 1) nq nqp1 in
let nq,nqp1 = add_and_double q nq nqp1 in
let swap = u64 1 in
// bits 253-3 depend on scalar
let nq,nqp1,swap = Lib.LoopCombinators.repeati 251 (ladder_step k q) (nq, nqp1, swap) in
let nq,nqp1 = cswap2 swap nq nqp1 in
// bits 2-0 are 0
let nq = double nq in
let nq = double nq in
let nq = double nq in
nq
let scalarmult (k:scalar) (u:serialized_point) : Tot serialized_point =
let u = decodePoint u in
let res = montgomery_ladder u k in
encodePoint res
inline_for_extraction
let basepoint_list : x:list byte_t{List.Tot.length x == 32} =
[@inline_let]
let l =
[9uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy;
0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy; 0uy] in
assert_norm (List.Tot.length l == 32);
l
let basepoint_lseq : Lib.Sequence.lseq byte_t 32 =
Lib.Sequence.of_list basepoint_list | false | false | Spec.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val secret_to_public: lbytes 32 -> lbytes 32 | [] | Spec.Curve25519.secret_to_public | {
"file_name": "specs/Spec.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | kpriv: Lib.ByteSequence.lbytes 32 -> Lib.ByteSequence.lbytes 32 | {
"end_col": 28,
"end_line": 142,
"start_col": 28,
"start_line": 140
} |
Prims.Pure | val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive)) | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sign_abs a b =
if a < b then (Negative, b - a) else (Positive, a - b) | val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive))
let sign_abs a b = | false | null | false | if a < b then (Negative, b - a) else (Positive, a - b) | {
"checked_file": "Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Karatsuba.Lemmas.fst"
} | [] | [
"Prims.nat",
"Prims.op_LessThan",
"FStar.Pervasives.Native.Mktuple2",
"Hacl.Spec.Karatsuba.Lemmas.sign",
"Hacl.Spec.Karatsuba.Lemmas.Negative",
"Prims.op_Subtraction",
"Prims.bool",
"Hacl.Spec.Karatsuba.Lemmas.Positive",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.Karatsuba.Lemmas
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
type sign =
| Positive
| Negative
let abs (a:nat) (b:nat) : nat =
if a < b then b - a else a - b
val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive)) | false | false | Hacl.Spec.Karatsuba.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive)) | [] | Hacl.Spec.Karatsuba.Lemmas.sign_abs | {
"file_name": "code/bignum/Hacl.Spec.Karatsuba.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> b: Prims.nat -> Prims.Pure (Hacl.Spec.Karatsuba.Lemmas.sign * Prims.nat) | {
"end_col": 56,
"end_line": 22,
"start_col": 2,
"start_line": 22
} |
Prims.Tot | val abs (a b: nat) : nat | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let abs (a:nat) (b:nat) : nat =
if a < b then b - a else a - b | val abs (a b: nat) : nat
let abs (a b: nat) : nat = | false | null | false | if a < b then b - a else a - b | {
"checked_file": "Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Karatsuba.Lemmas.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.bool"
] | [] | module Hacl.Spec.Karatsuba.Lemmas
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
type sign =
| Positive
| Negative | false | true | Hacl.Spec.Karatsuba.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val abs (a b: nat) : nat | [] | Hacl.Spec.Karatsuba.Lemmas.abs | {
"file_name": "code/bignum/Hacl.Spec.Karatsuba.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> b: Prims.nat -> Prims.nat | {
"end_col": 32,
"end_line": 13,
"start_col": 2,
"start_line": 13
} |
FStar.Pervasives.Lemma | val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in p * p == pow2 (pbits * aLen)) | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_double_p pbits aLen =
let p = pow2 (aLen / 2 * pbits) in
calc (==) {
p * p;
(==) { Math.Lemmas.pow2_plus (aLen / 2 * pbits) (aLen / 2 * pbits) }
pow2 (aLen / 2 * pbits + aLen / 2 * pbits);
(==) { Math.Lemmas.distributivity_add_left (aLen / 2) (aLen / 2) pbits }
pow2 ((aLen / 2 * 2) * pbits);
(==) { Math.Lemmas.lemma_div_exact aLen 2 }
pow2 (aLen * pbits);
} | val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in p * p == pow2 (pbits * aLen))
let lemma_double_p pbits aLen = | false | null | true | let p = pow2 ((aLen / 2) * pbits) in
calc ( == ) {
p * p;
( == ) { Math.Lemmas.pow2_plus ((aLen / 2) * pbits) ((aLen / 2) * pbits) }
pow2 ((aLen / 2) * pbits + (aLen / 2) * pbits);
( == ) { Math.Lemmas.distributivity_add_left (aLen / 2) (aLen / 2) pbits }
pow2 (((aLen / 2) * 2) * pbits);
( == ) { Math.Lemmas.lemma_div_exact aLen 2 }
pow2 (aLen * pbits);
} | {
"checked_file": "Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Karatsuba.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"FStar.Calc.calc_finish",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Division",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.pow2_plus",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.lemma_div_exact"
] | [] | module Hacl.Spec.Karatsuba.Lemmas
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
type sign =
| Positive
| Negative
let abs (a:nat) (b:nat) : nat =
if a < b then b - a else a - b
val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive))
let sign_abs a b =
if a < b then (Negative, b - a) else (Positive, a - b)
val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} -> | false | false | Hacl.Spec.Karatsuba.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in p * p == pow2 (pbits * aLen)) | [] | Hacl.Spec.Karatsuba.Lemmas.lemma_double_p | {
"file_name": "code/bignum/Hacl.Spec.Karatsuba.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> aLen: Prims.nat{aLen % 2 = 0}
-> FStar.Pervasives.Lemma
(ensures
(let p = Prims.pow2 ((aLen / 2) * pbits) in
p * p == Prims.pow2 (pbits * aLen))) | {
"end_col": 5,
"end_line": 37,
"start_col": 31,
"start_line": 27
} |
FStar.Pervasives.Lemma | val lemma_bn_halves: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a:nat{a < pow2 (pbits * aLen)} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in a / p < p /\ a % p < p /\ a == a / p * p + a % p) | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_bn_halves pbits aLen a = lemma_double_p pbits aLen | val lemma_bn_halves: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a:nat{a < pow2 (pbits * aLen)} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in a / p < p /\ a % p < p /\ a == a / p * p + a % p)
let lemma_bn_halves pbits aLen a = | false | null | true | lemma_double_p pbits aLen | {
"checked_file": "Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Karatsuba.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Hacl.Spec.Karatsuba.Lemmas.lemma_double_p",
"Prims.unit"
] | [] | module Hacl.Spec.Karatsuba.Lemmas
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
type sign =
| Positive
| Negative
let abs (a:nat) (b:nat) : nat =
if a < b then b - a else a - b
val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive))
let sign_abs a b =
if a < b then (Negative, b - a) else (Positive, a - b)
val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in p * p == pow2 (pbits * aLen))
let lemma_double_p pbits aLen =
let p = pow2 (aLen / 2 * pbits) in
calc (==) {
p * p;
(==) { Math.Lemmas.pow2_plus (aLen / 2 * pbits) (aLen / 2 * pbits) }
pow2 (aLen / 2 * pbits + aLen / 2 * pbits);
(==) { Math.Lemmas.distributivity_add_left (aLen / 2) (aLen / 2) pbits }
pow2 ((aLen / 2 * 2) * pbits);
(==) { Math.Lemmas.lemma_div_exact aLen 2 }
pow2 (aLen * pbits);
}
val lemma_bn_halves: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a:nat{a < pow2 (pbits * aLen)} -> | false | false | Hacl.Spec.Karatsuba.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_bn_halves: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a:nat{a < pow2 (pbits * aLen)} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in a / p < p /\ a % p < p /\ a == a / p * p + a % p) | [] | Hacl.Spec.Karatsuba.Lemmas.lemma_bn_halves | {
"file_name": "code/bignum/Hacl.Spec.Karatsuba.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | pbits: Prims.pos -> aLen: Prims.nat{aLen % 2 = 0} -> a: Prims.nat{a < Prims.pow2 (pbits * aLen)}
-> FStar.Pervasives.Lemma
(ensures
(let p = Prims.pow2 ((aLen / 2) * pbits) in
a / p < p /\ a % p < p /\ a == (a / p) * p + a % p)) | {
"end_col": 60,
"end_line": 42,
"start_col": 35,
"start_line": 42
} |
FStar.Pervasives.Lemma | val lemma_middle_karatsuba: a0:nat -> a1:nat -> b0:nat -> b1:nat ->
Lemma
(let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
t45 == a0 * b1 + a1 * b0) | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_middle_karatsuba a0 a1 b0 b1 =
let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
match (s0, s1) with
| (Positive, Positive) ->
calc (==) { //t45
t01 - t23;
(==) { }
a0 * b0 + a1 * b1 - (a0 - a1) * (b0 - b1);
(==) { Math.Lemmas.distributivity_sub_right (a0 - a1) b0 b1 }
a0 * b0 + a1 * b1 - ((a0 - a1) * b0 - (a0 - a1) * b1);
(==) { Math.Lemmas.distributivity_sub_left a0 a1 b0; Math.Lemmas.distributivity_sub_left a0 a1 b1 }
a0 * b0 + a1 * b1 - (a0 * b0 - a1 * b0 - (a0 * b1 - a1 * b1));
(==) { }
a1 * b0 + a0 * b1;
}
| (Negative, Negative) ->
calc (==) { //t45
t01 - t23;
(==) { }
a0 * b0 + a1 * b1 - (a1 - a0) * (b1 - b0);
(==) { Math.Lemmas.distributivity_sub_right (a1 - a0) b1 b0 }
a0 * b0 + a1 * b1 - ((a1 - a0) * b1 - (a1 - a0) * b0);
(==) { Math.Lemmas.distributivity_sub_left a1 a0 b1; Math.Lemmas.distributivity_sub_left a1 a0 b0 }
a0 * b0 + a1 * b1 - (a1 * b1 - a0 * b1 - (a1 * b0 - a0 * b0));
(==) { }
a1 * b0 + a0 * b1;
}
| (Positive, Negative) ->
calc (==) { //t45
t01 + t23;
(==) { }
a0 * b0 + a1 * b1 + (a0 - a1) * (b1 - b0);
(==) { Math.Lemmas.distributivity_sub_right (a0 - a1) b1 b0 }
a0 * b0 + a1 * b1 + ((a0 - a1) * b1 - (a0 - a1) * b0);
(==) { Math.Lemmas.distributivity_sub_left a0 a1 b1; Math.Lemmas.distributivity_sub_left a0 a1 b0 }
a0 * b0 + a1 * b1 + (a0 * b1 - a1 * b1 - (a0 * b0 - a1 * b0));
(==) { }
a1 * b0 + a0 * b1;
}
| (Negative, Positive) ->
calc (==) { //t45
t01 + t23;
(==) { }
a0 * b0 + a1 * b1 + (a1 - a0) * (b0 - b1);
(==) { Math.Lemmas.distributivity_sub_right (a1 - a0) b0 b1 }
a0 * b0 + a1 * b1 + ((a1 - a0) * b0 - (a1 - a0) * b1);
(==) { Math.Lemmas.distributivity_sub_left a1 a0 b0; Math.Lemmas.distributivity_sub_left a1 a0 b1 }
a0 * b0 + a1 * b1 + (a1 * b0 - a0 * b0 - (a1 * b1 - a0 * b1));
(==) { }
a1 * b0 + a0 * b1;
} | val lemma_middle_karatsuba: a0:nat -> a1:nat -> b0:nat -> b1:nat ->
Lemma
(let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
t45 == a0 * b1 + a1 * b0)
let lemma_middle_karatsuba a0 a1 b0 b1 = | false | null | true | let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
match (s0, s1) with
| Positive, Positive ->
calc ( == ) {
t01 - t23;
( == ) { () }
a0 * b0 + a1 * b1 - (a0 - a1) * (b0 - b1);
( == ) { Math.Lemmas.distributivity_sub_right (a0 - a1) b0 b1 }
a0 * b0 + a1 * b1 - ((a0 - a1) * b0 - (a0 - a1) * b1);
( == ) { (Math.Lemmas.distributivity_sub_left a0 a1 b0;
Math.Lemmas.distributivity_sub_left a0 a1 b1) }
a0 * b0 + a1 * b1 - (a0 * b0 - a1 * b0 - (a0 * b1 - a1 * b1));
( == ) { () }
a1 * b0 + a0 * b1;
}
| Negative, Negative ->
calc ( == ) {
t01 - t23;
( == ) { () }
a0 * b0 + a1 * b1 - (a1 - a0) * (b1 - b0);
( == ) { Math.Lemmas.distributivity_sub_right (a1 - a0) b1 b0 }
a0 * b0 + a1 * b1 - ((a1 - a0) * b1 - (a1 - a0) * b0);
( == ) { (Math.Lemmas.distributivity_sub_left a1 a0 b1;
Math.Lemmas.distributivity_sub_left a1 a0 b0) }
a0 * b0 + a1 * b1 - (a1 * b1 - a0 * b1 - (a1 * b0 - a0 * b0));
( == ) { () }
a1 * b0 + a0 * b1;
}
| Positive, Negative ->
calc ( == ) {
t01 + t23;
( == ) { () }
a0 * b0 + a1 * b1 + (a0 - a1) * (b1 - b0);
( == ) { Math.Lemmas.distributivity_sub_right (a0 - a1) b1 b0 }
a0 * b0 + a1 * b1 + ((a0 - a1) * b1 - (a0 - a1) * b0);
( == ) { (Math.Lemmas.distributivity_sub_left a0 a1 b1;
Math.Lemmas.distributivity_sub_left a0 a1 b0) }
a0 * b0 + a1 * b1 + (a0 * b1 - a1 * b1 - (a0 * b0 - a1 * b0));
( == ) { () }
a1 * b0 + a0 * b1;
}
| Negative, Positive ->
calc ( == ) {
t01 + t23;
( == ) { () }
a0 * b0 + a1 * b1 + (a1 - a0) * (b0 - b1);
( == ) { Math.Lemmas.distributivity_sub_right (a1 - a0) b0 b1 }
a0 * b0 + a1 * b1 + ((a1 - a0) * b0 - (a1 - a0) * b1);
( == ) { (Math.Lemmas.distributivity_sub_left a1 a0 b0;
Math.Lemmas.distributivity_sub_left a1 a0 b1) }
a0 * b0 + a1 * b1 + (a1 * b0 - a0 * b0 - (a1 * b1 - a0 * b1));
( == ) { () }
a1 * b0 + a0 * b1;
} | {
"checked_file": "Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Karatsuba.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Hacl.Spec.Karatsuba.Lemmas.sign",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Subtraction",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_sub_right",
"FStar.Math.Lemmas.distributivity_sub_left",
"Prims.op_Equality",
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Karatsuba.Lemmas.sign_abs"
] | [] | module Hacl.Spec.Karatsuba.Lemmas
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
type sign =
| Positive
| Negative
let abs (a:nat) (b:nat) : nat =
if a < b then b - a else a - b
val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive))
let sign_abs a b =
if a < b then (Negative, b - a) else (Positive, a - b)
val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in p * p == pow2 (pbits * aLen))
let lemma_double_p pbits aLen =
let p = pow2 (aLen / 2 * pbits) in
calc (==) {
p * p;
(==) { Math.Lemmas.pow2_plus (aLen / 2 * pbits) (aLen / 2 * pbits) }
pow2 (aLen / 2 * pbits + aLen / 2 * pbits);
(==) { Math.Lemmas.distributivity_add_left (aLen / 2) (aLen / 2) pbits }
pow2 ((aLen / 2 * 2) * pbits);
(==) { Math.Lemmas.lemma_div_exact aLen 2 }
pow2 (aLen * pbits);
}
val lemma_bn_halves: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a:nat{a < pow2 (pbits * aLen)} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in a / p < p /\ a % p < p /\ a == a / p * p + a % p)
let lemma_bn_halves pbits aLen a = lemma_double_p pbits aLen
val lemma_middle_karatsuba: a0:nat -> a1:nat -> b0:nat -> b1:nat ->
Lemma
(let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
t45 == a0 * b1 + a1 * b0) | false | false | Hacl.Spec.Karatsuba.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_middle_karatsuba: a0:nat -> a1:nat -> b0:nat -> b1:nat ->
Lemma
(let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
t45 == a0 * b1 + a1 * b0) | [] | Hacl.Spec.Karatsuba.Lemmas.lemma_middle_karatsuba | {
"file_name": "code/bignum/Hacl.Spec.Karatsuba.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a0: Prims.nat -> a1: Prims.nat -> b0: Prims.nat -> b1: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Karatsuba.Lemmas.sign_abs a0 a1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s0 t0 = _ in
let _ = Hacl.Spec.Karatsuba.Lemmas.sign_abs b0 b1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s1 t1 = _ in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 =
(match s0 = s1 with
| true -> t01 - t23
| _ -> t01 + t23)
<:
Prims.int
in
t45 == a0 * b1 + a1 * b0)
<:
Type0)
<:
Type0)) | {
"end_col": 6,
"end_line": 111,
"start_col": 40,
"start_line": 54
} |
Prims.Tot | val karatsuba:
pbits:pos // pbits = bits t
-> aLen:nat
-> a:nat{a < pow2 (pbits * aLen)}
-> b:nat{b < pow2 (pbits * aLen)} ->
Tot (res:nat{res == a * b}) (decreases aLen) | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec karatsuba pbits aLen a b =
if aLen < 16 || aLen % 2 = 1 then a * b
else begin
let aLen2 = aLen / 2 in
let p = pow2 (aLen2 * pbits) in
let a0 = a % p in let a1 = a / p in
let b0 = b % p in let b1 = b / p in
lemma_bn_halves pbits aLen a;
lemma_bn_halves pbits aLen b;
let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = karatsuba pbits aLen2 t0 t1 in assert (t23 == t0 * t1);
let r01 = karatsuba pbits aLen2 a0 b0 in assert (r01 == a0 * b0);
let r23 = karatsuba pbits aLen2 a1 b1 in assert (r23 == a1 * b1);
let t01 = r01 + r23 in assert (t01 == a0 * b0 + a1 * b1);
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
lemma_middle_karatsuba a0 a1 b0 b1;
assert (t45 == a0 * b1 + a1 * b0);
let res = r23 * pow2 (pbits * aLen) + t45 * p + r01 in
lemma_karatsuba pbits aLen a0 a1 b0 b1;
res end | val karatsuba:
pbits:pos // pbits = bits t
-> aLen:nat
-> a:nat{a < pow2 (pbits * aLen)}
-> b:nat{b < pow2 (pbits * aLen)} ->
Tot (res:nat{res == a * b}) (decreases aLen)
let rec karatsuba pbits aLen a b = | false | null | false | if aLen < 16 || aLen % 2 = 1
then a * b
else
let aLen2 = aLen / 2 in
let p = pow2 (aLen2 * pbits) in
let a0 = a % p in
let a1 = a / p in
let b0 = b % p in
let b1 = b / p in
lemma_bn_halves pbits aLen a;
lemma_bn_halves pbits aLen b;
let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = karatsuba pbits aLen2 t0 t1 in
assert (t23 == t0 * t1);
let r01 = karatsuba pbits aLen2 a0 b0 in
assert (r01 == a0 * b0);
let r23 = karatsuba pbits aLen2 a1 b1 in
assert (r23 == a1 * b1);
let t01 = r01 + r23 in
assert (t01 == a0 * b0 + a1 * b1);
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
lemma_middle_karatsuba a0 a1 b0 b1;
assert (t45 == a0 * b1 + a1 * b0);
let res = r23 * pow2 (pbits * aLen) + t45 * p + r01 in
lemma_karatsuba pbits aLen a0 a1 b0 b1;
res | {
"checked_file": "Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Karatsuba.Lemmas.fst"
} | [
"total",
""
] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.bool",
"Hacl.Spec.Karatsuba.Lemmas.sign",
"Prims.unit",
"Hacl.Spec.Karatsuba.Lemmas.lemma_karatsuba",
"Prims.op_Addition",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Karatsuba.Lemmas.lemma_middle_karatsuba",
"Prims.op_Subtraction",
"Prims.op_Multiply",
"Hacl.Spec.Karatsuba.Lemmas.karatsuba",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Karatsuba.Lemmas.sign_abs",
"Hacl.Spec.Karatsuba.Lemmas.lemma_bn_halves",
"Prims.op_Division"
] | [] | module Hacl.Spec.Karatsuba.Lemmas
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
type sign =
| Positive
| Negative
let abs (a:nat) (b:nat) : nat =
if a < b then b - a else a - b
val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive))
let sign_abs a b =
if a < b then (Negative, b - a) else (Positive, a - b)
val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in p * p == pow2 (pbits * aLen))
let lemma_double_p pbits aLen =
let p = pow2 (aLen / 2 * pbits) in
calc (==) {
p * p;
(==) { Math.Lemmas.pow2_plus (aLen / 2 * pbits) (aLen / 2 * pbits) }
pow2 (aLen / 2 * pbits + aLen / 2 * pbits);
(==) { Math.Lemmas.distributivity_add_left (aLen / 2) (aLen / 2) pbits }
pow2 ((aLen / 2 * 2) * pbits);
(==) { Math.Lemmas.lemma_div_exact aLen 2 }
pow2 (aLen * pbits);
}
val lemma_bn_halves: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a:nat{a < pow2 (pbits * aLen)} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in a / p < p /\ a % p < p /\ a == a / p * p + a % p)
let lemma_bn_halves pbits aLen a = lemma_double_p pbits aLen
val lemma_middle_karatsuba: a0:nat -> a1:nat -> b0:nat -> b1:nat ->
Lemma
(let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
t45 == a0 * b1 + a1 * b0)
