effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Pervasives.Lemma
val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div264_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 264 == pow2 224 * pow2 40); assert_norm (pow2 56 == pow2 16 * pow2 40); assert_norm (pow2 112 == pow2 72 * pow2 40); assert_norm (pow2 168 == pow2 128 * pow2 40); assert_norm (pow2 224 == pow2 184 * pow2 40); assert_norm (pow2 280 == pow2 240 * pow2 40); assert_norm (0 < pow2 40); calc (==) { wide_as_nat5 x / pow2 264; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) } (wide_as_nat5 x / pow2 224) / pow2 40; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) } (v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; }
val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240)) let lemma_div264_aux x =
false
null
true
let x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 = x in assert_norm (pow2 264 == pow2 224 * pow2 40); assert_norm (pow2 56 == pow2 16 * pow2 40); assert_norm (pow2 112 == pow2 72 * pow2 40); assert_norm (pow2 168 == pow2 128 * pow2 40); assert_norm (pow2 224 == pow2 184 * pow2 40); assert_norm (pow2 280 == pow2 240 * pow2 40); assert_norm (0 < pow2 40); calc ( == ) { wide_as_nat5 x / pow2 264; ( == ) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) } (wide_as_nat5 x / pow2 224) / pow2 40; ( == ) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40; ( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ -> (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ())) } (v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40; ( == ) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.BignumQ.Definitions.qelem_wide5", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Division", "Hacl.Spec.BignumQ.Definitions.wide_as_nat5", "Prims.pow2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.division_multiplication_lemma", "Prims.squash", "Hacl.Spec.BignumQ.Lemmas.lemma_div224", "FStar.Math.Lemmas.lemma_div_plus", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) #push-options "--z3rlimit 50" let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; } #pop-options val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) open FStar.Tactics.CanonCommSemiring #push-options "--z3cliopt smt.arith.nl=false" let lemma_div248_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc (==) { wide_as_nat5 x / pow2 248; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; } #pop-options val lemma_div248_x5: x5:uint64 -> Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) let lemma_div248_x5 x5 = assert_norm (pow2 32 * pow2 24 = pow2 56) val lemma_div248_x6: x6:uint64 -> Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) let lemma_div248_x6 x6 = calc (==) { pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) } v x6 * pow2 88; } val lemma_div248_x7: x7:uint64 -> Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) let lemma_div248_x7 x7 = calc (==) { pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) } v x7 * pow2 144; } val lemma_div248_x8: x8:uint64 -> Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) let lemma_div248_x8 x8 = calc (==) { pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) } v x8 * pow2 200; } val lemma_div248_x9: x9:uint64{v x9 < pow2 24} -> Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) let lemma_div248_x9 x9 = calc (==) { pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 24) } pow2 32 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 256; } val lemma_wide_as_nat_pow512: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 24)) let lemma_wide_as_nat_pow512 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 8 = pow2 512); FStar.Math.Lemmas.pow2_minus 512 504; assert (v x9 < pow2 8); assert_norm (pow2 8 < pow2 24) val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div248 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow512 x; assert (v x9 < pow2 24); calc (==) { (let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x5 x5; lemma_div248_x6 x6 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x7 x7; lemma_div248_x8 x8 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x9 x9 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; (==) { lemma_div248_aux x } wide_as_nat5 x / pow2 248; } #pop-options val lemma_add_modq5: x:qelem5 -> y:qelem5 -> t:qelem5 -> Lemma (requires qelem_fits5 x (1, 1, 1, 1, 1) /\ qelem_fits5 y (1, 1, 1, 1, 1) /\ qelem_fits5 t (1, 1, 1, 1, 1) /\ as_nat5 x < S.q /\ as_nat5 y < S.q /\ as_nat5 t == as_nat5 x + as_nat5 y) (ensures (let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) let lemma_add_modq5 x y t = assert (as_nat5 t == as_nat5 x + as_nat5 y); let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in assert (res < S.q); if as_nat5 t >= S.q then ( FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q; assert (res % S.q == as_nat5 t % S.q)) else assert (res % S.q == as_nat5 t % S.q); FStar.Math.Lemmas.small_mod res S.q val lemma_wide_as_nat_pow528: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 40)) let lemma_wide_as_nat_pow528 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 24 = pow2 528); FStar.Math.Lemmas.pow2_minus 528 504; assert (v x9 < pow2 24); assert_norm (pow2 24 < pow2 40) #push-options "--z3cliopt smt.arith.nl=false" val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240))
[]
Hacl.Spec.BignumQ.Lemmas.lemma_div264_aux
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x < Prims.pow2 528) (ensures (let _ = x in (let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ _ _ _ _ x4 x5 x6 x7 x8 x9 = _ in Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x / Prims.pow2 264 == Lib.IntTypes.v x4 / Prims.pow2 40 + Lib.IntTypes.v x5 * Prims.pow2 16 + Lib.IntTypes.v x6 * Prims.pow2 72 + Lib.IntTypes.v x7 * Prims.pow2 128 + Lib.IntTypes.v x8 * Prims.pow2 184 + Lib.IntTypes.v x9 * Prims.pow2 240) <: Type0))
{ "end_col": 3, "end_line": 348, "start_col": 24, "start_line": 328 }
FStar.Pervasives.Lemma
val lemma_mod_264: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in qelem_fits5 res (1, 1, 1, 1, 1) /\ as_nat5 res == (wide_as_nat5 t) % pow2 264))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_264 t = let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let t4' = t4 &. u64 0xffffffffff in let res = (t0, t1, t2, t3, t4') in assert_norm (pow2 40 < pow2 64); assert_norm (pow2 40 - 1 == 0xffffffffff); mod_mask_lemma t4 40ul; assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff); assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40); calc (==) { (wide_as_nat5 t) % pow2 264; (==) { lemma_mod_264_aux t } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264; (==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264; (==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) } v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224; }
val lemma_mod_264: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in qelem_fits5 res (1, 1, 1, 1, 1) /\ as_nat5 res == (wide_as_nat5 t) % pow2 264)) let lemma_mod_264 t =
false
null
true
let t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 = t in let t4' = t4 &. u64 0xffffffffff in let res = (t0, t1, t2, t3, t4') in assert_norm (pow2 40 < pow2 64); assert_norm (pow2 40 - 1 == 0xffffffffff); mod_mask_lemma t4 40ul; assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff); assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40); calc ( == ) { (wide_as_nat5 t) % pow2 264; ( == ) { lemma_mod_264_aux t } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264; ( == ) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264; ( == ) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264; ( == ) { (lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264)) } v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.BignumQ.Definitions.qelem_wide5", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.BignumQ.Definitions.wide_as_nat5", "Prims.pow2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.BignumQ.Lemmas.lemma_mod_264_aux", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_add_distr", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "FStar.Math.Lemmas.modulo_lemma", "Hacl.Spec.BignumQ.Definitions.as_nat5", "Hacl.Spec.BignumQ.Lemmas.lemma_as_nat_pow264", "Prims._assert", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.mod_mask", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.mod_mask_lemma", "FStar.Pervasives.assert_norm", "Prims.op_Subtraction", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Pervasives.Native.Mktuple5" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) #push-options "--z3rlimit 50" let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; } #pop-options val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) open FStar.Tactics.CanonCommSemiring #push-options "--z3cliopt smt.arith.nl=false" let lemma_div248_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc (==) { wide_as_nat5 x / pow2 248; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; } #pop-options val lemma_div248_x5: x5:uint64 -> Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) let lemma_div248_x5 x5 = assert_norm (pow2 32 * pow2 24 = pow2 56) val lemma_div248_x6: x6:uint64 -> Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) let lemma_div248_x6 x6 = calc (==) { pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) } v x6 * pow2 88; } val lemma_div248_x7: x7:uint64 -> Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) let lemma_div248_x7 x7 = calc (==) { pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) } v x7 * pow2 144; } val lemma_div248_x8: x8:uint64 -> Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) let lemma_div248_x8 x8 = calc (==) { pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) } v x8 * pow2 200; } val lemma_div248_x9: x9:uint64{v x9 < pow2 24} -> Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) let lemma_div248_x9 x9 = calc (==) { pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 24) } pow2 32 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 256; } val lemma_wide_as_nat_pow512: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 24)) let lemma_wide_as_nat_pow512 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 8 = pow2 512); FStar.Math.Lemmas.pow2_minus 512 504; assert (v x9 < pow2 8); assert_norm (pow2 8 < pow2 24) val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div248 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow512 x; assert (v x9 < pow2 24); calc (==) { (let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x5 x5; lemma_div248_x6 x6 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x7 x7; lemma_div248_x8 x8 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x9 x9 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; (==) { lemma_div248_aux x } wide_as_nat5 x / pow2 248; } #pop-options val lemma_add_modq5: x:qelem5 -> y:qelem5 -> t:qelem5 -> Lemma (requires qelem_fits5 x (1, 1, 1, 1, 1) /\ qelem_fits5 y (1, 1, 1, 1, 1) /\ qelem_fits5 t (1, 1, 1, 1, 1) /\ as_nat5 x < S.q /\ as_nat5 y < S.q /\ as_nat5 t == as_nat5 x + as_nat5 y) (ensures (let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) let lemma_add_modq5 x y t = assert (as_nat5 t == as_nat5 x + as_nat5 y); let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in assert (res < S.q); if as_nat5 t >= S.q then ( FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q; assert (res % S.q == as_nat5 t % S.q)) else assert (res % S.q == as_nat5 t % S.q); FStar.Math.Lemmas.small_mod res S.q val lemma_wide_as_nat_pow528: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 