let lemma_middle_karatsuba a0 a1 b0 b1 =
let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
match (s0, s1) with
| (Positive, Positive) ->
calc (==) { //t45
t01 - t23;
(==) { }
a0 * b0 + a1 * b1 - (a0 - a1) * (b0 - b1);
(==) { Math.Lemmas.distributivity_sub_right (a0 - a1) b0 b1 }
a0 * b0 + a1 * b1 - ((a0 - a1) * b0 - (a0 - a1) * b1);
(==) { Math.Lemmas.distributivity_sub_left a0 a1 b0; Math.Lemmas.distributivity_sub_left a0 a1 b1 }
a0 * b0 + a1 * b1 - (a0 * b0 - a1 * b0 - (a0 * b1 - a1 * b1));
(==) { }
a1 * b0 + a0 * b1;
}
| (Negative, Negative) ->
calc (==) { //t45
t01 - t23;
(==) { }
a0 * b0 + a1 * b1 - (a1 - a0) * (b1 - b0);
(==) { Math.Lemmas.distributivity_sub_right (a1 - a0) b1 b0 }
a0 * b0 + a1 * b1 - ((a1 - a0) * b1 - (a1 - a0) * b0);
(==) { Math.Lemmas.distributivity_sub_left a1 a0 b1; Math.Lemmas.distributivity_sub_left a1 a0 b0 }
a0 * b0 + a1 * b1 - (a1 * b1 - a0 * b1 - (a1 * b0 - a0 * b0));
(==) { }
a1 * b0 + a0 * b1;
}
| (Positive, Negative) ->
calc (==) { //t45
t01 + t23;
(==) { }
a0 * b0 + a1 * b1 + (a0 - a1) * (b1 - b0);
(==) { Math.Lemmas.distributivity_sub_right (a0 - a1) b1 b0 }
a0 * b0 + a1 * b1 + ((a0 - a1) * b1 - (a0 - a1) * b0);
(==) { Math.Lemmas.distributivity_sub_left a0 a1 b1; Math.Lemmas.distributivity_sub_left a0 a1 b0 }
a0 * b0 + a1 * b1 + (a0 * b1 - a1 * b1 - (a0 * b0 - a1 * b0));
(==) { }
a1 * b0 + a0 * b1;
}
| (Negative, Positive) ->
calc (==) { //t45
t01 + t23;
(==) { }
a0 * b0 + a1 * b1 + (a1 - a0) * (b0 - b1);
(==) { Math.Lemmas.distributivity_sub_right (a1 - a0) b0 b1 }
a0 * b0 + a1 * b1 + ((a1 - a0) * b0 - (a1 - a0) * b1);
(==) { Math.Lemmas.distributivity_sub_left a1 a0 b0; Math.Lemmas.distributivity_sub_left a1 a0 b1 }
a0 * b0 + a1 * b1 + (a1 * b0 - a0 * b0 - (a1 * b1 - a0 * b1));
(==) { }
a1 * b0 + a0 * b1;
}
val lemma_karatsuba: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a0:nat -> a1:nat -> b0:nat -> b1:nat -> Lemma
(let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
a1 * b1 * pow2 (pbits * aLen) + (a0 * b1 + a1 * b0) * p + a0 * b0 == a * b)
#push-options "--z3rlimit 200"
let lemma_karatsuba pbits aLen a0 a1 b0 b1 =
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
calc (==) {
a * b;
(==) { }
(a1 * p + a0) * (b1 * p + b0);
(==) { Math.Lemmas.distributivity_add_left (a1 * p) a0 (b1 * p + b0) }
a1 * p * (b1 * p + b0) + a0 * (b1 * p + b0);
(==) { Math.Lemmas.distributivity_add_right (a1 * p) (b1 * p) b0; Math.Lemmas.distributivity_add_right a0 (b1 * p) b0 }
a1 * p * (b1 * p) + a1 * p * b0 + a0 * (b1 * p) + a0 * b0;
(==) { Math.Lemmas.paren_mul_right a0 b1 p }
a1 * p * (b1 * p) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) {
Math.Lemmas.paren_mul_right a1 p (b1 * p); Math.Lemmas.swap_mul b1 p;
Math.Lemmas.paren_mul_right p p b1; Math.Lemmas.swap_mul b1 (p * p) }
a1 * (b1 * (p * p)) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) { Math.Lemmas.paren_mul_right a1 b1 (p * p) }
a1 * b1 * (p * p) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) { lemma_double_p pbits aLen }
a1 * b1 * pow2 (pbits * aLen) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) { Math.Lemmas.paren_mul_right a1 p b0; Math.Lemmas.swap_mul b0 p; Math.Lemmas.paren_mul_right a1 b0 p }
a1 * b1 * pow2 (pbits * aLen) + a1 * b0 * p + a0 * b1 * p + a0 * b0;
(==) { Math.Lemmas.distributivity_add_left (a1 * b0) (a0 * b1) p }
a1 * b1 * pow2 (pbits * aLen) + (a1 * b0 + a0 * b1) * p + a0 * b0;
}
#pop-options
val karatsuba:
pbits:pos // pbits = bits t
-> aLen:nat
-> a:nat{a < pow2 (pbits * aLen)}
-> b:nat{b < pow2 (pbits * aLen)} ->
Tot (res:nat{res == a * b}) (decreases aLen) | false | false | Hacl.Spec.Karatsuba.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val karatsuba:
pbits:pos // pbits = bits t
-> aLen:nat
-> a:nat{a < pow2 (pbits * aLen)}
-> b:nat{b < pow2 (pbits * aLen)} ->
Tot (res:nat{res == a * b}) (decreases aLen) | [
"recursion"
] | Hacl.Spec.Karatsuba.Lemmas.karatsuba | {
"file_name": "code/bignum/Hacl.Spec.Karatsuba.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
aLen: Prims.nat ->
a: Prims.nat{a < Prims.pow2 (pbits * aLen)} ->
b: Prims.nat{b < Prims.pow2 (pbits * aLen)}
-> Prims.Tot (res: Prims.nat{res == a * b}) | {
"end_col": 11,
"end_line": 185,
"start_col": 2,
"start_line": 161
} |
FStar.Pervasives.Lemma | val lemma_karatsuba: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a0:nat -> a1:nat -> b0:nat -> b1:nat -> Lemma
(let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
a1 * b1 * pow2 (pbits * aLen) + (a0 * b1 + a1 * b0) * p + a0 * b0 == a * b) | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Karatsuba",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_karatsuba pbits aLen a0 a1 b0 b1 =
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
calc (==) {
a * b;
(==) { }
(a1 * p + a0) * (b1 * p + b0);
(==) { Math.Lemmas.distributivity_add_left (a1 * p) a0 (b1 * p + b0) }
a1 * p * (b1 * p + b0) + a0 * (b1 * p + b0);
(==) { Math.Lemmas.distributivity_add_right (a1 * p) (b1 * p) b0; Math.Lemmas.distributivity_add_right a0 (b1 * p) b0 }
a1 * p * (b1 * p) + a1 * p * b0 + a0 * (b1 * p) + a0 * b0;
(==) { Math.Lemmas.paren_mul_right a0 b1 p }
a1 * p * (b1 * p) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) {
Math.Lemmas.paren_mul_right a1 p (b1 * p); Math.Lemmas.swap_mul b1 p;
Math.Lemmas.paren_mul_right p p b1; Math.Lemmas.swap_mul b1 (p * p) }
a1 * (b1 * (p * p)) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) { Math.Lemmas.paren_mul_right a1 b1 (p * p) }
a1 * b1 * (p * p) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) { lemma_double_p pbits aLen }
a1 * b1 * pow2 (pbits * aLen) + a1 * p * b0 + a0 * b1 * p + a0 * b0;
(==) { Math.Lemmas.paren_mul_right a1 p b0; Math.Lemmas.swap_mul b0 p; Math.Lemmas.paren_mul_right a1 b0 p }
a1 * b1 * pow2 (pbits * aLen) + a1 * b0 * p + a0 * b1 * p + a0 * b0;
(==) { Math.Lemmas.distributivity_add_left (a1 * b0) (a0 * b1) p }
a1 * b1 * pow2 (pbits * aLen) + (a1 * b0 + a0 * b1) * p + a0 * b0;
} | val lemma_karatsuba: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a0:nat -> a1:nat -> b0:nat -> b1:nat -> Lemma
(let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
a1 * b1 * pow2 (pbits * aLen) + (a0 * b1 + a1 * b0) * p + a0 * b0 == a * b)
let lemma_karatsuba pbits aLen a0 a1 b0 b1 = | false | null | true | let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
calc ( == ) {
a * b;
( == ) { () }
(a1 * p + a0) * (b1 * p + b0);
( == ) { Math.Lemmas.distributivity_add_left (a1 * p) a0 (b1 * p + b0) }
(a1 * p) * (b1 * p + b0) + a0 * (b1 * p + b0);
( == ) { (Math.Lemmas.distributivity_add_right (a1 * p) (b1 * p) b0;
Math.Lemmas.distributivity_add_right a0 (b1 * p) b0) }
(a1 * p) * (b1 * p) + (a1 * p) * b0 + a0 * (b1 * p) + a0 * b0;
( == ) { Math.Lemmas.paren_mul_right a0 b1 p }
(a1 * p) * (b1 * p) + (a1 * p) * b0 + (a0 * b1) * p + a0 * b0;
( == ) { (Math.Lemmas.paren_mul_right a1 p (b1 * p);
Math.Lemmas.swap_mul b1 p;
Math.Lemmas.paren_mul_right p p b1;
Math.Lemmas.swap_mul b1 (p * p)) }
a1 * (b1 * (p * p)) + (a1 * p) * b0 + (a0 * b1) * p + a0 * b0;
( == ) { Math.Lemmas.paren_mul_right a1 b1 (p * p) }
(a1 * b1) * (p * p) + (a1 * p) * b0 + (a0 * b1) * p + a0 * b0;
( == ) { lemma_double_p pbits aLen }
(a1 * b1) * pow2 (pbits * aLen) + (a1 * p) * b0 + (a0 * b1) * p + a0 * b0;
( == ) { (Math.Lemmas.paren_mul_right a1 p b0;
Math.Lemmas.swap_mul b0 p;
Math.Lemmas.paren_mul_right a1 b0 p) }
(a1 * b1) * pow2 (pbits * aLen) + (a1 * b0) * p + (a0 * b1) * p + a0 * b0;
( == ) { Math.Lemmas.distributivity_add_left (a1 * b0) (a0 * b1) p }
(a1 * b1) * pow2 (pbits * aLen) + (a1 * b0 + a0 * b1) * p + a0 * b0;
} | {
"checked_file": "Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Karatsuba.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"FStar.Calc.calc_finish",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.pow2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.distributivity_add_right",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.swap_mul",
"Hacl.Spec.Karatsuba.Lemmas.lemma_double_p",
"Prims.op_Division"
] | [] | module Hacl.Spec.Karatsuba.Lemmas
open FStar.Mul
open Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
type sign =
| Positive
| Negative
let abs (a:nat) (b:nat) : nat =
if a < b then b - a else a - b
val sign_abs: a:nat -> b:nat ->
Pure (tuple2 sign nat)
(requires True)
(ensures fun (s, res) -> res == abs a b /\
s == (if a < b then Negative else Positive))
let sign_abs a b =
if a < b then (Negative, b - a) else (Positive, a - b)
val lemma_double_p: pbits:pos -> aLen:nat{aLen % 2 = 0} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in p * p == pow2 (pbits * aLen))
let lemma_double_p pbits aLen =
let p = pow2 (aLen / 2 * pbits) in
calc (==) {
p * p;
(==) { Math.Lemmas.pow2_plus (aLen / 2 * pbits) (aLen / 2 * pbits) }
pow2 (aLen / 2 * pbits + aLen / 2 * pbits);
(==) { Math.Lemmas.distributivity_add_left (aLen / 2) (aLen / 2) pbits }
pow2 ((aLen / 2 * 2) * pbits);
(==) { Math.Lemmas.lemma_div_exact aLen 2 }
pow2 (aLen * pbits);
}
val lemma_bn_halves: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a:nat{a < pow2 (pbits * aLen)} ->
Lemma (let p = pow2 (aLen / 2 * pbits) in a / p < p /\ a % p < p /\ a == a / p * p + a % p)
let lemma_bn_halves pbits aLen a = lemma_double_p pbits aLen
val lemma_middle_karatsuba: a0:nat -> a1:nat -> b0:nat -> b1:nat ->
Lemma
(let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
t45 == a0 * b1 + a1 * b0)
let lemma_middle_karatsuba a0 a1 b0 b1 =
let s0, t0 = sign_abs a0 a1 in
let s1, t1 = sign_abs b0 b1 in
let t23 = t0 * t1 in
let t01 = a0 * b0 + a1 * b1 in
let t45 = if s0 = s1 then t01 - t23 else t01 + t23 in
match (s0, s1) with
| (Positive, Positive) ->
calc (==) { //t45
t01 - t23;
(==) { }
a0 * b0 + a1 * b1 - (a0 - a1) * (b0 - b1);
(==) { Math.Lemmas.distributivity_sub_right (a0 - a1) b0 b1 }
a0 * b0 + a1 * b1 - ((a0 - a1) * b0 - (a0 - a1) * b1);
(==) { Math.Lemmas.distributivity_sub_left a0 a1 b0; Math.Lemmas.distributivity_sub_left a0 a1 b1 }
a0 * b0 + a1 * b1 - (a0 * b0 - a1 * b0 - (a0 * b1 - a1 * b1));
(==) { }
a1 * b0 + a0 * b1;
}
| (Negative, Negative) ->
calc (==) { //t45
t01 - t23;
(==) { }
a0 * b0 + a1 * b1 - (a1 - a0) * (b1 - b0);
(==) { Math.Lemmas.distributivity_sub_right (a1 - a0) b1 b0 }
a0 * b0 + a1 * b1 - ((a1 - a0) * b1 - (a1 - a0) * b0);
(==) { Math.Lemmas.distributivity_sub_left a1 a0 b1; Math.Lemmas.distributivity_sub_left a1 a0 b0 }
a0 * b0 + a1 * b1 - (a1 * b1 - a0 * b1 - (a1 * b0 - a0 * b0));
(==) { }
a1 * b0 + a0 * b1;
}
| (Positive, Negative) ->
calc (==) { //t45
t01 + t23;
(==) { }
a0 * b0 + a1 * b1 + (a0 - a1) * (b1 - b0);
(==) { Math.Lemmas.distributivity_sub_right (a0 - a1) b1 b0 }
a0 * b0 + a1 * b1 + ((a0 - a1) * b1 - (a0 - a1) * b0);
(==) { Math.Lemmas.distributivity_sub_left a0 a1 b1; Math.Lemmas.distributivity_sub_left a0 a1 b0 }
a0 * b0 + a1 * b1 + (a0 * b1 - a1 * b1 - (a0 * b0 - a1 * b0));
(==) { }
a1 * b0 + a0 * b1;
}
| (Negative, Positive) ->
calc (==) { //t45
t01 + t23;
(==) { }
a0 * b0 + a1 * b1 + (a1 - a0) * (b0 - b1);
(==) { Math.Lemmas.distributivity_sub_right (a1 - a0) b0 b1 }
a0 * b0 + a1 * b1 + ((a1 - a0) * b0 - (a1 - a0) * b1);
(==) { Math.Lemmas.distributivity_sub_left a1 a0 b0; Math.Lemmas.distributivity_sub_left a1 a0 b1 }
a0 * b0 + a1 * b1 + (a1 * b0 - a0 * b0 - (a1 * b1 - a0 * b1));
(==) { }
a1 * b0 + a0 * b1;
}
val lemma_karatsuba: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a0:nat -> a1:nat -> b0:nat -> b1:nat -> Lemma
(let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
a1 * b1 * pow2 (pbits * aLen) + (a0 * b1 + a1 * b0) * p + a0 * b0 == a * b) | false | false | Hacl.Spec.Karatsuba.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_karatsuba: pbits:pos -> aLen:nat{aLen % 2 = 0} -> a0:nat -> a1:nat -> b0:nat -> b1:nat -> Lemma
(let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
a1 * b1 * pow2 (pbits * aLen) + (a0 * b1 + a1 * b0) * p + a0 * b0 == a * b) | [] | Hacl.Spec.Karatsuba.Lemmas.lemma_karatsuba | {
"file_name": "code/bignum/Hacl.Spec.Karatsuba.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
pbits: Prims.pos ->
aLen: Prims.nat{aLen % 2 = 0} ->
a0: Prims.nat ->
a1: Prims.nat ->
b0: Prims.nat ->
b1: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(let aLen2 = aLen / 2 in
let p = Prims.pow2 (pbits * aLen2) in
let a = a1 * p + a0 in
let b = b1 * p + b0 in
(a1 * b1) * Prims.pow2 (pbits * aLen) + (a0 * b1 + a1 * b0) * p + a0 * b0 == a * b)) | {
"end_col": 4,
"end_line": 150,
"start_col": 44,
"start_line": 122
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let compute_iv_BE = opaque_make compute_iv_BE_def | let compute_iv_BE = | false | null | false | opaque_make compute_iv_BE_def | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [
"total"
] | [
"Vale.Def.Opaque_s.opaque_make",
"Vale.Def.Types_s.quad32",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.AES.GCM_s.compute_iv_BE_def"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE | false | true | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val compute_iv_BE : _: Vale.Def.Types_s.quad32 -> _: Vale.AES.GCM_s.supported_iv_LE -> Vale.Def.Types_s.quad32 | [] | Vale.AES.GCM_s.compute_iv_BE | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Vale.Def.Types_s.quad32 -> _: Vale.AES.GCM_s.supported_iv_LE -> Vale.Def.Types_s.quad32 | {
"end_col": 68,
"end_line": 35,
"start_col": 39,
"start_line": 35
} |
|
FStar.Pervasives.Lemma | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let compute_iv_BE_reveal = opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def | let compute_iv_BE_reveal = | false | null | true | opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [
"lemma"
] | [
"Vale.Def.Opaque_s.opaque_revealer",
"Vale.Def.Types_s.quad32",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.GCM_s.compute_iv_BE_def"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
) | false | false | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val compute_iv_BE_reveal : _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GCM_s.compute_iv_BE == Vale.AES.GCM_s.compute_iv_BE_def) | [] | Vale.AES.GCM_s.compute_iv_BE_reveal | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GCM_s.compute_iv_BE == Vale.AES.GCM_s.compute_iv_BE_def) | {
"end_col": 104,
"end_line": 36,
"start_col": 39,
"start_line": 36
} |
|
FStar.Pervasives.Lemma | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_encrypt_LE_reveal = opaque_revealer (`%gcm_encrypt_LE) gcm_encrypt_LE gcm_encrypt_LE_def | let gcm_encrypt_LE_reveal = | false | null | true | opaque_revealer (`%gcm_encrypt_LE) gcm_encrypt_LE gcm_encrypt_LE_def | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [
"lemma"
] | [
"Vale.Def.Opaque_s.opaque_revealer",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Pervasives.Native.tuple2",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.AES.GCM_s.gcm_encrypt_LE_def"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
)
[@"opaque_to_smt"] let compute_iv_BE = opaque_make compute_iv_BE_def
irreducible let compute_iv_BE_reveal = opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def
// little-endian
let gcm_encrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (plain:seq nat8) (auth:seq nat8) :
Pure (seq nat8 & seq nat8)
(requires
is_aes_key alg key /\
length plain < pow2_32 /\
length auth < pow2_32
)
(ensures fun (c, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let c = gctr_encrypt_LE (inc32 j0_BE 1) plain alg key_LE in
// Sets the first 64-bit number to 8 * length plain, and the second to 8* length auth
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits c) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(c, t) | false | false | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_encrypt_LE_reveal : _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GCM_s.gcm_encrypt_LE == Vale.AES.GCM_s.gcm_encrypt_LE_def) | [] | Vale.AES.GCM_s.gcm_encrypt_LE_reveal | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GCM_s.gcm_encrypt_LE == Vale.AES.GCM_s.gcm_encrypt_LE_def) | {
"end_col": 108,
"end_line": 67,
"start_col": 40,
"start_line": 67
} |
|
FStar.Pervasives.Lemma | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_decrypt_LE_reveal = opaque_revealer (`%gcm_decrypt_LE) gcm_decrypt_LE gcm_decrypt_LE_def | let gcm_decrypt_LE_reveal = | false | null | true | opaque_revealer (`%gcm_decrypt_LE) gcm_decrypt_LE gcm_decrypt_LE_def | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [
"lemma"
] | [
"Vale.Def.Opaque_s.opaque_revealer",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True",
"Vale.AES.GCM_s.gcm_decrypt_LE",
"Vale.AES.GCM_s.gcm_decrypt_LE_def"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
)
[@"opaque_to_smt"] let compute_iv_BE = opaque_make compute_iv_BE_def
irreducible let compute_iv_BE_reveal = opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def
// little-endian
let gcm_encrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (plain:seq nat8) (auth:seq nat8) :
Pure (seq nat8 & seq nat8)
(requires
is_aes_key alg key /\
length plain < pow2_32 /\
length auth < pow2_32
)
(ensures fun (c, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let c = gctr_encrypt_LE (inc32 j0_BE 1) plain alg key_LE in
// Sets the first 64-bit number to 8 * length plain, and the second to 8* length auth
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits c) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(c, t)
[@"opaque_to_smt"] let gcm_encrypt_LE = opaque_make gcm_encrypt_LE_def
irreducible let gcm_encrypt_LE_reveal = opaque_revealer (`%gcm_encrypt_LE) gcm_encrypt_LE gcm_encrypt_LE_def
let gcm_decrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8) (tag:seq nat8) :
Pure (seq nat8 & bool)
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32
)
(ensures fun (p, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let p = gctr_encrypt_LE (inc32 j0_BE 1) cipher alg key_LE in // TODO: Rename gctr_encrypt_LE to gctr_LE
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length cipher) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(p, t = tag) | false | false | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_decrypt_LE_reveal : _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GCM_s.gcm_decrypt_LE == Vale.AES.GCM_s.gcm_decrypt_LE_def) | [] | Vale.AES.GCM_s.gcm_decrypt_LE_reveal | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures Vale.AES.GCM_s.gcm_decrypt_LE == Vale.AES.GCM_s.gcm_decrypt_LE_def) | {
"end_col": 108,
"end_line": 96,
"start_col": 40,
"start_line": 96
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_encrypt_LE = opaque_make gcm_encrypt_LE_def | let gcm_encrypt_LE = | false | null | false | opaque_make gcm_encrypt_LE_def | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [] | [
"Vale.Def.Opaque_s.opaque_make",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Pervasives.Native.tuple2",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True",