40)) let lemma_wide_as_nat_pow528 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 24 = pow2 528); FStar.Math.Lemmas.pow2_minus 528 504; assert (v x9 < pow2 24); assert_norm (pow2 24 < pow2 40) #push-options "--z3cliopt smt.arith.nl=false" val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240)) let lemma_div264_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 264 == pow2 224 * pow2 40); assert_norm (pow2 56 == pow2 16 * pow2 40); assert_norm (pow2 112 == pow2 72 * pow2 40); assert_norm (pow2 168 == pow2 128 * pow2 40); assert_norm (pow2 224 == pow2 184 * pow2 40); assert_norm (pow2 280 == pow2 240 * pow2 40); assert_norm (0 < pow2 40); calc (==) { wide_as_nat5 x / pow2 264; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) } (wide_as_nat5 x / pow2 224) / pow2 40; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) } (v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; } val lemma_div264_x5: x5:uint64 -> Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16) let lemma_div264_x5 x5 = assert_norm (0 < pow2 24); calc (==) { pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) } v x5 * pow2 16; } val lemma_div264_x6: x6:uint64 -> Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72) let lemma_div264_x6 x6 = calc (==) { pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72; (==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) } v x6 * pow2 72; } val lemma_div264_x7: x7:uint64 -> Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128) let lemma_div264_x7 x7 = calc (==) { pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128; (==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) } v x7 * pow2 128; } val lemma_div264_x8: x8:uint64 -> Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184) let lemma_div264_x8 x8 = calc (==) { pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184; (==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) } v x8 * pow2 184; } val lemma_div264_x9: x9:uint64{v x9 < pow2 40} -> Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240) let lemma_div264_x9 x9 = calc (==) { pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 40) } pow2 16 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 240; } val lemma_div264: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div264 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow528 x; assert (v x9 < pow2 40); calc (==) { (let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x5 x5; lemma_div264_x6 x6 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x7 x7; lemma_div264_x8 x8 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x9 x9 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; (==) { lemma_div264_aux x } wide_as_nat5 x / pow2 264; } #pop-options #pop-options // "--z3cliopt smt.arith.nl=false" val lemma_mod_264_aux: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in (wide_as_nat5 t) % pow2 264 == (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264)) #push-options "--z3rlimit 150" let lemma_mod_264_aux t = let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in assert_norm (pow2 16 * pow2 264 == pow2 280); assert_norm (pow2 72 * pow2 264 == pow2 336); assert_norm (pow2 128 * pow2 264 == pow2 392); assert_norm (pow2 184 * pow2 264 == pow2 448); assert_norm (pow2 240 * pow2 264 == pow2 504); calc (==) { (wide_as_nat5 t) % pow2 264; (==) { } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 + (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)} ((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) + ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264; } #pop-options val lemma_as_nat_pow264: x:qelem5 -> Lemma (requires (let (x0, x1, x2, x3, x4) = x in qelem_fits5 x (1, 1, 1, 1, 1) /\ v x4 < pow2 40)) (ensures as_nat5 x < pow2 264) let lemma_as_nat_pow264 x = let (x0, x1, x2, x3, x4) = x in assert_norm (pow2 40 * pow2 224 = pow2 264) val lemma_mod_264: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in qelem_fits5 res (1, 1, 1, 1, 1) /\ as_nat5 res == (wide_as_nat5 t) % pow2 264))
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_264: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in qelem_fits5 res (1, 1, 1, 1, 1) /\ as_nat5 res == (wide_as_nat5 t) % pow2 264))
[]
Hacl.Spec.BignumQ.Lemmas.lemma_mod_264
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let _ = t in (let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ t0 t1 t2 t3 t4 _ _ _ _ _ = _ in let res = t0, t1, t2, t3, t4 &. Lib.IntTypes.u64 0xffffffffff in Hacl.Spec.BignumQ.Definitions.qelem_fits5 res (1, 1, 1, 1, 1) /\ Hacl.Spec.BignumQ.Definitions.as_nat5 res == Hacl.Spec.BignumQ.Definitions.wide_as_nat5 t % Prims.pow2 264) <: Type0))
{ "end_col": 5, "end_line": 538, "start_col": 21, "start_line": 518 }
FStar.Pervasives.Lemma
val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div248_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc (==) { wide_as_nat5 x / pow2 248; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; }
val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) let lemma_div248_aux x =
false
null
true
let x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc ( == ) { wide_as_nat5 x / pow2 248; ( == ) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; ( == ) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; ( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ -> (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ())) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; ( == ) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.BignumQ.Definitions.qelem_wide5", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Division", "Hacl.Spec.BignumQ.Definitions.wide_as_nat5", "Prims.pow2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.division_multiplication_lemma", "Prims.squash", "Hacl.Spec.BignumQ.Lemmas.lemma_div224", "FStar.Math.Lemmas.lemma_div_plus", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) #push-options "--z3rlimit 50" let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; } #pop-options val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) open FStar.Tactics.CanonCommSemiring
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256))
[]
Hacl.Spec.BignumQ.Lemmas.lemma_div248_aux
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x < Prims.pow2 512) (ensures (let _ = x in (let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ _ _ _ _ x4 x5 x6 x7 x8 x9 = _ in Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x / Prims.pow2 248 == Lib.IntTypes.v x4 / Prims.pow2 24 + Lib.IntTypes.v x5 * Prims.pow2 32 + Lib.IntTypes.v x6 * Prims.pow2 88 + Lib.IntTypes.v x7 * Prims.pow2 144 + Lib.IntTypes.v x8 * Prims.pow2 200 + Lib.IntTypes.v x9 * Prims.pow2 256) <: Type0))
{ "end_col": 3, "end_line": 151, "start_col": 24, "start_line": 132 }
FStar.Pervasives.Lemma
val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
[ { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; }
val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) let lemma_div224 x =
false
null
true
let x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc ( == ) { wide_as_nat5 x / pow2 224; ( == ) { () } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; ( == ) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; ( == ) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.BignumQ.Definitions.qelem_wide5", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Division", "Hacl.Spec.BignumQ.Definitions.wide_as_nat5", "Prims.pow2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_div_plus", "FStar.Math.Lemmas.small_division_lemma_1", "FStar.Pervasives.assert_norm", "Prims._assert" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280))
[]
Hacl.Spec.BignumQ.Lemmas.lemma_div224
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let _ = x in (let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ _ _ _ _ x4 x5 x6 x7 x8 x9 = _ in Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x / Prims.pow2 224 == Lib.IntTypes.v x4 + Lib.IntTypes.v x5 * Prims.pow2 56 + Lib.IntTypes.v x6 * Prims.pow2 112 + Lib.IntTypes.v x7 * Prims.pow2 168 + Lib.IntTypes.v x8 * Prims.pow2 224 + Lib.IntTypes.v x9 * Prims.pow2 280) <: Type0))
{ "end_col": 5, "end_line": 116, "start_col": 20, "start_line": 92 }
FStar.Pervasives.Lemma
val lemma_mul_5''': x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat -> Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5) * (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264 == (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = calc (==) { ((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5) * (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264)); Tactics.norm [zeta; iota; delta; primops]; int_semiring ()) } (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5) + (pow2 16 * x2 * y5 + pow2 16 * x3 * y4 + pow2 72 * x3 * y5 + pow2 16 * x4 * y3 + pow2 72 * x4 * y4 + pow2 128 * x4 * y5 + pow2 16 * x5 * y2 + pow2 72 * x5 * y3 + pow2 128 * x5 * y4 + pow2 184 * x5 * y5) * pow2 264) % pow2 264; (==) { _ by (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus)) } (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264; }
val lemma_mul_5''': x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat -> Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5) * (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264 == (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264) let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
false
null
true
calc ( == ) { ((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5) * (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264; ( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ -> (Tactics.mapply (`feq #int #int (fun x -> x % pow2 264)); Tactics.norm [zeta; iota; delta; primops]; int_semiring ())) } (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5) + ((pow2 16 * x2) * y5 + (pow2 16 * x3) * y4 + (pow2 72 * x3) * y5 + (pow2 16 * x4) * y3 + (pow2 72 * x4) * y4 + (pow2 128 * x4) * y5 + (pow2 16 * x5) * y2 + (pow2 72 * x5) * y3 + (pow2 128 * x5) * y4 + (pow2 184 * x5) * y5) * pow2 264) % pow2 264; ( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ -> (Tactics.mapply (`eq_eq2); Tactics.mapply (`Math.Lemmas.lemma_mod_plus))) } (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) #push-options "--z3rlimit 50" let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; } #pop-options val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) open FStar.Tactics.CanonCommSemiring #push-options "--z3cliopt smt.arith.nl=false" let lemma_div248_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc (==) { wide_as_nat5 x / pow2 248; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; } #pop-options val lemma_div248_x5: x5:uint64 -> Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) let lemma_div248_x5 x5 = assert_norm (pow2 32 * pow2 24 = pow2 56) val lemma_div248_x6: x6:uint64 -> Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) let lemma_div248_x6 x6 = calc (==) { pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) } v x6 * pow2 88; } val lemma_div248_x7: x7:uint64 -> Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) let lemma_div248_x7 x7 = calc (==) { pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) } v x7 * pow2 144; } val lemma_div248_x8: x8:uint64 -> Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) let lemma_div248_x8 x8 = calc (==) { pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) } v x8 * pow2 200; } val lemma_div248_x9: x9:uint64{v x9 < pow2 24} -> Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) let