"Vale.AES.GCM_s.gcm_encrypt_LE_def"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
)
[@"opaque_to_smt"] let compute_iv_BE = opaque_make compute_iv_BE_def
irreducible let compute_iv_BE_reveal = opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def
// little-endian
let gcm_encrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (plain:seq nat8) (auth:seq nat8) :
Pure (seq nat8 & seq nat8)
(requires
is_aes_key alg key /\
length plain < pow2_32 /\
length auth < pow2_32
)
(ensures fun (c, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let c = gctr_encrypt_LE (inc32 j0_BE 1) plain alg key_LE in
// Sets the first 64-bit number to 8 * length plain, and the second to 8* length auth
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits c) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in | false | false | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_encrypt_LE : alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Types_s.nat8
-> Prims.Pure
(FStar.Seq.Base.seq Vale.Def.Types_s.nat8 * FStar.Seq.Base.seq Vale.Def.Types_s.nat8) | [] | Vale.AES.GCM_s.gcm_encrypt_LE | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Types_s.nat8
-> Prims.Pure
(FStar.Seq.Base.seq Vale.Def.Types_s.nat8 * FStar.Seq.Base.seq Vale.Def.Types_s.nat8) | {
"end_col": 70,
"end_line": 66,
"start_col": 40,
"start_line": 66
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_decrypt_LE = opaque_make gcm_decrypt_LE_def | let gcm_decrypt_LE = | false | null | false | opaque_make gcm_decrypt_LE_def | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [] | [
"Vale.Def.Opaque_s.opaque_make",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True",
"Vale.AES.GCM_s.gcm_decrypt_LE_def"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
)
[@"opaque_to_smt"] let compute_iv_BE = opaque_make compute_iv_BE_def
irreducible let compute_iv_BE_reveal = opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def
// little-endian
let gcm_encrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (plain:seq nat8) (auth:seq nat8) :
Pure (seq nat8 & seq nat8)
(requires
is_aes_key alg key /\
length plain < pow2_32 /\
length auth < pow2_32
)
(ensures fun (c, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let c = gctr_encrypt_LE (inc32 j0_BE 1) plain alg key_LE in
// Sets the first 64-bit number to 8 * length plain, and the second to 8* length auth
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits c) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(c, t)
[@"opaque_to_smt"] let gcm_encrypt_LE = opaque_make gcm_encrypt_LE_def
irreducible let gcm_encrypt_LE_reveal = opaque_revealer (`%gcm_encrypt_LE) gcm_encrypt_LE gcm_encrypt_LE_def
let gcm_decrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8) (tag:seq nat8) :
Pure (seq nat8 & bool)
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32
)
(ensures fun (p, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let p = gctr_encrypt_LE (inc32 j0_BE 1) cipher alg key_LE in // TODO: Rename gctr_encrypt_LE to gctr_LE
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length cipher) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in | false | false | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_decrypt_LE : alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
tag: FStar.Seq.Base.seq Vale.Def.Types_s.nat8
-> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Types_s.nat8 * Prims.bool) | [] | Vale.AES.GCM_s.gcm_decrypt_LE | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
tag: FStar.Seq.Base.seq Vale.Def.Types_s.nat8
-> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Types_s.nat8 * Prims.bool) | {
"end_col": 70,
"end_line": 95,
"start_col": 40,
"start_line": 95
} |
|
Prims.Tot | val compute_iv_BE_def (h_LE: quad32) (iv: supported_iv_LE) : quad32 | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
) | val compute_iv_BE_def (h_LE: quad32) (iv: supported_iv_LE) : quad32
let compute_iv_BE_def (h_LE: quad32) (iv: supported_iv_LE) : quad32 = | false | null | false | if 8 * (length iv) = 96
then
(let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE)
else
(let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE) | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [
"total"
] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.nat8",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.le_bytes_to_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Prims.bool",
"Vale.AES.GHash_s.ghash_LE",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.insert_nat64_def",
"Vale.Def.Types_s.le_bytes_to_seq_quad32"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32 | false | true | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val compute_iv_BE_def (h_LE: quad32) (iv: supported_iv_LE) : quad32 | [] | Vale.AES.GCM_s.compute_iv_BE_def | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h_LE: Vale.Def.Types_s.quad32 -> iv: Vale.AES.GCM_s.supported_iv_LE -> Vale.Def.Types_s.quad32 | {
"end_col": 3,
"end_line": 34,
"start_col": 2,
"start_line": 22
} |
Prims.Pure | val gcm_encrypt_LE_def (alg: algorithm) (key: seq nat8) (iv: supported_iv_LE) (plain auth: seq nat8)
: Pure (seq nat8 & seq nat8)
(requires is_aes_key alg key /\ length plain < pow2_32 /\ length auth < pow2_32)
(ensures fun (c, t) -> True) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_encrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (plain:seq nat8) (auth:seq nat8) :
Pure (seq nat8 & seq nat8)
(requires
is_aes_key alg key /\
length plain < pow2_32 /\
length auth < pow2_32
)
(ensures fun (c, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let c = gctr_encrypt_LE (inc32 j0_BE 1) plain alg key_LE in
// Sets the first 64-bit number to 8 * length plain, and the second to 8* length auth
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits c) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(c, t) | val gcm_encrypt_LE_def (alg: algorithm) (key: seq nat8) (iv: supported_iv_LE) (plain auth: seq nat8)
: Pure (seq nat8 & seq nat8)
(requires is_aes_key alg key /\ length plain < pow2_32 /\ length auth < pow2_32)
(ensures fun (c, t) -> True)
let gcm_encrypt_LE_def (alg: algorithm) (key: seq nat8) (iv: supported_iv_LE) (plain auth: seq nat8)
: Pure (seq nat8 & seq nat8)
(requires is_aes_key alg key /\ length plain < pow2_32 /\ length auth < pow2_32)
(ensures fun (c, t) -> True) = | false | null | false | let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let c = gctr_encrypt_LE (inc32 j0_BE 1) plain alg key_LE in
let lengths_BE =
insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0
in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits c) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(c, t) | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Pervasives.Native.Mktuple2",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Def.Types_s.quad32",
"Vale.AES.GHash_s.ghash_LE",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64_def",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.AES.GCTR_s.inc32",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE",
"FStar.Pervasives.Native.tuple2",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
)
[@"opaque_to_smt"] let compute_iv_BE = opaque_make compute_iv_BE_def
irreducible let compute_iv_BE_reveal = opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def
// little-endian
let gcm_encrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (plain:seq nat8) (auth:seq nat8) :
Pure (seq nat8 & seq nat8)
(requires
is_aes_key alg key /\
length plain < pow2_32 /\
length auth < pow2_32
) | false | false | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_encrypt_LE_def (alg: algorithm) (key: seq nat8) (iv: supported_iv_LE) (plain auth: seq nat8)
: Pure (seq nat8 & seq nat8)
(requires is_aes_key alg key /\ length plain < pow2_32 /\ length auth < pow2_32)
(ensures fun (c, t) -> True) | [] | Vale.AES.GCM_s.gcm_encrypt_LE_def | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Types_s.nat8
-> Prims.Pure
(FStar.Seq.Base.seq Vale.Def.Types_s.nat8 * FStar.Seq.Base.seq Vale.Def.Types_s.nat8) | {
"end_col": 8,
"end_line": 65,
"start_col": 3,
"start_line": 47
} |
Prims.Pure | val gcm_decrypt_LE_def
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_LE)
(cipher auth tag: seq nat8)
: Pure (seq nat8 & bool)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun (p, t) -> True) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_decrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8) (tag:seq nat8) :
Pure (seq nat8 & bool)
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32
)
(ensures fun (p, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let p = gctr_encrypt_LE (inc32 j0_BE 1) cipher alg key_LE in // TODO: Rename gctr_encrypt_LE to gctr_LE
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length cipher) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(p, t = tag) | val gcm_decrypt_LE_def
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_LE)
(cipher auth tag: seq nat8)
: Pure (seq nat8 & bool)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun (p, t) -> True)
let gcm_decrypt_LE_def
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_LE)
(cipher auth tag: seq nat8)
: Pure (seq nat8 & bool)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun (p, t) -> True) = | false | null | false | let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let p = gctr_encrypt_LE (inc32 j0_BE 1) cipher alg key_LE in
let lengths_BE =
insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length cipher) 0
in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(p, t = tag) | {
"checked_file": "Vale.AES.GCM_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_s.fst"
} | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Pervasives.Native.Mktuple2",
"Prims.bool",
"Prims.op_Equality",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Def.Types_s.quad32",
"Vale.AES.GHash_s.ghash_LE",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64_def",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.AES.GCTR_s.inc32",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE",
"FStar.Pervasives.Native.tuple2",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True"
] | [] | module Vale.AES.GCM_s
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GHash_s
open FStar.Seq
open FStar.Mul
unfold type gcm_plain_LE = gctr_plain_LE
unfold type gcm_auth_LE = gctr_plain_LE
#reset-options "--z3rlimit 30"
type supported_iv_LE:eqtype = iv:seq nat8 { 1 <= 8 * (length iv) /\ 8 * (length iv) < pow2_64 }
let compute_iv_BE_def (h_LE:quad32) (iv:supported_iv_LE) : quad32
=
if 8 * (length iv) = 96 then (
let iv_LE = le_bytes_to_quad32 (pad_to_128_bits iv) in
let iv_BE = reverse_bytes_quad32 iv_LE in
let j0_BE = Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3 in
j0_BE
) else (
let padded_iv_quads = le_bytes_to_seq_quad32 (pad_to_128_bits iv) in
let length_BE = insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0 in
let length_LE = reverse_bytes_quad32 length_BE in
let hash_input_LE = append padded_iv_quads (create 1 length_LE) in
let hash_output_LE = ghash_LE h_LE hash_input_LE in
reverse_bytes_quad32 hash_output_LE
)
[@"opaque_to_smt"] let compute_iv_BE = opaque_make compute_iv_BE_def
irreducible let compute_iv_BE_reveal = opaque_revealer (`%compute_iv_BE) compute_iv_BE compute_iv_BE_def
// little-endian
let gcm_encrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (plain:seq nat8) (auth:seq nat8) :
Pure (seq nat8 & seq nat8)
(requires
is_aes_key alg key /\
length plain < pow2_32 /\
length auth < pow2_32
)
(ensures fun (c, t) -> True)
=
let key_LE = seq_nat8_to_seq_nat32_LE key in
let h_LE = aes_encrypt_LE alg key_LE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_LE iv in
let c = gctr_encrypt_LE (inc32 j0_BE 1) plain alg key_LE in
// Sets the first 64-bit number to 8 * length plain, and the second to 8* length auth
let lengths_BE = insert_nat64_def (insert_nat64_def (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0 in
let lengths_LE = reverse_bytes_quad32 lengths_BE in
let zero_padded_c_LE = le_bytes_to_seq_quad32 (pad_to_128_bits c) in
let zero_padded_a_LE = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_LE = append zero_padded_a_LE (append zero_padded_c_LE (create 1 lengths_LE)) in
let s_LE = ghash_LE h_LE hash_input_LE in
let t = gctr_encrypt_LE j0_BE (le_quad32_to_bytes s_LE) alg key_LE in
(c, t)
[@"opaque_to_smt"] let gcm_encrypt_LE = opaque_make gcm_encrypt_LE_def
irreducible let gcm_encrypt_LE_reveal = opaque_revealer (`%gcm_encrypt_LE) gcm_encrypt_LE gcm_encrypt_LE_def
let gcm_decrypt_LE_def (alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8) (tag:seq nat8) :
Pure (seq nat8 & bool)
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32
) | false | false | Vale.AES.GCM_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_decrypt_LE_def
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_LE)
(cipher auth tag: seq nat8)
: Pure (seq nat8 & bool)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun (p, t) -> True) | [] | Vale.AES.GCM_s.gcm_decrypt_LE_def | {
"file_name": "vale/specs/crypto/Vale.AES.GCM_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 ->
tag: FStar.Seq.Base.seq Vale.Def.Types_s.nat8
-> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Types_s.nat8 * Prims.bool) | {
"end_col": 14,
"end_line": 94,
"start_col": 3,
"start_line": 77
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_of (f':flags_t) (o:nat1) = flag_of f' == o /\ valid_of f' | let update_of (f': flags_t) (o: nat1) = | false | null | false | flag_of f' == o /\ valid_of f' | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.Bignum.X64.flags_t",
"Vale.Def.Words_s.nat1",
"Prims.l_and",
"Prims.eq2",
"Vale.Bignum.X64.flag_of",
"Prims.b2t",
"Vale.X64.Decls.valid_of",
"Prims.logical"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1
val flag_of (f:flags_t) : nat1 | false | true | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_of : f': Vale.Bignum.X64.flags_t -> o: Vale.Def.Words_s.nat1 -> Prims.logical | [] | Vale.Bignum.X64.update_of | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f': Vale.Bignum.X64.flags_t -> o: Vale.Def.Words_s.nat1 -> Prims.logical | {
"end_col": 68,
"end_line": 21,
"start_col": 38,
"start_line": 21
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_cf (f':flags_t) (c:nat1) = flag_cf f' == c /\ valid_cf f' | let update_cf (f': flags_t) (c: nat1) = | false | null | false | flag_cf f' == c /\ valid_cf f' | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.Bignum.X64.flags_t",
"Vale.Def.Words_s.nat1",
"Prims.l_and",
"Prims.eq2",
"Vale.Bignum.X64.flag_cf",
"Prims.b2t",
"Vale.X64.Decls.valid_cf",
"Prims.logical"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1 | false | true | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_cf : f': Vale.Bignum.X64.flags_t -> c: Vale.Def.Words_s.nat1 -> Prims.logical | [] | Vale.Bignum.X64.update_cf | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f': Vale.Bignum.X64.flags_t -> c: Vale.Def.Words_s.nat1 -> Prims.logical | {
"end_col": 68,
"end_line": 20,
"start_col": 38,
"start_line": 20
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let maintain_of (f':flags_t) (f:flags_t) = flag_of f' == flag_of f /\ valid_of f' == valid_of f | let maintain_of (f' f: flags_t) = | false | null | false | flag_of f' == flag_of f /\ valid_of f' == valid_of f | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.Bignum.X64.flags_t",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Words_s.nat1",
"Vale.Bignum.X64.flag_of",
"Prims.bool",
"Vale.X64.Decls.valid_of",
"Prims.logical"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1
val flag_of (f:flags_t) : nat1
let update_cf (f':flags_t) (c:nat1) = flag_cf f' == c /\ valid_cf f'
let update_of (f':flags_t) (o:nat1) = flag_of f' == o /\ valid_of f' | false | true | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val maintain_of : f': Vale.Bignum.X64.flags_t -> f: Vale.Bignum.X64.flags_t -> Prims.logical | [] | Vale.Bignum.X64.maintain_of | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f': Vale.Bignum.X64.flags_t -> f: Vale.Bignum.X64.flags_t -> Prims.logical | {
"end_col": 95,
"end_line": 23,
"start_col": 43,
"start_line": 23
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let maintain_cf (f':flags_t) (f:flags_t) = flag_cf f' == flag_cf f /\ valid_cf f' == valid_cf f | let maintain_cf (f' f: flags_t) = | false | null | false | flag_cf f' == flag_cf f /\ valid_cf f' == valid_cf f | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.Bignum.X64.flags_t",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Words_s.nat1",
"Vale.Bignum.X64.flag_cf",
"Prims.bool",
"Vale.X64.Decls.valid_cf",
"Prims.logical"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1
val flag_of (f:flags_t) : nat1
let update_cf (f':flags_t) (c:nat1) = flag_cf f' == c /\ valid_cf f' | false | true | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val maintain_cf : f': Vale.Bignum.X64.flags_t -> f: Vale.Bignum.X64.flags_t -> Prims.logical | [] | Vale.Bignum.X64.maintain_cf | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f': Vale.Bignum.X64.flags_t -> f: Vale.Bignum.X64.flags_t -> Prims.logical | {
"end_col": 95,
"end_line": 22,
"start_col": 43,
"start_line": 22
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let flags_t = Vale.X64.Flags.t | let flags_t = | false | null | false | Vale.X64.Flags.t | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.X64.Flags.t"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s | false | true | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val flags_t : Type0 | [] | Vale.Bignum.X64.flags_t | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 30,
"end_line": 17,
"start_col": 14,
"start_line": 17
} |
|
Prims.Tot | val va_wp_Adcx_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wp_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state)
(va_k:(va_state -> unit -> Type0)) : Type0 =
(va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_cf (va_get_flags va_s0) /\ (forall (va_x_dst:va_value_dst_opr64)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst
va_x_dst va_s0) in va_get_ok va_sM /\ va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo
(va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\
update_cf (va_get_flags va_sM) (Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM)
(va_get_flags va_s0) ==> va_k va_sM (()))) | val va_wp_Adcx_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0
let va_wp_Adcx_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 = | false | null | false | (va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_cf (va_get_flags va_s0) /\
(forall (va_x_dst: va_value_dst_opr64) (va_x_efl: Vale.X64.Flags.t).