lemma_div248_x9 x9 = calc (==) { pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 24) } pow2 32 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 256; } val lemma_wide_as_nat_pow512: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 24)) let lemma_wide_as_nat_pow512 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 8 = pow2 512); FStar.Math.Lemmas.pow2_minus 512 504; assert (v x9 < pow2 8); assert_norm (pow2 8 < pow2 24) val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div248 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow512 x; assert (v x9 < pow2 24); calc (==) { (let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x5 x5; lemma_div248_x6 x6 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x7 x7; lemma_div248_x8 x8 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x9 x9 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; (==) { lemma_div248_aux x } wide_as_nat5 x / pow2 248; } #pop-options val lemma_add_modq5: x:qelem5 -> y:qelem5 -> t:qelem5 -> Lemma (requires qelem_fits5 x (1, 1, 1, 1, 1) /\ qelem_fits5 y (1, 1, 1, 1, 1) /\ qelem_fits5 t (1, 1, 1, 1, 1) /\ as_nat5 x < S.q /\ as_nat5 y < S.q /\ as_nat5 t == as_nat5 x + as_nat5 y) (ensures (let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) let lemma_add_modq5 x y t = assert (as_nat5 t == as_nat5 x + as_nat5 y); let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in assert (res < S.q); if as_nat5 t >= S.q then ( FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q; assert (res % S.q == as_nat5 t % S.q)) else assert (res % S.q == as_nat5 t % S.q); FStar.Math.Lemmas.small_mod res S.q val lemma_wide_as_nat_pow528: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 40)) let lemma_wide_as_nat_pow528 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 24 = pow2 528); FStar.Math.Lemmas.pow2_minus 528 504; assert (v x9 < pow2 24); assert_norm (pow2 24 < pow2 40) #push-options "--z3cliopt smt.arith.nl=false" val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240)) let lemma_div264_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 264 == pow2 224 * pow2 40); assert_norm (pow2 56 == pow2 16 * pow2 40); assert_norm (pow2 112 == pow2 72 * pow2 40); assert_norm (pow2 168 == pow2 128 * pow2 40); assert_norm (pow2 224 == pow2 184 * pow2 40); assert_norm (pow2 280 == pow2 240 * pow2 40); assert_norm (0 < pow2 40); calc (==) { wide_as_nat5 x / pow2 264; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) } (wide_as_nat5 x / pow2 224) / pow2 40; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) } (v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; } val lemma_div264_x5: x5:uint64 -> Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16) let lemma_div264_x5 x5 = assert_norm (0 < pow2 24); calc (==) { pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) } v x5 * pow2 16; } val lemma_div264_x6: x6:uint64 -> Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72) let lemma_div264_x6 x6 = calc (==) { pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72; (==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) } v x6 * pow2 72; } val lemma_div264_x7: x7:uint64 -> Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128) let lemma_div264_x7 x7 = calc (==) { pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128; (==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) } v x7 * pow2 128; } val lemma_div264_x8: x8:uint64 -> Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184) let lemma_div264_x8 x8 = calc (==) { pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184; (==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) } v x8 * pow2 184; } val lemma_div264_x9: x9:uint64{v x9 < pow2 40} -> Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240) let lemma_div264_x9 x9 = calc (==) { pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 40) } pow2 16 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 240; } val lemma_div264: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div264 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow528 x; assert (v x9 < pow2 40); calc (==) { (let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x5 x5; lemma_div264_x6 x6 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x7 x7; lemma_div264_x8 x8 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x9 x9 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; (==) { lemma_div264_aux x } wide_as_nat5 x / pow2 264; } #pop-options #pop-options // "--z3cliopt smt.arith.nl=false" val lemma_mod_264_aux: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in (wide_as_nat5 t) % pow2 264 == (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264)) #push-options "--z3rlimit 150" let lemma_mod_264_aux t = let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in assert_norm (pow2 16 * pow2 264 == pow2 280); assert_norm (pow2 72 * pow2 264 == pow2 336); assert_norm (pow2 128 * pow2 264 == pow2 392); assert_norm (pow2 184 * pow2 264 == pow2 448); assert_norm (pow2 240 * pow2 264 == pow2 504); calc (==) { (wide_as_nat5 t) % pow2 264; (==) { } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 + (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)} ((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) + ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264; } #pop-options val lemma_as_nat_pow264: x:qelem5 -> Lemma (requires (let (x0, x1, x2, x3, x4) = x in qelem_fits5 x (1, 1, 1, 1, 1) /\ v x4 < pow2 40)) (ensures as_nat5 x < pow2 264) let lemma_as_nat_pow264 x = let (x0, x1, x2, x3, x4) = x in assert_norm (pow2 40 * pow2 224 = pow2 264) val lemma_mod_264: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in qelem_fits5 res (1, 1, 1, 1, 1) /\ as_nat5 res == (wide_as_nat5 t) % pow2 264)) let lemma_mod_264 t = let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let t4' = t4 &. u64 0xffffffffff in let res = (t0, t1, t2, t3, t4') in assert_norm (pow2 40 < pow2 64); assert_norm (pow2 40 - 1 == 0xffffffffff); mod_mask_lemma t4 40ul; assert (v (mod_mask #U64 #SEC 40ul) == 0xffffffffff); assert (v (t4 &. u64 0xffffffffff) == v t4 % pow2 40); calc (==) { (wide_as_nat5 t) % pow2 264; (==) { lemma_mod_264_aux t } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264; (==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168) (v t4 * pow2 224) (pow2 264) } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 * pow2 224) % pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v t4) 264 224 } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224) % pow2 264; (==) { lemma_as_nat_pow264 res; FStar.Math.Lemmas.modulo_lemma (as_nat5 res) (pow2 264) } v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + (v t4 % pow2 40) * pow2 224; } val lemma_as_nat_pow264_x4: x:qelem5 -> Lemma (requires qelem_fits5 x (1, 1, 1, 1, 1) /\ as_nat5 x < pow2 264) (ensures (let (x0, x1, x2, x3, x4) = x in v x4 < pow2 40)) let lemma_as_nat_pow264_x4 x = let (x0, x1, x2, x3, x4) = x in assert_norm (pow2 40 * pow2 224 = pow2 264) val lemma_sub_mod_264_aux: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> c1:nat -> c2:nat -> c3:nat -> c4:nat -> c5:nat -> Lemma ( x0 - y0 + c1 * pow56 + (x1 - y1 - c1 + c2 * pow56) * pow56 + (x2 - y2 - c2 + c3 * pow56) * pow112 + (x3 - y3 - c3 + c4 * pow56) * pow168 + (x4 - y4 - c4 + pow2 40 * c5) * pow224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + c5 * pow2 264) #push-options "--z3rlimit 50" let lemma_sub_mod_264_aux x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 40 * pow2 224 = pow2 264) #pop-options val lemma_sub_mod_264: x:qelem5 -> y:qelem5 -> t:qelem5 -> c5:uint64 -> Lemma (requires qelem_fits5 x (1, 1, 1, 1, 1) /\ qelem_fits5 y (1, 1, 1, 1, 1) /\ qelem_fits5 t (1, 1, 1, 1, 1) /\ as_nat5 x < pow2 264 /\ as_nat5 y < pow2 264 /\ as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264 /\ v c5 <= 1 /\ (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y)) (ensures (if as_nat5 x >= as_nat5 y then as_nat5 t == as_nat5 x - as_nat5 y else as_nat5 t == as_nat5 x - as_nat5 y + pow2 264)) #push-options "--z3rlimit 50" let lemma_sub_mod_264 x y t c5 = assert (if v c5 = 0 then as_nat5 x >= as_nat5 y else as_nat5 x < as_nat5 y); assert (as_nat5 t == as_nat5 x - as_nat5 y + v c5 * pow2 264); if as_nat5 x >= as_nat5 y then assert (v c5 == 0 /\ as_nat5 t == as_nat5 x - as_nat5 y) else assert (v c5 == 1 /\ as_nat5 t == as_nat5 x - as_nat5 y + pow2 264) #pop-options let lemma_mul_qelem5 (x0 x1 x2 x3 x4 y0 y1 y2 y3 y4:nat) : Lemma ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) * (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) == x0 * y0 + (x0 * y1 + x1 * y0) * pow56 + (x0 * y2 + x1 * y1 + x2 * y0) * pow112 + (x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 + (x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 + (x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 + (x2 * y4 + x3 * y3 + x4 * y2) * pow336 + (x3 * y4 + x4 * y3) * pow392 + (x4 * y4) * pow448) = assert ((x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) * (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) == x0 * y0 + (x0 * y1 + x1 * y0) * pow56 + (x0 * y2 + x1 * y1 + x2 * y0) * pow112 + (x0 * y3 + x1 * y2 + x2 * y1 + x3 * y0) * pow168 + (x0 * y4 + x1 * y3 + x2 * y2 + x3 * y1 + x4 * y0) * pow224 + (x1 * y4 + x2 * y3 + x3 * y2 + x4 * y1) * pow280 + (x2 * y4 + x3 * y3 + x4 * y2) * pow336 + (x3 * y4 + x4 * y3) * pow392 + (x4 * y4) * pow448) by (Tactics.norm [zeta; iota; delta; primops]; int_semiring ()) val lemma_mul_5_low_264: x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat -> Lemma ( (x1 * y1) >= 0 /\ (x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) >= 0 /\ (x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) >= 0 /\ (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) >= 0 /\ ( let a0 = (x1 * y1) % pow2 56 in let a1 = ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) % pow2 56) in let a2 = ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) % pow2 56) in let a3 = ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) % pow2 56) in let a4 = (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5 + ((x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4 + ((x3 * y1 + x2 * y2 + x1 * y3 + ((x2 * y1 + x1 * y2 + ((x1 * y1) / pow2 56)) / pow2 56)) / pow2 56)) / pow2 56)) in ((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5) * (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264 == a0 + pow2 56 * a1 + pow2 112 * a2 + pow2 168 * a3 + pow2 224 * (a4 % pow2 40))) private let lemma_mul_nat_is_nat (a:nat) (b:nat) : Lemma (a*b >= 0) = () private let lemma_div_nat_is_nat (a:nat) (b:pos) : Lemma (a/b >= 0) = () private val lemma_mul_5''': x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat -> Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5) * (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264 == (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264) let lemma_mul_5''' x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 =
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_5''': x1:nat -> x2:nat -> x3:nat -> x4:nat -> x5:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> y5:nat -> Lemma (((x1 + pow2 56 * x2 + pow2 112 * x3 + pow2 168 * x4 + pow2 224 * x5) * (y1 + pow2 56 * y2 + pow2 112 * y3 + pow2 168 * y4 + pow2 224 * y5)) % pow2 264 == (x1 * y1 + pow2 56 * (x2 * y1 + x1 * y2) + pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % pow2 264)
[]
Hacl.Spec.BignumQ.Lemmas.lemma_mul_5'''