let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst va_x_dst va_s0) in
va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst ==
Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src)
(flag_cf (va_get_flags va_s0)) /\
update_cf (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src)
(flag_cf (va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM) (va_get_flags va_s0) ==>
va_k va_sM (()))) | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Vale.X64.Decls.va_is_dst_dst_opr64",
"Vale.X64.Decls.va_is_src_opr64",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.CPU_Features_s.adx_enabled",
"Vale.X64.Decls.valid_cf",
"Vale.X64.Decls.va_get_flags",
"Prims.l_Forall",
"Vale.X64.Decls.va_value_dst_opr64",
"Vale.X64.Flags.t",
"Prims.l_imp",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_64",
"Vale.X64.Decls.va_eval_dst_opr64",
"Vale.Bignum.Defs.add_lo",
"Vale.X64.Decls.va_eval_opr64",
"Vale.Bignum.X64.flag_cf",
"Vale.Bignum.X64.update_cf",
"Vale.Bignum.Defs.add_hi",
"Vale.Bignum.X64.maintain_of",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_upd_flags",
"Vale.X64.Decls.va_upd_operand_dst_opr64"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1
val flag_of (f:flags_t) : nat1
let update_cf (f':flags_t) (c:nat1) = flag_cf f' == c /\ valid_cf f'
let update_of (f':flags_t) (o:nat1) = flag_of f' == o /\ valid_of f'
let maintain_cf (f':flags_t) (f:flags_t) = flag_cf f' == flag_cf f /\ valid_cf f' == valid_cf f
let maintain_of (f':flags_t) (f:flags_t) = flag_of f' == flag_of f /\ valid_of f' == valid_of f
//-- reveal_flags
val reveal_flags : f:flags_t
-> Lemma
(requires true)
(ensures (flag_cf f = 1 == Vale.X64.Decls.cf f /\ flag_of f = 1 == Vale.X64.Decls.overflow f))
//--
//-- lemma_add_hi_lo64
val lemma_add_hi_lo64 : dummy:int
-> Lemma
(requires true)
(ensures (forall (a:nat64) (b:nat64) (c:nat1) . {:pattern(add_lo a b c); (add_hi a b
c)}Vale.Bignum.Defs.add_lo a b c + va_mul_nat pow2_64 (Vale.Bignum.Defs.add_hi a b c) == a + b
+ c))
//--
//-- Adcx_64
val va_code_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
val va_codegen_success_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
val va_lemma_Adcx_64 : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Adcx_64 dst src) va_s0 /\ va_is_dst_dst_opr64 dst
va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\ Vale.X64.Decls.valid_cf
(va_get_flags va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\ update_cf (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf
(va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM) (va_get_flags va_s0) /\ va_state_eq
va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM
va_s0)))))
[@ va_qattr]
let va_wp_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state) | false | true | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wp_Adcx_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | [] | Vale.Bignum.X64.va_wp_Adcx_64 | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
src: Vale.X64.Decls.va_operand_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Type0 | {
"end_col": 46,
"end_line": 69,
"start_col": 2,
"start_line": 62
} |
Prims.Tot | val va_wp_Adox_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wp_Adox_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state)
(va_k:(va_state -> unit -> Type0)) : Type0 =
(va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_of (va_get_flags va_s0) /\ (forall (va_x_dst:va_value_dst_opr64)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst
va_x_dst va_s0) in va_get_ok va_sM /\ va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo
(va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_of (va_get_flags va_s0)) /\
update_of (va_get_flags va_sM) (Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_of (va_get_flags va_s0))) /\ maintain_cf (va_get_flags va_sM)
(va_get_flags va_s0) ==> va_k va_sM (()))) | val va_wp_Adox_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0
let va_wp_Adox_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 = | false | null | false | (va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_of (va_get_flags va_s0) /\
(forall (va_x_dst: va_value_dst_opr64) (va_x_efl: Vale.X64.Flags.t).
let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst va_x_dst va_s0) in
va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst ==
Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src)
(flag_of (va_get_flags va_s0)) /\
update_of (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src)
(flag_of (va_get_flags va_s0))) /\ maintain_cf (va_get_flags va_sM) (va_get_flags va_s0) ==>
va_k va_sM (()))) | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_opr64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Vale.X64.Decls.va_is_dst_dst_opr64",
"Vale.X64.Decls.va_is_src_opr64",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.CPU_Features_s.adx_enabled",
"Vale.X64.Decls.valid_of",
"Vale.X64.Decls.va_get_flags",
"Prims.l_Forall",
"Vale.X64.Decls.va_value_dst_opr64",
"Vale.X64.Flags.t",
"Prims.l_imp",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_64",
"Vale.X64.Decls.va_eval_dst_opr64",
"Vale.Bignum.Defs.add_lo",
"Vale.X64.Decls.va_eval_opr64",
"Vale.Bignum.X64.flag_of",
"Vale.Bignum.X64.update_of",
"Vale.Bignum.Defs.add_hi",
"Vale.Bignum.X64.maintain_cf",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_upd_flags",
"Vale.X64.Decls.va_upd_operand_dst_opr64"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1
val flag_of (f:flags_t) : nat1
let update_cf (f':flags_t) (c:nat1) = flag_cf f' == c /\ valid_cf f'
let update_of (f':flags_t) (o:nat1) = flag_of f' == o /\ valid_of f'
let maintain_cf (f':flags_t) (f:flags_t) = flag_cf f' == flag_cf f /\ valid_cf f' == valid_cf f
let maintain_of (f':flags_t) (f:flags_t) = flag_of f' == flag_of f /\ valid_of f' == valid_of f
//-- reveal_flags
val reveal_flags : f:flags_t
-> Lemma
(requires true)
(ensures (flag_cf f = 1 == Vale.X64.Decls.cf f /\ flag_of f = 1 == Vale.X64.Decls.overflow f))
//--
//-- lemma_add_hi_lo64
val lemma_add_hi_lo64 : dummy:int
-> Lemma
(requires true)
(ensures (forall (a:nat64) (b:nat64) (c:nat1) . {:pattern(add_lo a b c); (add_hi a b
c)}Vale.Bignum.Defs.add_lo a b c + va_mul_nat pow2_64 (Vale.Bignum.Defs.add_hi a b c) == a + b
+ c))
//--
//-- Adcx_64
val va_code_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
val va_codegen_success_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
val va_lemma_Adcx_64 : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Adcx_64 dst src) va_s0 /\ va_is_dst_dst_opr64 dst
va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\ Vale.X64.Decls.valid_cf
(va_get_flags va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\ update_cf (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf
(va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM) (va_get_flags va_s0) /\ va_state_eq
va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM
va_s0)))))
[@ va_qattr]
let va_wp_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state)
(va_k:(va_state -> unit -> Type0)) : Type0 =
(va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_cf (va_get_flags va_s0) /\ (forall (va_x_dst:va_value_dst_opr64)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst
va_x_dst va_s0) in va_get_ok va_sM /\ va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo
(va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\
update_cf (va_get_flags va_sM) (Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM)
(va_get_flags va_s0) ==> va_k va_sM (())))
val va_wpProof_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Adcx_64 dst src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Adcx_64 dst src) ([va_Mod_flags;
va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@ "opaque_to_smt" va_qattr]
let va_quick_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) : (va_quickCode unit
(va_code_Adcx_64 dst src)) =
(va_QProc (va_code_Adcx_64 dst src) ([va_Mod_flags; va_mod_dst_opr64 dst]) (va_wp_Adcx_64 dst
src) (va_wpProof_Adcx_64 dst src))
//--
//-- Adox_64
val va_code_Adox_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
val va_codegen_success_Adox_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
val va_lemma_Adox_64 : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Adox_64 dst src) va_s0 /\ va_is_dst_dst_opr64 dst
va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\ Vale.X64.Decls.valid_of
(va_get_flags va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_of (va_get_flags va_s0)) /\ update_of (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_of
(va_get_flags va_s0))) /\ maintain_cf (va_get_flags va_sM) (va_get_flags va_s0) /\ va_state_eq
va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM
va_s0)))))
[@ va_qattr]
let va_wp_Adox_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state) | false | true | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wp_Adox_64
(dst: va_operand_dst_opr64)
(src: va_operand_opr64)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | [] | Vale.Bignum.X64.va_wp_Adox_64 | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
dst: Vale.X64.Decls.va_operand_dst_opr64 ->
src: Vale.X64.Decls.va_operand_opr64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Type0 | {
"end_col": 46,
"end_line": 112,
"start_col": 2,
"start_line": 105
} |
Prims.Tot | val va_quick_Adcx_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adcx_64 dst src)) | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_quick_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) : (va_quickCode unit
(va_code_Adcx_64 dst src)) =
(va_QProc (va_code_Adcx_64 dst src) ([va_Mod_flags; va_mod_dst_opr64 dst]) (va_wp_Adcx_64 dst
src) (va_wpProof_Adcx_64 dst src)) | val va_quick_Adcx_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adcx_64 dst src))
let va_quick_Adcx_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adcx_64 dst src)) = | false | null | false | (va_QProc (va_code_Adcx_64 dst src)
([va_Mod_flags; va_mod_dst_opr64 dst])
(va_wp_Adcx_64 dst src)
(va_wpProof_Adcx_64 dst src)) | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_opr64",
"Vale.X64.QuickCode.va_QProc",
"Prims.unit",
"Vale.Bignum.X64.va_code_Adcx_64",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_flags",
"Vale.X64.QuickCode.va_mod_dst_opr64",
"Prims.Nil",
"Vale.Bignum.X64.va_wp_Adcx_64",
"Vale.Bignum.X64.va_wpProof_Adcx_64",
"Vale.X64.QuickCode.va_quickCode"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1
val flag_of (f:flags_t) : nat1
let update_cf (f':flags_t) (c:nat1) = flag_cf f' == c /\ valid_cf f'
let update_of (f':flags_t) (o:nat1) = flag_of f' == o /\ valid_of f'
let maintain_cf (f':flags_t) (f:flags_t) = flag_cf f' == flag_cf f /\ valid_cf f' == valid_cf f
let maintain_of (f':flags_t) (f:flags_t) = flag_of f' == flag_of f /\ valid_of f' == valid_of f
//-- reveal_flags
val reveal_flags : f:flags_t
-> Lemma
(requires true)
(ensures (flag_cf f = 1 == Vale.X64.Decls.cf f /\ flag_of f = 1 == Vale.X64.Decls.overflow f))
//--
//-- lemma_add_hi_lo64
val lemma_add_hi_lo64 : dummy:int
-> Lemma
(requires true)
(ensures (forall (a:nat64) (b:nat64) (c:nat1) . {:pattern(add_lo a b c); (add_hi a b
c)}Vale.Bignum.Defs.add_lo a b c + va_mul_nat pow2_64 (Vale.Bignum.Defs.add_hi a b c) == a + b
+ c))
//--
//-- Adcx_64
val va_code_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
val va_codegen_success_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
val va_lemma_Adcx_64 : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Adcx_64 dst src) va_s0 /\ va_is_dst_dst_opr64 dst
va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\ Vale.X64.Decls.valid_cf
(va_get_flags va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\ update_cf (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf
(va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM) (va_get_flags va_s0) /\ va_state_eq
va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM
va_s0)))))
[@ va_qattr]
let va_wp_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state)
(va_k:(va_state -> unit -> Type0)) : Type0 =
(va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_cf (va_get_flags va_s0) /\ (forall (va_x_dst:va_value_dst_opr64)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst
va_x_dst va_s0) in va_get_ok va_sM /\ va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo
(va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\
update_cf (va_get_flags va_sM) (Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM)
(va_get_flags va_s0) ==> va_k va_sM (())))
val va_wpProof_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Adcx_64 dst src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Adcx_64 dst src) ([va_Mod_flags;
va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@ "opaque_to_smt" va_qattr]
let va_quick_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) : (va_quickCode unit | false | false | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_quick_Adcx_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adcx_64 dst src)) | [] | Vale.Bignum.X64.va_quick_Adcx_64 | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64
-> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.Bignum.X64.va_code_Adcx_64 dst src) | {
"end_col": 38,
"end_line": 81,
"start_col": 2,
"start_line": 80
} |
Prims.Tot | val va_quick_Adox_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adox_64 dst src)) | [
{
"abbrev": false,
"full_module": "Vale.Bignum.Defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_quick_Adox_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) : (va_quickCode unit
(va_code_Adox_64 dst src)) =
(va_QProc (va_code_Adox_64 dst src) ([va_Mod_flags; va_mod_dst_opr64 dst]) (va_wp_Adox_64 dst
src) (va_wpProof_Adox_64 dst src)) | val va_quick_Adox_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adox_64 dst src))
let va_quick_Adox_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adox_64 dst src)) = | false | null | false | (va_QProc (va_code_Adox_64 dst src)
([va_Mod_flags; va_mod_dst_opr64 dst])
(va_wp_Adox_64 dst src)
(va_wpProof_Adox_64 dst src)) | {
"checked_file": "Vale.Bignum.X64.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Bignum.Defs.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Bignum.X64.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_operand_dst_opr64",
"Vale.X64.Decls.va_operand_opr64",
"Vale.X64.QuickCode.va_QProc",
"Prims.unit",
"Vale.Bignum.X64.va_code_Adox_64",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_flags",
"Vale.X64.QuickCode.va_mod_dst_opr64",
"Prims.Nil",
"Vale.Bignum.X64.va_wp_Adox_64",
"Vale.Bignum.X64.va_wpProof_Adox_64",
"Vale.X64.QuickCode.va_quickCode"
] | [] | module Vale.Bignum.X64
open Vale.Def.Words_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsStack
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.Bignum.Defs
let flags_t = Vale.X64.Flags.t
val flag_cf (f:flags_t) : nat1
val flag_of (f:flags_t) : nat1
let update_cf (f':flags_t) (c:nat1) = flag_cf f' == c /\ valid_cf f'
let update_of (f':flags_t) (o:nat1) = flag_of f' == o /\ valid_of f'
let maintain_cf (f':flags_t) (f:flags_t) = flag_cf f' == flag_cf f /\ valid_cf f' == valid_cf f
let maintain_of (f':flags_t) (f:flags_t) = flag_of f' == flag_of f /\ valid_of f' == valid_of f
//-- reveal_flags
val reveal_flags : f:flags_t
-> Lemma
(requires true)
(ensures (flag_cf f = 1 == Vale.X64.Decls.cf f /\ flag_of f = 1 == Vale.X64.Decls.overflow f))
//--
//-- lemma_add_hi_lo64
val lemma_add_hi_lo64 : dummy:int
-> Lemma
(requires true)
(ensures (forall (a:nat64) (b:nat64) (c:nat1) . {:pattern(add_lo a b c); (add_hi a b
c)}Vale.Bignum.Defs.add_lo a b c + va_mul_nat pow2_64 (Vale.Bignum.Defs.add_hi a b c) == a + b
+ c))
//--
//-- Adcx_64
val va_code_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
val va_codegen_success_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
val va_lemma_Adcx_64 : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Adcx_64 dst src) va_s0 /\ va_is_dst_dst_opr64 dst
va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\ Vale.X64.Decls.valid_cf
(va_get_flags va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\ update_cf (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf
(va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM) (va_get_flags va_s0) /\ va_state_eq
va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM
va_s0)))))
[@ va_qattr]
let va_wp_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state)
(va_k:(va_state -> unit -> Type0)) : Type0 =
(va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_cf (va_get_flags va_s0) /\ (forall (va_x_dst:va_value_dst_opr64)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst
va_x_dst va_s0) in va_get_ok va_sM /\ va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo
(va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0)) /\
update_cf (va_get_flags va_sM) (Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_cf (va_get_flags va_s0))) /\ maintain_of (va_get_flags va_sM)
(va_get_flags va_s0) ==> va_k va_sM (())))
val va_wpProof_Adcx_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Adcx_64 dst src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Adcx_64 dst src) ([va_Mod_flags;
va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@ "opaque_to_smt" va_qattr]
let va_quick_Adcx_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) : (va_quickCode unit
(va_code_Adcx_64 dst src)) =
(va_QProc (va_code_Adcx_64 dst src) ([va_Mod_flags; va_mod_dst_opr64 dst]) (va_wp_Adcx_64 dst
src) (va_wpProof_Adcx_64 dst src))
//--
//-- Adox_64
val va_code_Adox_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
val va_codegen_success_Adox_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
val va_lemma_Adox_64 : va_b0:va_code -> va_s0:va_state -> dst:va_operand_dst_opr64 ->
src:va_operand_opr64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Adox_64 dst src) va_s0 /\ va_is_dst_dst_opr64 dst
va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\ Vale.X64.Decls.valid_of
(va_get_flags va_s0)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_of (va_get_flags va_s0)) /\ update_of (va_get_flags va_sM)
(Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_of
(va_get_flags va_s0))) /\ maintain_cf (va_get_flags va_sM) (va_get_flags va_s0) /\ va_state_eq
va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM
va_s0)))))
[@ va_qattr]
let va_wp_Adox_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) (va_s0:va_state)
(va_k:(va_state -> unit -> Type0)) : Type0 =
(va_is_dst_dst_opr64 dst va_s0 /\ va_is_src_opr64 src va_s0 /\ va_get_ok va_s0 /\ adx_enabled /\
Vale.X64.Decls.valid_of (va_get_flags va_s0) /\ (forall (va_x_dst:va_value_dst_opr64)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_operand_dst_opr64 dst
va_x_dst va_s0) in va_get_ok va_sM /\ va_eval_dst_opr64 va_sM dst == Vale.Bignum.Defs.add_lo
(va_eval_dst_opr64 va_s0 dst) (va_eval_opr64 va_s0 src) (flag_of (va_get_flags va_s0)) /\
update_of (va_get_flags va_sM) (Vale.Bignum.Defs.add_hi (va_eval_dst_opr64 va_s0 dst)
(va_eval_opr64 va_s0 src) (flag_of (va_get_flags va_s0))) /\ maintain_cf (va_get_flags va_sM)
(va_get_flags va_s0) ==> va_k va_sM (())))
val va_wpProof_Adox_64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> va_s0:va_state ->
va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Adox_64 dst src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Adox_64 dst src) ([va_Mod_flags;
va_mod_dst_opr64 dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@ "opaque_to_smt" va_qattr]
let va_quick_Adox_64 (dst:va_operand_dst_opr64) (src:va_operand_opr64) : (va_quickCode unit | false | false | Vale.Bignum.X64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_quick_Adox_64 (dst: va_operand_dst_opr64) (src: va_operand_opr64)
: (va_quickCode unit (va_code_Adox_64 dst src)) | [] | Vale.Bignum.X64.va_quick_Adox_64 | {
"file_name": "obj/Vale.Bignum.X64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64
-> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.Bignum.X64.va_code_Adox_64 dst src) | {
"end_col": 38,
"end_line": 124,
"start_col": 2,
"start_line": 123
} |
FStar.Pervasives.Lemma | val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000) | val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 = | false | null | true | assert_norm (pow2 40 = 0x10000000000);
assert_norm (pow2 56 = 0x100000000000000);
assert_norm (pow2 112 = 0x10000000000000000000000000000);
assert_norm (pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm (pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"Prims.unit"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_mod_264'' | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a0: Prims.nat -> a1: Prims.nat -> a2: Prims.nat -> a3: Prims.nat -> a4: Prims.nat
-> FStar.Pervasives.Lemma
(requires
a0 < Hacl.Spec.BignumQ.Definitions.pow56 /\ a1 < Hacl.Spec.BignumQ.Definitions.pow56 /\
a2 < Hacl.Spec.BignumQ.Definitions.pow56 /\ a3 < Hacl.Spec.BignumQ.Definitions.pow56)
(ensures
a0 + Prims.pow2 56 * a1 + Prims.pow2 112 * a2 + Prims.pow2 168 * a3 +
Prims.pow2 224 * (a4 % Prims.pow2 40) <
Prims.pow2 264) | {
"end_col": 95,
"end_line": 704,
"start_col": 2,
"start_line": 699
} |
FStar.Pervasives.Lemma | val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264) | val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x = | false | null | true | let x0, x1, x2, x3, x4 = x in
assert_norm (pow2 40 * pow2 224 = pow2 264) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_as_nat_pow264 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem5
-> FStar.Pervasives.Lemma
(requires
(let _ = x in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ x4 = _ in
Hacl.Spec.BignumQ.Definitions.qelem_fits5 x (1, 1, 1, 1, 1) /\
Lib.IntTypes.v x4 < Prims.pow2 40)
<:
Type0)) (ensures Hacl.Spec.BignumQ.Definitions.as_nat5 x < Prims.pow2 264) | {
"end_col": 45,
"end_line": 505,
"start_col": 27,
"start_line": 503
} |
FStar.Pervasives.Lemma | val lemma_0 (x y: nat) (c: pos)
: Lemma (requires (x >= y /\ x - y < c)) (ensures (x / c - y / c <= 1)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_0 (x:nat) (y:nat) (c:pos) : Lemma
(requires (x >= y /\ x - y < c))
(ensures (x / c - y / c <= 1))
= if x / c - y / c > 1 then (
Math.Lemmas.lemma_div_mod x c;
Math.Lemmas.lemma_div_mod y c;
Math.Lemmas.distributivity_sub_right c (x / c) (y / c);
Math.Lemmas.lemma_div_mod (x-y) c;
Math.Lemmas.small_div (x-y) c;
Math.Lemmas.swap_mul c (x/c - y/c);
Math.Lemmas.cancel_mul_div (x/c - y/c) c
) | val lemma_0 (x y: nat) (c: pos)
: Lemma (requires (x >= y /\ x - y < c)) (ensures (x / c - y / c <= 1))
let lemma_0 (x y: nat) (c: pos)
: Lemma (requires (x >= y /\ x - y < c)) (ensures (x / c - y / c <= 1)) = | false | null | true | if x / c - y / c > 1
then
(Math.Lemmas.lemma_div_mod x c;
Math.Lemmas.lemma_div_mod y c;
Math.Lemmas.distributivity_sub_right c (x / c) (y / c);
Math.Lemmas.lemma_div_mod (x - y) c;
Math.Lemmas.small_div (x - y) c;
Math.Lemmas.swap_mul c (x / c - y / c);
Math.Lemmas.cancel_mul_div (x / c - y / c) c) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.pos",
"Prims.op_GreaterThan",
"Prims.op_Subtraction",
"Prims.op_Division",
"FStar.Math.Lemmas.cancel_mul_div",
"Prims.unit",
"FStar.Math.Lemmas.swap_mul",
"FStar.Math.Lemmas.small_div",
"FStar.Math.Lemmas.lemma_div_mod",
"FStar.Math.Lemmas.distributivity_sub_right",
"Prims.bool",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.squash",
"Prims.op_LessThanOrEqual",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264)
private let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma
(pow2 n * a + pow2 (n+56) * b = pow2 n * (a % pow2 56) + pow2 (n+56) * (b + a / pow2 56))
= Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert(a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n+56)) b (a / pow2 56)
private
val lemma_mod_264_small:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ( (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4)
= (a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)))
(* These silly lemmas needed to guide the proof below... *)
private let aux_nat_over_pos (p : nat) (q : pos) : Lemma (p / q >= 0) = ()
private let aux_nat_plus_nat (p : nat) (q : nat) : Lemma (p + q >= 0) = ()
let lemma_mod_264_small a0 a1 a2 a3 a4 =
Math.Lemmas.lemma_div_mod a0 (pow2 56);
Math.Lemmas.distributivity_add_right (pow2 56) a1 (a0 / pow2 56);
(**) aux_nat_over_pos a0 (pow2 56);
(**) aux_nat_plus_nat a1 (a0 / pow2 56);
let a1':nat = (a1 + (a0 / pow2 56)) in
(**) aux_nat_over_pos a1' (pow2 56);
(**) aux_nat_plus_nat a2 (a1' / pow2 56);
let a2':nat = (a2 + (a1' / pow2 56)) in
(**) aux_nat_over_pos a2' (pow2 56);
(**) aux_nat_plus_nat a3 (a2' / pow2 56);
let a3':nat = (a3 + (a2' / pow2 56)) in
lemma_aux_0 a1' a2 56;
lemma_aux_0 a2' a3 112;
lemma_aux_0 a3' a4 168
private
val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40))
let lemma_mod_264_ a0 a1 a2 a3 a4 =
lemma_mod_264_small a0 a1 a2 a3 a4;
let x0 = a0 % pow2 56 in
assert (x0 < pow56);
let x1 = ((a1 + (a0 / pow2 56)) % pow2 56) in
assert (x1 < pow56);
let x2 = ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56) in
assert (x2 < pow56);
let x3 = ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
assert (x3 < pow56);
lemma_mod_264' x0 x1 x2 x3 (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56))
#push-options "--z3rlimit 50"
let lemma_mul_5_low_264 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
lemma_div_nat_is_nat (x1 * y1) (pow2 56);
lemma_div_nat_is_nat (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) (pow2 56);
lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5;
lemma_mod_264_ (x1 * y1) (x2 * y1 + x1 * y2) (x3 * y1 + x2 * y2 + x1 * y3) (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
#pop-options
private
val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0)
#push-options "--z3rlimit 50"
let lemma_optimized_barrett_reduce a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512)
#pop-options
private
val lemma_optimized_barrett_reduce2:
a:nat{a < pow2 512} ->
Lemma (a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q < pow2 264 /\
a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q >= 0)
#push-options "--z3rlimit 50"
let lemma_optimized_barrett_reduce2 a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512)
#pop-options
#push-options "--fuel 0 --z3cliopt smt.arith.nl=true --smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native --z3rlimit 30"
private
let lemma_0 (x:nat) (y:nat) (c:pos) : Lemma
(requires (x >= y /\ x - y < c)) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "native",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=true"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_0 (x y: nat) (c: pos)
: Lemma (requires (x >= y /\ x - y < c)) (ensures (x / c - y / c <= 1)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_0 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Prims.nat -> y: Prims.nat -> c: Prims.pos
-> FStar.Pervasives.Lemma (requires x >= y /\ x - y < c) (ensures x / c - y / c <= 1) | {
"end_col": 7,
"end_line": 843,
"start_col": 4,
"start_line": 835
} |
FStar.Pervasives.Lemma | val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264) | val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x = | false | null | true | let x0, x1, x2, x3, x4 = x in
assert_norm (pow2 40 * pow2 224 = pow2 264) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40)) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_as_nat_pow264_x4 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem5
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.BignumQ.Definitions.qelem_fits5 x (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.as_nat5 x < Prims.pow2 264)
(ensures
(let _ = x in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ x4 = _ in
Lib.IntTypes.v x4 < Prims.pow2 40)
<:
Type0)) | {
"end_col": 45,
"end_line": 552,
"start_col": 30,
"start_line": 550
} |
FStar.Pervasives.Lemma | val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280) | val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f = | false | null | true | assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_as_nat5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Hacl.Spec.BignumQ.Definitions.qelem5
-> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_fits5 f (1, 1, 1, 1, 1))
(ensures Hacl.Spec.BignumQ.Definitions.as_nat5 f < Prims.pow2 280) | {
"end_col": 45,
"end_line": 36,
"start_col": 2,
"start_line": 33
} |
FStar.Pervasives.Lemma | val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2 | val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 = | false | null | true | let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2 | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.logxor_lemma",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.range_t",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.u64",
"Prims.bool",
"Lib.IntTypes.op_Hat_Dot",
"Lib.IntTypes.int_t",
"Prims.l_imp",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.op_Amp_Dot",
"Prims.op_Subtraction",
"Prims.pow2",
"Lib.IntTypes.op_Subtraction_Dot"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_choose_step | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
bit: Lib.IntTypes.uint64{Lib.IntTypes.v bit <= 1} ->
x: Lib.IntTypes.uint64 ->
y: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
(let mask = bit -. Lib.IntTypes.u64 1 in
let z = x ^. (mask &. x ^. y) in
(match Lib.IntTypes.v bit = 1 with
| true -> z == x
| _ -> z == y)
<:
Type0)) | {
"end_col": 20,
"end_line": 58,
"start_col": 33,
"start_line": 48
} |
FStar.Pervasives.Lemma | val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56) | val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 = | false | null | true | assert_norm (pow2 32 * pow2 24 = pow2 56) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div248_x5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x5: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
Prims.pow2 32 * (Lib.IntTypes.v x5 % Prims.pow2 24) +
(Lib.IntTypes.v x5 / Prims.pow2 24) * Prims.pow2 56 ==
Lib.IntTypes.v x5 * Prims.pow2 32) | {
"end_col": 43,
"end_line": 157,
"start_col": 2,
"start_line": 157
} |
FStar.Pervasives.Lemma | val lemma_1 (x y: nat) (c: pos)
: Lemma (requires (x - y < c /\ x >= y))
(ensures
(x - y = (if (x % c) - (y % c) < 0 then c + (x % c) - (y % c) else (x % c) - (y % c)))) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_1 (x:nat) (y:nat) (c:pos) : Lemma
(requires (x - y < c /\ x >= y))
(ensures (x - y = (if (x % c) - (y % c) < 0 then c + (x % c) - (y % c)
else (x % c) - (y % c))))
= Math.Lemmas.lemma_div_mod x c;
Math.Lemmas.lemma_div_mod y c;
Math.Lemmas.distributivity_sub_right c (y/c) (x/c);
assert( (x%c) - (y%c) = x - y - c*((x/c) - (y/c)));
lemma_0 x y c | val lemma_1 (x y: nat) (c: pos)
: Lemma (requires (x - y < c /\ x >= y))
(ensures
(x - y = (if (x % c) - (y % c) < 0 then c + (x % c) - (y % c) else (x % c) - (y % c))))
let lemma_1 (x y: nat) (c: pos)
: Lemma (requires (x - y < c /\ x >= y))
(ensures
(x - y = (if (x % c) - (y % c) < 0 then c + (x % c) - (y % c) else (x % c) - (y % c)))) = | false | null | true | Math.Lemmas.lemma_div_mod x c;
Math.Lemmas.lemma_div_mod y c;
Math.Lemmas.distributivity_sub_right c (y / c) (x / c);
assert ((x % c) - (y % c) = x - y - c * ((x / c) - (y / c)));
lemma_0 x y c | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.pos",
"Hacl.Spec.BignumQ.Lemmas.lemma_0",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.op_Division",
"FStar.Math.Lemmas.distributivity_sub_right",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"Prims.squash",
"Prims.op_Addition",
"Prims.bool",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264)
private let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma
(pow2 n * a + pow2 (n+56) * b = pow2 n * (a % pow2 56) + pow2 (n+56) * (b + a / pow2 56))
= Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert(a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n+56)) b (a / pow2 56)
private
val lemma_mod_264_small:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ( (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4)
= (a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)))
(* These silly lemmas needed to guide the proof below... *)
private let aux_nat_over_pos (p : nat) (q : pos) : Lemma (p / q >= 0) = ()
private let aux_nat_plus_nat (p : nat) (q : nat) : Lemma (p + q >= 0) = ()
let lemma_mod_264_small a0 a1 a2 a3 a4 =
Math.Lemmas.lemma_div_mod a0 (pow2 56);
Math.Lemmas.distributivity_add_right (pow2 56) a1 (a0 / pow2 56);
(**) aux_nat_over_pos a0 (pow2 56);
(**) aux_nat_plus_nat a1 (a0 / pow2 56);
let a1':nat = (a1 + (a0 / pow2 56)) in
(**) aux_nat_over_pos a1' (pow2 56);
(**) aux_nat_plus_nat a2 (a1' / pow2 56);
let a2':nat = (a2 + (a1' / pow2 56)) in
(**) aux_nat_over_pos a2' (pow2 56);
(**) aux_nat_plus_nat a3 (a2' / pow2 56);
let a3':nat = (a3 + (a2' / pow2 56)) in
lemma_aux_0 a1' a2 56;
lemma_aux_0 a2' a3 112;
lemma_aux_0 a3' a4 168
private
val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40))
let lemma_mod_264_ a0 a1 a2 a3 a4 =
lemma_mod_264_small a0 a1 a2 a3 a4;
let x0 = a0 % pow2 56 in
assert (x0 < pow56);
let x1 = ((a1 + (a0 / pow2 56)) % pow2 56) in
assert (x1 < pow56);
let x2 = ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56) in
assert (x2 < pow56);
let x3 = ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
assert (x3 < pow56);
lemma_mod_264' x0 x1 x2 x3 (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56))
#push-options "--z3rlimit 50"
let lemma_mul_5_low_264 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
lemma_div_nat_is_nat (x1 * y1) (pow2 56);
lemma_div_nat_is_nat (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) (pow2 56);
lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5;
lemma_mod_264_ (x1 * y1) (x2 * y1 + x1 * y2) (x3 * y1 + x2 * y2 + x1 * y3) (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
#pop-options
private
val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0)
#push-options "--z3rlimit 50"
let lemma_optimized_barrett_reduce a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512)
#pop-options
private
val lemma_optimized_barrett_reduce2:
a:nat{a < pow2 512} ->
Lemma (a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q < pow2 264 /\
a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q >= 0)
#push-options "--z3rlimit 50"
let lemma_optimized_barrett_reduce2 a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512)
#pop-options
#push-options "--fuel 0 --z3cliopt smt.arith.nl=true --smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native --z3rlimit 30"
private
let lemma_0 (x:nat) (y:nat) (c:pos) : Lemma
(requires (x >= y /\ x - y < c))
(ensures (x / c - y / c <= 1))
= if x / c - y / c > 1 then (
Math.Lemmas.lemma_div_mod x c;
Math.Lemmas.lemma_div_mod y c;
Math.Lemmas.distributivity_sub_right c (x / c) (y / c);
Math.Lemmas.lemma_div_mod (x-y) c;
Math.Lemmas.small_div (x-y) c;
Math.Lemmas.swap_mul c (x/c - y/c);
Math.Lemmas.cancel_mul_div (x/c - y/c) c
)
#pop-options
#push-options "--z3rlimit 30"
private
let lemma_1 (x:nat) (y:nat) (c:pos) : Lemma
(requires (x - y < c /\ x >= y))
(ensures (x - y = (if (x % c) - (y % c) < 0 then c + (x % c) - (y % c) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_1 (x y: nat) (c: pos)
: Lemma (requires (x - y < c /\ x >= y))
(ensures
(x - y = (if (x % c) - (y % c) < 0 then c + (x % c) - (y % c) else (x % c) - (y % c)))) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_1 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Prims.nat -> y: Prims.nat -> c: Prims.pos
-> FStar.Pervasives.Lemma (requires x - y < c /\ x >= y)
(ensures
x - y =
(match x % c - y % c < 0 with
| true -> c + x % c - y % c
| _ -> x % c - y % c)) | {
"end_col": 17,
"end_line": 856,
"start_col": 4,
"start_line": 852
} |
FStar.Pervasives.Lemma | val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_264_ a0 a1 a2 a3 a4 =
lemma_mod_264_small a0 a1 a2 a3 a4;
let x0 = a0 % pow2 56 in
assert (x0 < pow56);
let x1 = ((a1 + (a0 / pow2 56)) % pow2 56) in
assert (x1 < pow56);
let x2 = ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56) in
assert (x2 < pow56);
let x3 = ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
assert (x3 < pow56);
lemma_mod_264' x0 x1 x2 x3 (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) | val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40))
let lemma_mod_264_ a0 a1 a2 a3 a4 = | false | null | true | lemma_mod_264_small a0 a1 a2 a3 a4;
let x0 = a0 % pow2 56 in
assert (x0 < pow56);
let x1 = ((a1 + (a0 / pow2 56)) % pow2 56) in
assert (x1 < pow56);
let x2 = ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56) in
assert (x2 < pow56);
let x3 = ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
assert (x3 < pow56);
lemma_mod_264' x0
x1
x2
x3
(a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Hacl.Spec.BignumQ.Lemmas.lemma_mod_264'",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.pow2",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.BignumQ.Definitions.pow56",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Spec.BignumQ.Lemmas.lemma_mod_264_small"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264)
private let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma
(pow2 n * a + pow2 (n+56) * b = pow2 n * (a % pow2 56) + pow2 (n+56) * (b + a / pow2 56))
= Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert(a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n+56)) b (a / pow2 56)
private
val lemma_mod_264_small:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ( (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4)
= (a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)))
(* These silly lemmas needed to guide the proof below... *)
private let aux_nat_over_pos (p : nat) (q : pos) : Lemma (p / q >= 0) = ()
private let aux_nat_plus_nat (p : nat) (q : nat) : Lemma (p + q >= 0) = ()
let lemma_mod_264_small a0 a1 a2 a3 a4 =
Math.Lemmas.lemma_div_mod a0 (pow2 56);
Math.Lemmas.distributivity_add_right (pow2 56) a1 (a0 / pow2 56);
(**) aux_nat_over_pos a0 (pow2 56);
(**) aux_nat_plus_nat a1 (a0 / pow2 56);
let a1':nat = (a1 + (a0 / pow2 56)) in
(**) aux_nat_over_pos a1' (pow2 56);
(**) aux_nat_plus_nat a2 (a1' / pow2 56);
let a2':nat = (a2 + (a1' / pow2 56)) in
(**) aux_nat_over_pos a2' (pow2 56);
(**) aux_nat_plus_nat a3 (a2' / pow2 56);
let a3':nat = (a3 + (a2' / pow2 56)) in
lemma_aux_0 a1' a2 56;
lemma_aux_0 a2' a3 112;
lemma_aux_0 a3' a4 168
private
val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40)) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_mod_264_ | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a0: Prims.nat -> a1: Prims.nat -> a2: Prims.nat -> a3: Prims.nat -> a4: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(a0 + Prims.pow2 56 * a1 + Prims.pow2 112 * a2 + Prims.pow2 168 * a3 + Prims.pow2 224 * a4) %
Prims.pow2 264 =