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x1: Prims.nat -> x2: Prims.nat -> x3: Prims.nat -> x4: Prims.nat -> x5: Prims.nat -> y1: Prims.nat -> y2: Prims.nat -> y3: Prims.nat -> y4: Prims.nat -> y5: Prims.nat -> FStar.Pervasives.Lemma (ensures (x1 + Prims.pow2 56 * x2 + Prims.pow2 112 * x3 + Prims.pow2 168 * x4 + Prims.pow2 224 * x5) * (y1 + Prims.pow2 56 * y2 + Prims.pow2 112 * y3 + Prims.pow2 168 * y4 + Prims.pow2 224 * y5) % Prims.pow2 264 == (x1 * y1 + Prims.pow2 56 * (x2 * y1 + x1 * y2) + Prims.pow2 112 * (x3 * y1 + x2 * y2 + x1 * y3) + Prims.pow2 168 * (x4 * y1 + x3 * y2 + x2 * y3 + x1 * y4) + Prims.pow2 224 * (x5 * y1 + x4 * y2 + x3 * y3 + x2 * y4 + x1 * y5)) % Prims.pow2 264)
{ "end_col": 3, "end_line": 690, "start_col": 2, "start_line": 669 }
FStar.Pervasives.Lemma
val lemma_mod_264_aux: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in (wide_as_nat5 t) % pow2 264 == (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_264_aux t = let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in assert_norm (pow2 16 * pow2 264 == pow2 280); assert_norm (pow2 72 * pow2 264 == pow2 336); assert_norm (pow2 128 * pow2 264 == pow2 392); assert_norm (pow2 184 * pow2 264 == pow2 448); assert_norm (pow2 240 * pow2 264 == pow2 504); calc (==) { (wide_as_nat5 t) % pow2 264; (==) { } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 + (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264)} ((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) + ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264; (==) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264; }
val lemma_mod_264_aux: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in (wide_as_nat5 t) % pow2 264 == (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264)) let lemma_mod_264_aux t =
false
null
true
let t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 = t in let res = (t0, t1, t2, t3, t4 &. u64 0xffffffffff) in assert_norm (pow2 16 * pow2 264 == pow2 280); assert_norm (pow2 72 * pow2 264 == pow2 336); assert_norm (pow2 128 * pow2 264 == pow2 392); assert_norm (pow2 184 * pow2 264 == pow2 448); assert_norm (pow2 240 * pow2 264 == pow2 504); calc ( == ) { (wide_as_nat5 t) % pow2 264; ( == ) { () } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224 + (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264; ( == ) { FStar.Math.Lemmas.lemma_mod_add_distr (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) (pow2 264) } ((v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) + ((v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) * pow2 264) % pow2 264) % pow2 264; ( == ) { FStar.Math.Lemmas.cancel_mul_mod (v t5 * pow2 16 + v t6 * pow2 72 + v t7 * pow2 128 + v t8 * pow2 184 + v t9 * pow2 240) (pow2 264) } (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.BignumQ.Definitions.qelem_wide5", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.BignumQ.Definitions.wide_as_nat5", "Prims.pow2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_add_distr", "FStar.Math.Lemmas.cancel_mul_mod", "FStar.Pervasives.assert_norm", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) #push-options "--z3rlimit 50" let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; } #pop-options val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) open FStar.Tactics.CanonCommSemiring #push-options "--z3cliopt smt.arith.nl=false" let lemma_div248_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc (==) { wide_as_nat5 x / pow2 248; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; } #pop-options val lemma_div248_x5: x5:uint64 -> Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) let lemma_div248_x5 x5 = assert_norm (pow2 32 * pow2 24 = pow2 56) val lemma_div248_x6: x6:uint64 -> Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) let lemma_div248_x6 x6 = calc (==) { pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) } v x6 * pow2 88; } val lemma_div248_x7: x7:uint64 -> Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) let lemma_div248_x7 x7 = calc (==) { pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) } v x7 * pow2 144; } val lemma_div248_x8: x8:uint64 -> Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) let lemma_div248_x8 x8 = calc (==) { pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) } v x8 * pow2 200; } val lemma_div248_x9: x9:uint64{v x9 < pow2 24} -> Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) let lemma_div248_x9 x9 = calc (==) { pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 24) } pow2 32 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 256; } val lemma_wide_as_nat_pow512: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 24)) let lemma_wide_as_nat_pow512 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 8 = pow2 512); FStar.Math.Lemmas.pow2_minus 512 504; assert (v x9 < pow2 8); assert_norm (pow2 8 < pow2 24) val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div248 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow512 x; assert (v x9 < pow2 24); calc (==) { (let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x5 x5; lemma_div248_x6 x6 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x7 x7; lemma_div248_x8 x8 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x9 x9 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; (==) { lemma_div248_aux x } wide_as_nat5 x / pow2 248; } #pop-options val lemma_add_modq5: x:qelem5 -> y:qelem5 -> t:qelem5 -> Lemma (requires qelem_fits5 x (1, 1, 1, 1, 1) /\ qelem_fits5 y (1, 1, 1, 1, 1) /\ qelem_fits5 t (1, 1, 1, 1, 1) /\ as_nat5 x < S.q /\ as_nat5 y < S.q /\ as_nat5 t == as_nat5 x + as_nat5 y) (ensures (let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) let lemma_add_modq5 x y t = assert (as_nat5 t == as_nat5 x + as_nat5 y); let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in assert (res < S.q); if as_nat5 