a0 % Prims.pow2 56 + Prims.pow2 56 * ((a1 + a0 / Prims.pow2 56) % Prims.pow2 56) +
Prims.pow2 112 * ((a2 + (a1 + a0 / Prims.pow2 56) / Prims.pow2 56) % Prims.pow2 56) +
Prims.pow2 168 *
((a3 + (a2 + (a1 + a0 / Prims.pow2 56) / Prims.pow2 56) / Prims.pow2 56) % Prims.pow2 56) +
Prims.pow2 224 *
((a4 + (a3 + (a2 + (a1 + a0 / Prims.pow2 56) / Prims.pow2 56) / Prims.pow2 56) / Prims.pow2 56
) %
Prims.pow2 40)) | {
"end_col": 107,
"end_line": 790,
"start_col": 2,
"start_line": 781
} |
FStar.Pervasives.Lemma | val lemma_aux_0 (a b n: nat)
: Lemma
(pow2 n * a + pow2 (n + 56) * b = pow2 n * (a % pow2 56) + pow2 (n + 56) * (b + a / pow2 56)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma
(pow2 n * a + pow2 (n+56) * b = pow2 n * (a % pow2 56) + pow2 (n+56) * (b + a / pow2 56))
= Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert(a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n+56)) b (a / pow2 56) | val lemma_aux_0 (a b n: nat)
: Lemma
(pow2 n * a + pow2 (n + 56) * b = pow2 n * (a % pow2 56) + pow2 (n + 56) * (b + a / pow2 56))
let lemma_aux_0 (a b n: nat)
: Lemma
(pow2 n * a + pow2 (n + 56) * b = pow2 n * (a % pow2 56) + pow2 (n + 56) * (b + a / pow2 56)) = | false | null | true | Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert (a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n + 56)) b (a / pow2 56) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Math.Lemmas.distributivity_add_right",
"Prims.pow2",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264)
private let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_aux_0 (a b n: nat)
: Lemma
(pow2 n * a + pow2 (n + 56) * b = pow2 n * (a % pow2 56) + pow2 (n + 56) * (b + a / pow2 56)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_aux_0 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> b: Prims.nat -> n: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Prims.pow2 n * a + Prims.pow2 (n + 56) * b =
Prims.pow2 n * (a % Prims.pow2 56) + Prims.pow2 (n + 56) * (b + a / Prims.pow2 56)) | {
"end_col": 70,
"end_line": 738,
"start_col": 4,
"start_line": 733
} |
FStar.Pervasives.Lemma | val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) ) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264) | val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 = | false | null | true | assert_norm (pow2 56 = 0x100000000000000);
assert_norm (pow2 112 = 0x10000000000000000000000000000);
assert_norm (pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm (pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4)
(a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3)
(pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 +
pow2 224 * (a4 % pow2 40))
(pow2 264) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_mod_264''",
"FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) ) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) ) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_mod_264' | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a0: Prims.nat -> a1: Prims.nat -> a2: Prims.nat -> a3: Prims.nat -> a4: Prims.nat
-> FStar.Pervasives.Lemma
(requires
a0 < Hacl.Spec.BignumQ.Definitions.pow56 /\ a1 < Hacl.Spec.BignumQ.Definitions.pow56 /\
a2 < Hacl.Spec.BignumQ.Definitions.pow56 /\ a3 < Hacl.Spec.BignumQ.Definitions.pow56)
(ensures
(a0 + Prims.pow2 56 * a1 + Prims.pow2 112 * a2 + Prims.pow2 168 * a3 + Prims.pow2 224 * a4) %
Prims.pow2 264 =
a0 + Prims.pow2 56 * a1 + Prims.pow2 112 * a2 + Prims.pow2 168 * a3 +
Prims.pow2 224 * (a4 % Prims.pow2 40)) | {
"end_col": 117,
"end_line": 729,
"start_col": 2,
"start_line": 722
} |
FStar.Pervasives.Lemma | val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264) | val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = | false | null | true | assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50" | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_sub_mod_264_aux | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x0: Prims.nat ->
x1: Prims.nat ->
x2: Prims.nat ->
x3: Prims.nat ->
x4: Prims.nat ->
y0: Prims.nat ->
y1: Prims.nat ->
y2: Prims.nat ->
y3: Prims.nat ->
y4: Prims.nat ->
c1: Prims.nat ->
c2: Prims.nat ->
c3: Prims.nat ->
c4: Prims.nat ->
c5: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
x0 - y0 + c1 * Hacl.Spec.BignumQ.Definitions.pow56 +
(x1 - y1 - c1 + c2 * Hacl.Spec.BignumQ.Definitions.pow56) *
Hacl.Spec.BignumQ.Definitions.pow56 +
(x2 - y2 - c2 + c3 * Hacl.Spec.BignumQ.Definitions.pow56) *
Hacl.Spec.BignumQ.Definitions.pow112 +
(x3 - y3 - c3 + c4 * Hacl.Spec.BignumQ.Definitions.pow56) *
Hacl.Spec.BignumQ.Definitions.pow168 +
(x4 - y4 - c4 + Prims.pow2 40 * c5) * Hacl.Spec.BignumQ.Definitions.pow224 ==
x0 + x1 * Prims.pow2 56 + x2 * Prims.pow2 112 + x3 * Prims.pow2 168 + x4 * Prims.pow2 224 -
(y0 + y1 * Prims.pow2 56 + y2 * Prims.pow2 112 + y3 * Prims.pow2 168 + y4 * Prims.pow2 224) +
c5 * Prims.pow2 264) | {
"end_col": 45,
"end_line": 573,
"start_col": 2,
"start_line": 570
} |
FStar.Pervasives.Lemma | val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q | val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t = | false | null | true | assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q
then
(FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"FStar.Math.Lemmas.small_mod",
"Spec.Ed25519.q",
"Prims.unit",
"Prims.op_GreaterThanOrEqual",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Math.Lemmas.sub_div_mod_1",
"Prims.bool",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.op_Addition"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_add_modq5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x: Hacl.Spec.BignumQ.Definitions.qelem5 ->
y: Hacl.Spec.BignumQ.Definitions.qelem5 ->
t: Hacl.Spec.BignumQ.Definitions.qelem5
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.BignumQ.Definitions.qelem_fits5 x (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.qelem_fits5 y (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.qelem_fits5 t (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.as_nat5 x < Spec.Ed25519.q /\
Hacl.Spec.BignumQ.Definitions.as_nat5 y < Spec.Ed25519.q /\
Hacl.Spec.BignumQ.Definitions.as_nat5 t ==
Hacl.Spec.BignumQ.Definitions.as_nat5 x + Hacl.Spec.BignumQ.Definitions.as_nat5 y)
(ensures
(let res =
(match Hacl.Spec.BignumQ.Definitions.as_nat5 t >= Spec.Ed25519.q with
| true -> Hacl.Spec.BignumQ.Definitions.as_nat5 t - Spec.Ed25519.q
| _ -> Hacl.Spec.BignumQ.Definitions.as_nat5 t)
<:
Prims.int
in
res < Spec.Ed25519.q /\
res ==
(Hacl.Spec.BignumQ.Definitions.as_nat5 x + Hacl.Spec.BignumQ.Definitions.as_nat5 y) %
Spec.Ed25519.q)) | {
"end_col": 37,
"end_line": 298,
"start_col": 2,
"start_line": 289
} |
FStar.Pervasives.Lemma | val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264) | val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
let lemma_sub_mod_264 x y t c5 = | false | null | true | assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y
then assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"Lib.IntTypes.uint64",
"Prims.op_GreaterThanOrEqual",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Prims._assert",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.op_Addition",
"Prims.pow2",
"Prims.unit",
"FStar.Mul.op_Star",
"Prims.op_Equality",
"Prims.b2t",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50" | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_sub_mod_264 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x: Hacl.Spec.BignumQ.Definitions.qelem5 ->
y: Hacl.Spec.BignumQ.Definitions.qelem5 ->
t: Hacl.Spec.BignumQ.Definitions.qelem5 ->
c5: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.BignumQ.Definitions.qelem_fits5 x (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.qelem_fits5 y (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.qelem_fits5 t (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.as_nat5 x < Prims.pow2 264 /\
Hacl.Spec.BignumQ.Definitions.as_nat5 y < Prims.pow2 264 /\
Hacl.Spec.BignumQ.Definitions.as_nat5 t ==
Hacl.Spec.BignumQ.Definitions.as_nat5 x - Hacl.Spec.BignumQ.Definitions.as_nat5 y +
Lib.IntTypes.v c5 * Prims.pow2 264 /\ Lib.IntTypes.v c5 <= 1 /\
(match Lib.IntTypes.v c5 = 0 with
| true ->
Hacl.Spec.BignumQ.Definitions.as_nat5 x >= Hacl.Spec.BignumQ.Definitions.as_nat5 y
| _ -> Hacl.Spec.BignumQ.Definitions.as_nat5 x < Hacl.Spec.BignumQ.Definitions.as_nat5 y))
(ensures
((match
Hacl.Spec.BignumQ.Definitions.as_nat5 x >= Hacl.Spec.BignumQ.Definitions.as_nat5 y
with
| true ->
Hacl.Spec.BignumQ.Definitions.as_nat5 t ==
Hacl.Spec.BignumQ.Definitions.as_nat5 x - Hacl.Spec.BignumQ.Definitions.as_nat5 y
| _ ->
Hacl.Spec.BignumQ.Definitions.as_nat5 t ==
Hacl.Spec.BignumQ.Definitions.as_nat5 x - Hacl.Spec.BignumQ.Definitions.as_nat5 y +
Prims.pow2 264)
<:
Type0)) | {
"end_col": 71,
"end_line": 602,
"start_col": 2,
"start_line": 597
} |
FStar.Pervasives.Lemma | val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24) | val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x = | false | null | true | let x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.BignumQ.Definitions.qelem_wide5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.unit",
"Prims._assert",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Math.Lemmas.pow2_minus",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24)) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_wide_as_nat_pow512 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem_wide5
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x < Prims.pow2 512)
(ensures
(let _ = x in
(let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ _ _ _ _ _ _ _ _ _ x9
=
_
in
Lib.IntTypes.v x9 < Prims.pow2 24)
<:
Type0)) | {
"end_col": 32,
"end_line": 221,
"start_col": 32,
"start_line": 216
} |
FStar.Pervasives.Lemma | val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40) | val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x = | false | null | true | let x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Hacl.Spec.BignumQ.Definitions.qelem_wide5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.unit",
"Prims._assert",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Math.Lemmas.pow2_minus",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40)) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40)) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_wide_as_nat_pow528 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem_wide5
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x < Prims.pow2 528)
(ensures
(let _ = x in
(let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ _ _ _ _ _ _ _ _ _ x9
=
_
in
Lib.IntTypes.v x9 < Prims.pow2 40)
<:
Type0)) | {
"end_col": 33,
"end_line": 315,
"start_col": 32,
"start_line": 310
} |
FStar.Pervasives.Lemma | val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
} | val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 = | false | null | true | assert_norm (0 < pow2 24);
calc ( == ) {
pow2 16 * (v x5 % pow2 40) + (v x5 / pow2 40) * pow2 56;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta_only [`%pow2]; primops];
int_semiring ())) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
( == ) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pplus",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div264_x5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x5: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
Prims.pow2 16 * (Lib.IntTypes.v x5 % Prims.pow2 40) +
(Lib.IntTypes.v x5 / Prims.pow2 40) * Prims.pow2 56 ==
Lib.IntTypes.v x5 * Prims.pow2 16) | {
"end_col": 3,
"end_line": 361,
"start_col": 2,
"start_line": 354
} |
FStar.Pervasives.Lemma | val lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4: nat)
: Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 + (x0 * y1 + x1 * y0) * pow56 + (x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ()) | val lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4: nat)
: Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 + (x0 * y1 + x1 * y0) * pow56 + (x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4: nat)
: Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 + (x0 * y1 + x1 * y0) * pow56 + (x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448) = | false | null | true | FStar.Tactics.Effect.assert_by_tactic ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 +
x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 + (x0 * y1 + x1 * y0) * pow56 + (x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
(fun _ ->
();
(Tactics.norm [zeta; iota; delta; primops];
int_semiring ())) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.pow2",
"Hacl.Spec.BignumQ.Definitions.pow56",
"Hacl.Spec.BignumQ.Definitions.pow112",
"Hacl.Spec.BignumQ.Definitions.pow168",
"Hacl.Spec.BignumQ.Definitions.pow224",
"Hacl.Spec.BignumQ.Definitions.pow280",
"Hacl.Spec.BignumQ.Definitions.pow336",
"Hacl.Spec.BignumQ.Definitions.pow392",
"Hacl.Spec.BignumQ.Definitions.pow448",
"Prims.unit",
"FStar.Tactics.CanonCommSemiring.int_semiring",
"FStar.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.zeta",
"FStar.Pervasives.iota",
"FStar.Pervasives.delta",
"FStar.Pervasives.primops",
"Prims.Nil",
"Prims.l_True",
"Prims.squash",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4: nat)
: Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 + (x0 * y1 + x1 * y0) * pow56 + (x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_mul_qelem5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x0: Prims.nat ->
x1: Prims.nat ->
x2: Prims.nat ->
x3: Prims.nat ->
x4: Prims.nat ->
y0: Prims.nat ->
y1: Prims.nat ->
y2: Prims.nat ->
y3: Prims.nat ->
y4: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(x0 + x1 * Prims.pow2 56 + x2 * Prims.pow2 112 + x3 * Prims.pow2 168 + x4 * Prims.pow2 224) *
(y0 + y1 * Prims.pow2 56 + y2 * Prims.pow2 112 + y3 * Prims.pow2 168 + y4 * Prims.pow2 224) ==
x0 * y0 + (x0 * y1 + x1 * y0) * Hacl.Spec.BignumQ.Definitions.pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * Hacl.Spec.BignumQ.Definitions.pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * Hacl.Spec.BignumQ.Definitions.pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * Hacl.Spec.BignumQ.Definitions.pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * Hacl.Spec.BignumQ.Definitions.pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * Hacl.Spec.BignumQ.Definitions.pow336 +
(x3 * y4 + x4 * y3) * Hacl.Spec.BignumQ.Definitions.pow392 +
(x4 * y4) * Hacl.Spec.BignumQ.Definitions.pow448) | {
"end_col": 65,
"end_line": 629,
"start_col": 2,
"start_line": 618
} |
FStar.Pervasives.Lemma | val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
} | val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 = | false | null | true | calc ( == ) {
(pow2 32 * (v x6 % pow2 24)) * pow2 56 + (v x6 / pow2 24) * pow2 112;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta_only [`%pow2]; primops];
int_semiring ())) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
( == ) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pplus",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div248_x6 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x6: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 32 * (Lib.IntTypes.v x6 % Prims.pow2 24)) * Prims.pow2 56 +
(Lib.IntTypes.v x6 / Prims.pow2 24) * Prims.pow2 112 ==
Lib.IntTypes.v x6 * Prims.pow2 88) | {
"end_col": 3,
"end_line": 168,
"start_col": 2,
"start_line": 162
} |
FStar.Pervasives.Lemma | val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
} | val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 = | false | null | true | calc ( == ) {
(pow2 16 * (v x6 % pow2 40)) * pow2 56 + (v x6 / pow2 40) * pow2 112;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta; primops];
int_semiring ())) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
( == ) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pplus",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.op_Multiply",
"Prims.l_and",
"Prims.bool",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Lib.IntTypes.bits",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div264_x6 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x6: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 16 * (Lib.IntTypes.v x6 % Prims.pow2 40)) * Prims.pow2 56 +
(Lib.IntTypes.v x6 / Prims.pow2 40) * Prims.pow2 112 ==
Lib.IntTypes.v x6 * Prims.pow2 72) | {
"end_col": 3,
"end_line": 373,
"start_col": 2,
"start_line": 367
} |
FStar.Pervasives.Lemma | val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
} | val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 = | false | null | true | calc ( == ) {
(pow2 32 * (v x7 % pow2 24)) * pow2 112 + (v x7 / pow2 24) * pow2 168;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta_only [`%pow2]; primops];
int_semiring ())) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
( == ) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pplus",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div248_x7 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x7: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 32 * (Lib.IntTypes.v x7 % Prims.pow2 24)) * Prims.pow2 112 +
(Lib.IntTypes.v x7 / Prims.pow2 24) * Prims.pow2 168 ==
Lib.IntTypes.v x7 * Prims.pow2 144) | {
"end_col": 3,
"end_line": 180,
"start_col": 2,
"start_line": 174
} |
FStar.Pervasives.Lemma | val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
} | val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 = | false | null | true | calc ( == ) {
(pow2 16 * (v x7 % pow2 40)) * pow2 112 + (v x7 / pow2 40) * pow2 168;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta; primops];
int_semiring ())) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
( == ) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pplus",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.op_Multiply",
"Prims.l_and",
"Prims.bool",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Lib.IntTypes.bits",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div264_x7 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x7: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 16 * (Lib.IntTypes.v x7 % Prims.pow2 40)) * Prims.pow2 112 +
(Lib.IntTypes.v x7 / Prims.pow2 40) * Prims.pow2 168 ==
Lib.IntTypes.v x7 * Prims.pow2 128) | {
"end_col": 3,
"end_line": 385,
"start_col": 2,
"start_line": 379
} |
FStar.Pervasives.Lemma | val lemma_optimized_barrett_reduce2:
a:nat{a < pow2 512} ->
Lemma (a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q < pow2 264 /\
a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q >= 0) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_optimized_barrett_reduce2 a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512) | val lemma_optimized_barrett_reduce2:
a:nat{a < pow2 512} ->
Lemma (a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q < pow2 264 /\
a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q >= 0)
let lemma_optimized_barrett_reduce2 a = | false | null | true | assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ==
pow2 512) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.unit",
"Spec.Ed25519.q",
"Prims.op_Equality"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264)
private let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma
(pow2 n * a + pow2 (n+56) * b = pow2 n * (a % pow2 56) + pow2 (n+56) * (b + a / pow2 56))
= Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert(a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n+56)) b (a / pow2 56)
private
val lemma_mod_264_small:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ( (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4)
= (a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)))
(* These silly lemmas needed to guide the proof below... *)
private let aux_nat_over_pos (p : nat) (q : pos) : Lemma (p / q >= 0) = ()
private let aux_nat_plus_nat (p : nat) (q : nat) : Lemma (p + q >= 0) = ()
let lemma_mod_264_small a0 a1 a2 a3 a4 =
Math.Lemmas.lemma_div_mod a0 (pow2 56);
Math.Lemmas.distributivity_add_right (pow2 56) a1 (a0 / pow2 56);
(**) aux_nat_over_pos a0 (pow2 56);
(**) aux_nat_plus_nat a1 (a0 / pow2 56);
let a1':nat = (a1 + (a0 / pow2 56)) in
(**) aux_nat_over_pos a1' (pow2 56);
(**) aux_nat_plus_nat a2 (a1' / pow2 56);
let a2':nat = (a2 + (a1' / pow2 56)) in
(**) aux_nat_over_pos a2' (pow2 56);
(**) aux_nat_plus_nat a3 (a2' / pow2 56);
let a3':nat = (a3 + (a2' / pow2 56)) in
lemma_aux_0 a1' a2 56;
lemma_aux_0 a2' a3 112;
lemma_aux_0 a3' a4 168
private
val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40))
let lemma_mod_264_ a0 a1 a2 a3 a4 =
lemma_mod_264_small a0 a1 a2 a3 a4;
let x0 = a0 % pow2 56 in
assert (x0 < pow56);
let x1 = ((a1 + (a0 / pow2 56)) % pow2 56) in
assert (x1 < pow56);
let x2 = ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56) in
assert (x2 < pow56);
let x3 = ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
assert (x3 < pow56);
lemma_mod_264' x0 x1 x2 x3 (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56))
#push-options "--z3rlimit 50"
let lemma_mul_5_low_264 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
lemma_div_nat_is_nat (x1 * y1) (pow2 56);
lemma_div_nat_is_nat (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) (pow2 56);
lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5;
lemma_mod_264_ (x1 * y1) (x2 * y1 + x1 * y2) (x3 * y1 + x2 * y2 + x1 * y3) (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
#pop-options
private
val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0)
#push-options "--z3rlimit 50"
let lemma_optimized_barrett_reduce a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512)
#pop-options
private
val lemma_optimized_barrett_reduce2:
a:nat{a < pow2 512} ->
Lemma (a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q < pow2 264 /\
a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q >= 0)
#push-options "--z3rlimit 50" | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_optimized_barrett_reduce2:
a:nat{a < pow2 512} ->
Lemma (a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q < pow2 264 /\
a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q >= 0) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_optimized_barrett_reduce2 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat{a < Prims.pow2 512}
-> FStar.Pervasives.Lemma
(ensures
a - (a * (Prims.pow2 512 / Spec.Ed25519.q) / Prims.pow2 512) * Spec.Ed25519.q < Prims.pow2 264 /\
a - (a * (Prims.pow2 512 / Spec.Ed25519.q) / Prims.pow2 512) * Spec.Ed25519.q >= 0) | {
"end_col": 159,
"end_line": 827,
"start_col": 2,
"start_line": 824
} |
FStar.Pervasives.Lemma | val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
} | val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 = | false | null | true | calc ( == ) {
(pow2 16 * (v x9 % pow2 40)) * pow2 224;
( == ) { Math.Lemmas.small_mod (v x9) (pow2 40) }
(pow2 16 * v x9) * pow2 224;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta; primops];
int_semiring ())) }
v x9 * pow2 240;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.small_mod",
"Prims.squash",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.op_Multiply",
"Prims.l_and",
"Prims.bool",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Lib.IntTypes.bits"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div264_x9 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x9: Lib.IntTypes.uint64{Lib.IntTypes.v x9 < Prims.pow2 40}
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 16 * (Lib.IntTypes.v x9 % Prims.pow2 40)) * Prims.pow2 224 ==
Lib.IntTypes.v x9 * Prims.pow2 240) | {
"end_col": 3,
"end_line": 408,
"start_col": 2,
"start_line": 402
} |
FStar.Pervasives.Lemma | val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
} | val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 = | false | null | true | calc ( == ) {
(pow2 32 * (v x9 % pow2 24)) * pow2 224;
( == ) { Math.Lemmas.small_mod (v x9) (pow2 24) }
(pow2 32 * v x9) * pow2 224;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta; primops];
int_semiring ())) }
v x9 * pow2 256;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.small_mod",
"Prims.squash",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.op_Multiply",
"Prims.l_and",
"Prims.bool",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Lib.IntTypes.bits"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div248_x9 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x9: Lib.IntTypes.uint64{Lib.IntTypes.v x9 < Prims.pow2 24}
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 32 * (Lib.IntTypes.v x9 % Prims.pow2 24)) * Prims.pow2 224 ==
Lib.IntTypes.v x9 * Prims.pow2 256) | {
"end_col": 3,
"end_line": 204,
"start_col": 2,
"start_line": 198
} |
FStar.Pervasives.Lemma | val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
} | val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 = | false | null | true | calc ( == ) {
(pow2 32 * (v x8 % pow2 24)) * pow2 168 + (v x8 / pow2 24) * pow2 224;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta_only [`%pow2]; primops];
int_semiring ())) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
( == ) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pplus",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div248_x8 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x8: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 32 * (Lib.IntTypes.v x8 % Prims.pow2 24)) * Prims.pow2 168 +
(Lib.IntTypes.v x8 / Prims.pow2 24) * Prims.pow2 224 ==
Lib.IntTypes.v x8 * Prims.pow2 200) | {
"end_col": 3,
"end_line": 192,
"start_col": 2,
"start_line": 186
} |
FStar.Pervasives.Lemma | val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
} | val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 = | false | null | true | calc ( == ) {
(pow2 16 * (v x8 % pow2 40)) * pow2 168 + (v x8 / pow2 40) * pow2 224;
( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ ->
(Tactics.norm [delta; primops];
int_semiring ())) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
( == ) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
} | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Tactics.CanonCommSemiring.semiring_reflect",
"FStar.Tactics.CanonCommSemiring.int_cr",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"FStar.Pervasives.Native.snd",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.sec_int_v",
"FStar.Reflection.V2.Data.var",
"FStar.Tactics.CanonCommSemiring.Pplus",
"FStar.Tactics.CanonCommSemiring.Pmult",
"FStar.Tactics.CanonCommSemiring.Pvar",
"Prims.op_Multiply",
"Prims.l_and",
"Prims.bool",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Lib.IntTypes.bits",
"Prims.squash",
"FStar.Math.Lemmas.euclidean_division_definition"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_div264_x8 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x8: Lib.IntTypes.uint64
-> FStar.Pervasives.Lemma
(ensures
(Prims.pow2 16 * (Lib.IntTypes.v x8 % Prims.pow2 40)) * Prims.pow2 168 +
(Lib.IntTypes.v x8 / Prims.pow2 40) * Prims.pow2 224 ==
Lib.IntTypes.v x8 * Prims.pow2 184) | {
"end_col": 3,
"end_line": 397,
"start_col": 2,
"start_line": 391
} |
FStar.Pervasives.Lemma | val lemma_barrett_reduce'' (u z x q: nat)
: Lemma (requires u < 2 * S.q /\ u = x - q * S.q /\ z == (if u < S.q then u else u - S.q))
(ensures z == x % S.q) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_barrett_reduce'' (u:nat) (z:nat) (x:nat) (q:nat) : Lemma
(requires u < 2 * S.q /\ u = x - q * S.q /\ z == (if u < S.q then u else u - S.q))
(ensures z == x % S.q)
=
if u >= S.q then (
calc (==) {
z;
(==) { Math.Lemmas.small_mod z S.q }
(u - S.q) % S.q;
(==) { }
(x - (q * S.q + S.q)) % S.q;
(==) { Math.Lemmas.distributivity_add_left q 1 S.q; assert_norm (1 * S.q == S.q) }
(x - (q + 1) * S.q) % S.q;
(==) { Math.Lemmas.lemma_mod_sub x S.q (q+1) }
x % S.q;
}
) else (
calc (==) {
z;
(==) { Math.Lemmas.small_mod z S.q }
u % S.q;
(==) { }
(x - (q * S.q)) % S.q;
(==) { Math.Lemmas.lemma_mod_sub x S.q q }
x % S.q;
}
) | val lemma_barrett_reduce'' (u z x q: nat)
: Lemma (requires u < 2 * S.q /\ u = x - q * S.q /\ z == (if u < S.q then u else u - S.q))
(ensures z == x % S.q)
let lemma_barrett_reduce'' (u z x q: nat)
: Lemma (requires u < 2 * S.q /\ u = x - q * S.q /\ z == (if u < S.q then u else u - S.q))
(ensures z == x % S.q) = | false | null | true | if u >= S.q
then
(calc ( == ) {
z;
( == ) { Math.Lemmas.small_mod z S.q }
(u - S.q) % S.q;
( == ) { () }
(x - (q * S.q + S.q)) % S.q;
( == ) { (Math.Lemmas.distributivity_add_left q 1 S.q;
assert_norm (1 * S.q == S.q)) }
(x - (q + 1) * S.q) % S.q;
( == ) { Math.Lemmas.lemma_mod_sub x S.q (q + 1) }
x % S.q;
})
else
(calc ( == ) {
z;
( == ) { Math.Lemmas.small_mod z S.q }
u % S.q;
( == ) { () }
(x - (q * S.q)) % S.q;
( == ) { Math.Lemmas.lemma_mod_sub x S.q q }
x % S.q;
}) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.op_GreaterThanOrEqual",
"Spec.Ed25519.q",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.small_mod",
"Prims.squash",
"FStar.Pervasives.assert_norm",
"Prims.int",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.lemma_mod_sub",
"Prims.bool",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Equality",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264)
private let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma
(pow2 n * a + pow2 (n+56) * b = pow2 n * (a % pow2 56) + pow2 (n+56) * (b + a / pow2 56))
= Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert(a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n+56)) b (a / pow2 56)
private
val lemma_mod_264_small:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ( (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4)
= (a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)))
(* These silly lemmas needed to guide the proof below... *)
private let aux_nat_over_pos (p : nat) (q : pos) : Lemma (p / q >= 0) = ()
private let aux_nat_plus_nat (p : nat) (q : nat) : Lemma (p + q >= 0) = ()
let lemma_mod_264_small a0 a1 a2 a3 a4 =
Math.Lemmas.lemma_div_mod a0 (pow2 56);
Math.Lemmas.distributivity_add_right (pow2 56) a1 (a0 / pow2 56);
(**) aux_nat_over_pos a0 (pow2 56);
(**) aux_nat_plus_nat a1 (a0 / pow2 56);
let a1':nat = (a1 + (a0 / pow2 56)) in
(**) aux_nat_over_pos a1' (pow2 56);
(**) aux_nat_plus_nat a2 (a1' / pow2 56);
let a2':nat = (a2 + (a1' / pow2 56)) in
(**) aux_nat_over_pos a2' (pow2 56);
(**) aux_nat_plus_nat a3 (a2' / pow2 56);
let a3':nat = (a3 + (a2' / pow2 56)) in
lemma_aux_0 a1' a2 56;
lemma_aux_0 a2' a3 112;
lemma_aux_0 a3' a4 168
private
val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40))
let lemma_mod_264_ a0 a1 a2 a3 a4 =
lemma_mod_264_small a0 a1 a2 a3 a4;
let x0 = a0 % pow2 56 in
assert (x0 < pow56);
let x1 = ((a1 + (a0 / pow2 56)) % pow2 56) in
assert (x1 < pow56);
let x2 = ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56) in
assert (x2 < pow56);
let x3 = ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
assert (x3 < pow56);
lemma_mod_264' x0 x1 x2 x3 (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56))
#push-options "--z3rlimit 50"
let lemma_mul_5_low_264 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
lemma_div_nat_is_nat (x1 * y1) (pow2 56);
lemma_div_nat_is_nat (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) (pow2 56);
lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5;
lemma_mod_264_ (x1 * y1) (x2 * y1 + x1 * y2) (x3 * y1 + x2 * y2 + x1 * y3) (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
#pop-options
private
val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0)
#push-options "--z3rlimit 50"
let lemma_optimized_barrett_reduce a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512)
#pop-options
private
val lemma_optimized_barrett_reduce2:
a:nat{a < pow2 512} ->
Lemma (a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q < pow2 264 /\
a - ((a * (pow2 512 / S.q)) / pow2 512) * S.q >= 0)
#push-options "--z3rlimit 50"
let lemma_optimized_barrett_reduce2 a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512)
#pop-options
#push-options "--fuel 0 --z3cliopt smt.arith.nl=true --smtencoding.elim_box true --smtencoding.l_arith_repr native --smtencoding.nl_arith_repr native --z3rlimit 30"
private
let lemma_0 (x:nat) (y:nat) (c:pos) : Lemma
(requires (x >= y /\ x - y < c))
(ensures (x / c - y / c <= 1))
= if x / c - y / c > 1 then (
Math.Lemmas.lemma_div_mod x c;
Math.Lemmas.lemma_div_mod y c;
Math.Lemmas.distributivity_sub_right c (x / c) (y / c);
Math.Lemmas.lemma_div_mod (x-y) c;
Math.Lemmas.small_div (x-y) c;
Math.Lemmas.swap_mul c (x/c - y/c);
Math.Lemmas.cancel_mul_div (x/c - y/c) c
)
#pop-options
#push-options "--z3rlimit 30"
private
let lemma_1 (x:nat) (y:nat) (c:pos) : Lemma
(requires (x - y < c /\ x >= y))
(ensures (x - y = (if (x % c) - (y % c) < 0 then c + (x % c) - (y % c)
else (x % c) - (y % c))))
= Math.Lemmas.lemma_div_mod x c;
Math.Lemmas.lemma_div_mod y c;
Math.Lemmas.distributivity_sub_right c (y/c) (x/c);
assert( (x%c) - (y%c) = x - y - c*((x/c) - (y/c)));
lemma_0 x y c
#pop-options
val lemma_barrett_reduce':
x:nat{x < pow2 512} ->
Lemma (let r = x % pow2 264 in
let qml = (((((x / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q) % pow2 264) in
let u = if r < qml then pow2 264 + r - qml else r - qml in
let z = if u < S.q then u else u - S.q in
z = x % S.q)
let lemma_barrett_reduce'' (u:nat) (z:nat) (x:nat) (q:nat) : Lemma
(requires u < 2 * S.q /\ u = x - q * S.q /\ z == (if u < S.q then u else u - S.q))
(ensures z == x % S.q) | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_barrett_reduce'' (u z x q: nat)
: Lemma (requires u < 2 * S.q /\ u = x - q * S.q /\ z == (if u < S.q then u else u - S.q))
(ensures z == x % S.q) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_barrett_reduce'' | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | u147: Prims.nat -> z: Prims.nat -> x: Prims.nat -> q: Prims.nat
-> FStar.Pervasives.Lemma
(requires
u147 < 2 * Spec.Ed25519.q /\ u147 = x - q * Spec.Ed25519.q /\
z ==
(match u147 < Spec.Ed25519.q with
| true -> u147
| _ -> u147 - Spec.Ed25519.q)) (ensures z == x % Spec.Ed25519.q) | {
"end_col": 3,
"end_line": 893,
"start_col": 2,
"start_line": 871
} |
FStar.Pervasives.Lemma | val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_optimized_barrett_reduce a =
assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 == pow2 512) | val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0)
let lemma_optimized_barrett_reduce a = | false | null | true | assert_norm (pow2 248 = 0x100000000000000000000000000000000000000000000000000000000000000);
assert_norm (pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000);
assert_norm (S.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
assert_norm (0x100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ==
pow2 512) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.unit",
"Spec.Ed25519.q",
"Prims.op_Equality"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50"
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
#pop-options
val lemma_div224: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 224 ==
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
#push-options "--z3rlimit 50"
let lemma_div224 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert
(wide_as_nat5 x ==
v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 +
v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504);
assert_norm (pow2 56 * pow2 224 == pow2 280);
assert_norm (pow2 112 * pow2 224 == pow2 336);
assert_norm (pow2 168 * pow2 224 == pow2 392);
assert_norm (pow2 224 * pow2 224 == pow2 448);
assert_norm (pow2 280 * pow2 224 == pow2 504);
calc (==) {
wide_as_nat5 x / pow2 224;
(==) { }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 +
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224;
(==) {
FStar.Math.Lemmas.lemma_div_plus
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168)
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 +
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
(==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) }
v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280;
}
#pop-options
val lemma_div248_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 248 ==
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
open FStar.Tactics.CanonCommSemiring
#push-options "--z3cliopt smt.arith.nl=false"
let lemma_div248_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 248 == pow2 224 * pow2 24);
assert_norm (pow2 56 == pow2 32 * pow2 24);
assert_norm (pow2 112 == pow2 88 * pow2 24);
assert_norm (pow2 168 == pow2 144 * pow2 24);
assert_norm (pow2 224 == pow2 200 * pow2 24);
assert_norm (pow2 280 == pow2 256 * pow2 24);
assert_norm (0 < pow2 24);
calc (==) {
wide_as_nat5 x / pow2 248;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) }
(wide_as_nat5 x / pow2 224) / pow2 24;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
}
#pop-options
val lemma_div248_x5: x5:uint64 ->
Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32)
let lemma_div248_x5 x5 =
assert_norm (pow2 32 * pow2 24 = pow2 56)
val lemma_div248_x6: x6:uint64 ->
Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88)
let lemma_div248_x6 x6 =
calc (==) {
pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) }
v x6 * pow2 88;
}
val lemma_div248_x7: x7:uint64 ->
Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144)
let lemma_div248_x7 x7 =
calc (==) {
pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) }
v x7 * pow2 144;
}
val lemma_div248_x8: x8:uint64 ->
Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200)
let lemma_div248_x8 x8 =
calc (==) {
pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) }
v x8 * pow2 200;
}
val lemma_div248_x9: x9:uint64{v x9 < pow2 24} ->
Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256)
let lemma_div248_x9 x9 =
calc (==) {
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 24) }
pow2 32 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 256;
}
val lemma_wide_as_nat_pow512: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 24))
let lemma_wide_as_nat_pow512 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 8 = pow2 512);
FStar.Math.Lemmas.pow2_minus 512 504;
assert (v x9 < pow2 8);
assert_norm (pow2 8 < pow2 24)
val lemma_div248: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div248 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow512 x;
assert (v x9 < pow2 24);
calc (==) {
(let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in
let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in
let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in
let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in
let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) +
v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 +
v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x5 x5; lemma_div248_x6 x6 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 +
pow2 32 * (v x7 % pow2 24) * pow2 112 +
v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 +
v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x7 x7; lemma_div248_x8 x8 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 +
pow2 32 * (v x9 % pow2 24) * pow2 224;
(==) { lemma_div248_x9 x9 }
v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256;
(==) { lemma_div248_aux x }
wide_as_nat5 x / pow2 248;
}
#pop-options
val lemma_add_modq5:
x:qelem5
-> y:qelem5
-> t:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q /\
as_nat5 t == as_nat5 x + as_nat5 y)
(ensures
(let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q))
let lemma_add_modq5 x y t =
assert (as_nat5 t == as_nat5 x + as_nat5 y);
let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in
assert (res < S.q);
if as_nat5 t >= S.q then (
FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q;
assert (res % S.q == as_nat5 t % S.q))
else
assert (res % S.q == as_nat5 t % S.q);
FStar.Math.Lemmas.small_mod res S.q
val lemma_wide_as_nat_pow528: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
v x9 < pow2 40))
let lemma_wide_as_nat_pow528 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 504 * pow2 24 = pow2 528);
FStar.Math.Lemmas.pow2_minus 528 504;
assert (v x9 < pow2 24);
assert_norm (pow2 24 < pow2 40)
#push-options "--z3cliopt smt.arith.nl=false"
val lemma_div264_aux: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
wide_as_nat5 x / pow2 264 ==
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
let lemma_div264_aux x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
assert_norm (pow2 264 == pow2 224 * pow2 40);
assert_norm (pow2 56 == pow2 16 * pow2 40);
assert_norm (pow2 112 == pow2 72 * pow2 40);
assert_norm (pow2 168 == pow2 128 * pow2 40);
assert_norm (pow2 224 == pow2 184 * pow2 40);
assert_norm (pow2 280 == pow2 240 * pow2 40);
assert_norm (0 < pow2 40);
calc (==) {
wide_as_nat5 x / pow2 264;
(==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) }
(wide_as_nat5 x / pow2 224) / pow2 40;
(==) { lemma_div224 x }
(v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) }
(v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40;
(==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
}
val lemma_div264_x5: x5:uint64 ->
Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16)
let lemma_div264_x5 x5 =
assert_norm (0 < pow2 24);
calc (==) {
pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56;
(==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) }
((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16;
(==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) }
v x5 * pow2 16;
}
val lemma_div264_x6: x6:uint64 ->
Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72)
let lemma_div264_x6 x6 =
calc (==) {
pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72;
(==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) }
v x6 * pow2 72;
}
val lemma_div264_x7: x7:uint64 ->
Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128)
let lemma_div264_x7 x7 =
calc (==) {
pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128;
(==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) }
v x7 * pow2 128;
}
val lemma_div264_x8: x8:uint64 ->
Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184)
let lemma_div264_x8 x8 =
calc (==) {
pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184;
(==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) }
v x8 * pow2 184;
}
val lemma_div264_x9: x9:uint64{v x9 < pow2 40} ->
Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240)
let lemma_div264_x9 x9 =
calc (==) {
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { Math.Lemmas.small_mod (v x9) (pow2 40) }
pow2 16 * v x9 * pow2 224;
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x9 * pow2 240;
}
val lemma_div264: x:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures
(let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
#push-options "--z3rlimit 50"
let lemma_div264 x =
let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in
lemma_wide_as_nat_pow528 x;
assert (v x9 < pow2 40);
calc (==) {
(let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in
let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in
let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in
let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in
let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in
z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224);
(==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) }
v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) +
v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 +
v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x5 x5; lemma_div264_x6 x6 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 +
pow2 16 * (v x7 % pow2 40) * pow2 112 +
v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 +
v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x7 x7; lemma_div264_x8 x8 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 +
pow2 16 * (v x9 % pow2 40) * pow2 224;
(==) { lemma_div264_x9 x9 }
v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240;
(==) { lemma_div264_aux x }
wide_as_nat5 x / pow2 264;
}
#pop-options
#pop-options // "--z3cliopt smt.arith.nl=false"
val lemma_mod_264_aux: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
(wide_as_nat5 t) % pow2 264 ==
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
#push-options "--z3rlimit 150"
let lemma_mod_264_aux t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
assert_norm (pow2 16 * pow2 264 == pow2 280);
assert_norm (pow2 72 * pow2 264 == pow2 336);
assert_norm (pow2 128 * pow2 264 == pow2 392);
assert_norm (pow2 184 * pow2 264 == pow2 448);
assert_norm (pow2 240 * pow2 264 == pow2 504);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 +
(v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224)
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)}
((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) +
((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
}
#pop-options
val lemma_as_nat_pow264: x:qelem5 ->
Lemma
(requires
(let (x0, x1, x2, x3, x4) = x in
qelem_fits5 x (1, 1, 1, 1, 1) /\
v x4 < pow2 40))
(ensures as_nat5 x < pow2 264)
let lemma_as_nat_pow264 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_mod_264: t:qelem_wide5 ->
Lemma
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures
(let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in
qelem_fits5 res (1, 1, 1, 1, 1) /\
as_nat5 res == (wide_as_nat5 t) % pow2 264))
let lemma_mod_264 t =
let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in
let t4' = t4 &. u64 0xffffffffff in
let res = (t0, t1, t2, t3, t4') in
assert_norm (pow2 40 < pow2 64);
assert_norm (pow2 40 - 1 == 0xffffffffff);
mod_mask_lemma t4 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff);
assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40);
calc (==) {
(wide_as_nat5 t) % pow2 264;
(==) { lemma_mod_264_aux t }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264;
(==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264;
(==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 }
(v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264;
(==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) }
v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224;
}
val lemma_as_nat_pow264_x4: x:qelem5 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264)
(ensures
(let (x0, x1, x2, x3, x4) = x in
v x4 < pow2 40))
let lemma_as_nat_pow264_x4 x =
let (x0, x1, x2, x3, x4) = x in
assert_norm (pow2 40 * pow2 224 = pow2 264)
val lemma_sub_mod_264_aux:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat ->
Lemma (
x0 - y0 + c1 * pow56 +
(x1 - y1 - c1 + c2 * pow56) * pow56 +
(x2 - y2 - c2 + c3 * pow56) * pow112 +
(x3 - y3 - c3 + c4 * pow56) * pow168 +
(x4 - y4 - c4 + pow2 40 * c5) * pow224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264)
#push-options "--z3rlimit 50"
let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 40 * pow2 224 = pow2 264)
#pop-options
val lemma_sub_mod_264:
x:qelem5
-> y:qelem5
-> t:qelem5
-> c5:uint64 ->
Lemma
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
qelem_fits5 t (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264 /\
as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\
(if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y))
(ensures
(if as_nat5 x >= as_nat5 y then
as_nat5 t == as_nat5 x - as_nat5 y
else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264))
#push-options "--z3rlimit 50"
let lemma_sub_mod_264 x y t c5 =
assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y);
assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264);
if as_nat5 x >= as_nat5 y then
assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y)
else
assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)
#pop-options
let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma
((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
=
assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) *
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) ==
x0 * y0 +
(x0 * y1 + x1 * y0) * pow56 +
(x0 * y2 + x1 * y1 + x2 * y0) * pow112 +
(x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 +
(x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 +
(x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 +
(x2 * y4 + x3 * y3 + x4 * y2) * pow336 +
(x3 * y4 + x4 * y3) * pow392 +
(x4 * y4) * pow448)
by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ())
val lemma_mul_5_low_264:
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (
(x1 * y1) >= 0
/\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0
/\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0
/\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0
/\ (
let a0 = (x1 * y1) % pow2 56 in
let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in
let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in
let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
== a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)))
private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = ()
private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = ()
private
val lemma_mul_5''':
x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat ->
y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat ->
Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264
==
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
calc (==) {
((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5)
* (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264;
(==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264));
Tactics.norm [zeta; iota; delta; primops];
int_semiring ()) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
+ (pow2 16 * x2 * y5 +
pow2 16 * x3 * y4 + pow2 72 * x3 * y5 +
pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 +
pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264;
(==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) }
(x1 * y1
+ pow2 56 * (x2 * y1 + x1 * y2)
+ pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3)
+ pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4)
+ pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264;
}
private val lemma_mod_264'':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40) < pow2 264)
let lemma_mod_264'' a0 a1 a2 a3 a4 =
assert_norm(pow2 40 = 0x10000000000);
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
assert_norm(pow2 264 = 0x1000000000000000000000000000000000000000000000000000000000000000000)
private val lemma_mod_264':
a0:nat -> a1:nat-> a2:nat -> a3:nat -> a4:nat ->
Lemma
(requires a0 < pow56 /\ a1 < pow56 /\ a2 < pow56 /\ a3 < pow56)
(ensures (a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * a4) % pow2 264 =
a0
+ pow2 56 * a1
+ pow2 112 * a2
+ pow2 168 * a3
+ pow2 224 * (a4 % pow2 40) )
let lemma_mod_264' a0 a1 a2 a3 a4 =
assert_norm(pow2 56 = 0x100000000000000);
assert_norm(pow2 112 = 0x10000000000000000000000000000);
assert_norm(pow2 168 = 0x1000000000000000000000000000000000000000000);
assert_norm(pow2 224 = 0x100000000000000000000000000000000000000000000000000000000);
Math.Lemmas.lemma_mod_plus_distr_l (pow2 224 * a4) (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3) (pow2 264);
Math.Lemmas.pow2_multiplication_modulo_lemma_2 a4 264 224;
lemma_mod_264'' a0 a1 a2 a3 a4;
Math.Lemmas.modulo_lemma (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40)) (pow2 264)
private let lemma_aux_0 (a:nat) (b:nat) (n:nat) : Lemma
(pow2 n * a + pow2 (n+56) * b = pow2 n * (a % pow2 56) + pow2 (n+56) * (b + a / pow2 56))
= Math.Lemmas.lemma_div_mod a (pow2 56);
Math.Lemmas.pow2_plus n 56;
assert(a = pow2 56 * (a / pow2 56) + (a % pow2 56));
Math.Lemmas.distributivity_add_right (pow2 n) (pow2 56 * (a / pow2 56)) (a % pow2 56);
Math.Lemmas.paren_mul_right (pow2 n) (pow2 56) (a / pow2 56);
Math.Lemmas.distributivity_add_right (pow2 (n+56)) b (a / pow2 56)
private
val lemma_mod_264_small:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ( (a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4)
= (a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)))
(* These silly lemmas needed to guide the proof below... *)
private let aux_nat_over_pos (p : nat) (q : pos) : Lemma (p / q >= 0) = ()
private let aux_nat_plus_nat (p : nat) (q : nat) : Lemma (p + q >= 0) = ()
let lemma_mod_264_small a0 a1 a2 a3 a4 =
Math.Lemmas.lemma_div_mod a0 (pow2 56);
Math.Lemmas.distributivity_add_right (pow2 56) a1 (a0 / pow2 56);
(**) aux_nat_over_pos a0 (pow2 56);
(**) aux_nat_plus_nat a1 (a0 / pow2 56);
let a1':nat = (a1 + (a0 / pow2 56)) in
(**) aux_nat_over_pos a1' (pow2 56);
(**) aux_nat_plus_nat a2 (a1' / pow2 56);
let a2':nat = (a2 + (a1' / pow2 56)) in
(**) aux_nat_over_pos a2' (pow2 56);
(**) aux_nat_plus_nat a3 (a2' / pow2 56);
let a3':nat = (a3 + (a2' / pow2 56)) in
lemma_aux_0 a1' a2 56;
lemma_aux_0 a2' a3 112;
lemma_aux_0 a3' a4 168
private
val lemma_mod_264_:
a0:nat -> a1:nat -> a2:nat -> a3:nat -> a4:nat ->
Lemma ((a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * a4) % pow2 264 =
(a0 % pow2 56)
+ pow2 56 * ((a1 + (a0 / pow2 56)) % pow2 56)
+ pow2 112 * ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 168 * ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56)
+ pow2 224 * ((a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 40))
let lemma_mod_264_ a0 a1 a2 a3 a4 =
lemma_mod_264_small a0 a1 a2 a3 a4;
let x0 = a0 % pow2 56 in
assert (x0 < pow56);
let x1 = ((a1 + (a0 / pow2 56)) % pow2 56) in
assert (x1 < pow56);
let x2 = ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) % pow2 56) in
assert (x2 < pow56);
let x3 = ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in
assert (x3 < pow56);
lemma_mod_264' x0 x1 x2 x3 (a4 + ((a3 + ((a2 + ((a1 + (a0 / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56))
#push-options "--z3rlimit 50"
let lemma_mul_5_low_264 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
lemma_div_nat_is_nat (x1 * y1) (pow2 56);
lemma_div_nat_is_nat (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) (pow2 56);
lemma_div_nat_is_nat (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) (pow2 56);
lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5;
lemma_mod_264_ (x1 * y1) (x2 * y1 + x1 * y2) (x3 * y1 + x2 * y2 + x1 * y3) (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)
#pop-options
private
val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0)
#push-options "--z3rlimit 50" | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_optimized_barrett_reduce:
a:nat{a < pow2 512} ->
Lemma (a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q < 2 * S.q
/\ a - (((a / pow2 248) * (pow2 512 / S.q)) / pow2 264) * S.q >= 0) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_optimized_barrett_reduce | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat{a < Prims.pow2 512}
-> FStar.Pervasives.Lemma
(ensures
a -
((a / Prims.pow2 248) * (Prims.pow2 512 / Spec.Ed25519.q) / Prims.pow2 264) * Spec.Ed25519.q <
2 * Spec.Ed25519.q /\
a -
((a / Prims.pow2 248) * (Prims.pow2 512 / Spec.Ed25519.q) / Prims.pow2 264) * Spec.Ed25519.q >=
0) | {
"end_col": 159,
"end_line": 813,
"start_col": 2,
"start_line": 810
} |
FStar.Pervasives.Lemma | val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 =
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280) | val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = | false | null | true | assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280) | {
"checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit"
] | [] | module Hacl.Spec.BignumQ.Lemmas
open FStar.Tactics.CanonCommSemiring
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
include Hacl.Spec.BignumQ.Definitions
let feq (#a #b:Type) (f:(a -> b)) (x y:a) :
Lemma (requires x == y) (ensures f x == f y) = ()
let eq_eq2 (#a:eqtype) (x y:a) :
Lemma (requires x = y) (ensures x == y) = ()
val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a < b /\ c < d)
(ensures a * c < b * d)
let lemma_mul_lt a b c d = ()
val lemma_as_nat5: f:qelem5 ->
Lemma
(requires qelem_fits5 f (1, 1, 1, 1, 1))
(ensures as_nat5 f < pow2 280)
let lemma_as_nat5 f =
//let (f0, f1, f2, f3, f4) = f in
//assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224);
assert_norm (pow2 56 * pow2 56 = pow2 112);
assert_norm (pow2 56 * pow2 112 = pow2 168);
assert_norm (pow2 56 * pow2 168 = pow2 224);
assert_norm (pow2 56 * pow2 224 = pow2 280)
val lemma_choose_step:
bit:uint64{v bit <= 1}
-> x:uint64
-> y:uint64
-> Lemma
(let mask = bit -. u64 1 in
let z = x ^. (mask &. (x ^. y)) in
if v bit = 1 then z == x else z == y)
let lemma_choose_step bit p1 p2 =
let mask = bit -. u64 1 in
assert (v bit == 0 ==> v mask == pow2 64 - 1);
assert (v bit == 1 ==> v mask == 0);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == 0);
assert (v bit == 0 ==> v dummy == v (p1 ^. p2));
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2)));
logxor_lemma p1 p2
val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280)
#push-options "--z3rlimit 50" | false | false | Hacl.Spec.BignumQ.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_subm_conditional:
x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat
-> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat
-> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat ->
Lemma (
x0 - y0 + b0 * pow2 56 +
(x1 - y1 - b0 + b1 * pow2 56) * pow2 56 +
(x2 - y2 - b1 + b2 * pow2 56) * pow2 112 +
(x3 - y3 - b2 + b3 * pow2 56) * pow2 168 +
(x4 - y4 - b3 + b4 * pow2 56) * pow2 224 ==
(x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) -
(y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) | [] | Hacl.Spec.BignumQ.Lemmas.lemma_subm_conditional | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x0: Prims.nat ->
x1: Prims.nat ->
x2: Prims.nat ->
x3: Prims.nat ->
x4: Prims.nat ->
y0: Prims.nat ->
y1: Prims.nat ->
y2: Prims.nat ->
y3: Prims.nat ->
y4: Prims.nat ->
b0: Prims.nat ->
b1: Prims.nat ->
b2: Prims.nat ->
b3: Prims.nat ->
b4: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
x0 - y0 + b0 * Prims.pow2 56 + (x1 - y1 - b0 + b1 * Prims.pow2 56) * Prims.pow2 56 +
(x2 - y2 - b1 + b2 * Prims.pow2 56) * Prims.pow2 112 +
(x3 - y3 - b2 + b3 * Prims.pow2 56) * Prims.pow2 168 +
(x4 - y4 - b3 + b4 * Prims.pow2 56) * Prims.pow2 224 ==
x0 + x1 * Prims.pow2 56 + x2 * Prims.pow2 112 + x3 * Prims.pow2 168 + x4 * Prims.pow2 224 -
(y0 + y1 * Prims.pow2 56 + y2 * Prims.pow2 112 + y3 * Prims.pow2 168 + y4 * Prims.pow2 224) +
b4 * Prims.pow2 280) | {
"end_col": 45,
"end_line": 79,
"start_col": 2,
"start_line": 76
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.