t >= S.q then ( FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q; assert (res % S.q == as_nat5 t % S.q)) else assert (res % S.q == as_nat5 t % S.q); FStar.Math.Lemmas.small_mod res S.q val lemma_wide_as_nat_pow528: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 40)) let lemma_wide_as_nat_pow528 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 24 = pow2 528); FStar.Math.Lemmas.pow2_minus 528 504; assert (v x9 < pow2 24); assert_norm (pow2 24 < pow2 40) #push-options "--z3cliopt smt.arith.nl=false" val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240)) let lemma_div264_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 264 == pow2 224 * pow2 40); assert_norm (pow2 56 == pow2 16 * pow2 40); assert_norm (pow2 112 == pow2 72 * pow2 40); assert_norm (pow2 168 == pow2 128 * pow2 40); assert_norm (pow2 224 == pow2 184 * pow2 40); assert_norm (pow2 280 == pow2 240 * pow2 40); assert_norm (0 < pow2 40); calc (==) { wide_as_nat5 x / pow2 264; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) } (wide_as_nat5 x / pow2 224) / pow2 40; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) } (v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; } val lemma_div264_x5: x5:uint64 -> Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16) let lemma_div264_x5 x5 = assert_norm (0 < pow2 24); calc (==) { pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) } v x5 * pow2 16; } val lemma_div264_x6: x6:uint64 -> Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72) let lemma_div264_x6 x6 = calc (==) { pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72; (==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) } v x6 * pow2 72; } val lemma_div264_x7: x7:uint64 -> Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128) let lemma_div264_x7 x7 = calc (==) { pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128; (==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) } v x7 * pow2 128; } val lemma_div264_x8: x8:uint64 -> Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184) let lemma_div264_x8 x8 = calc (==) { pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184; (==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) } v x8 * pow2 184; } val lemma_div264_x9: x9:uint64{v x9 < pow2 40} -> Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240) let lemma_div264_x9 x9 = calc (==) { pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 40) } pow2 16 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 240; } val lemma_div264: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div264 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow528 x; assert (v x9 < pow2 40); calc (==) { (let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x5 x5; lemma_div264_x6 x6 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x7 x7; lemma_div264_x8 x8 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x9 x9 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; (==) { lemma_div264_aux x } wide_as_nat5 x / pow2 264; } #pop-options #pop-options // "--z3cliopt smt.arith.nl=false" val lemma_mod_264_aux: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in (wide_as_nat5 t) % pow2 264 == (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_264_aux: t:qelem_wide5 -> Lemma (requires qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = t in (wide_as_nat5 t) % pow2 264 == (v t0 + v t1 * pow2 56 + v t2 * pow2 112 + v t3 * pow2 168 + v t4 * pow2 224) % pow2 264))
[]
Hacl.Spec.BignumQ.Lemmas.lemma_mod_264_aux
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let _ = t in (let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ t0 t1 t2 t3 t4 _ _ _ _ _ = _ in Hacl.Spec.BignumQ.Definitions.wide_as_nat5 t % Prims.pow2 264 == (Lib.IntTypes.v t0 + Lib.IntTypes.v t1 * Prims.pow2 56 + Lib.IntTypes.v t2 * Prims.pow2 112 + Lib.IntTypes.v t3 * Prims.pow2 168 + Lib.IntTypes.v t4 * Prims.pow2 224) % Prims.pow2 264) <: Type0))
{ "end_col": 3, "end_line": 492, "start_col": 25, "start_line": 471 }
FStar.Pervasives.Lemma
val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div248 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow512 x; assert (v x9 < pow2 24); calc (==) { (let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x5 x5; lemma_div248_x6 x6 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x7 x7; lemma_div248_x8 x8 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x9 x9 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; (==) { lemma_div248_aux x } wide_as_nat5 x / pow2 248; }
val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) let lemma_div248 x =
false
null
true
let x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 = x in lemma_wide_as_nat_pow512 x; assert (v x9 < pow2 24); calc ( == ) { (let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); ( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ -> (Tactics.norm [delta; primops]; int_semiring ())) } v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) + (v x5 / pow2 24) * pow2 56 + (pow2 32 * (v x6 % pow2 24)) * pow2 56 + (v x6 / pow2 24) * pow2 112 + (pow2 32 * (v x7 % pow2 24)) * pow2 112 + (v x7 / pow2 24) * pow2 168 + (pow2 32 * (v x8 % pow2 24)) * pow2 168 + (v x8 / pow2 24) * pow2 224 + (pow2 32 * (v x9 % pow2 24)) * pow2 224; ( == ) { (lemma_div248_x5 x5; lemma_div248_x6 x6) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + (pow2 32 * (v x7 % pow2 24)) * pow2 112 + (v x7 / pow2 24) * pow2 168 + (pow2 32 * (v x8 % pow2 24)) * pow2 168 + (v x8 / pow2 24) * pow2 224 + (pow2 32 * (v x9 % pow2 24)) * pow2 224; ( == ) { (lemma_div248_x7 x7; lemma_div248_x8 x8) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + (pow2 32 * (v x9 % pow2 24)) * pow2 224; ( == ) { lemma_div248_x9 x9 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; ( == ) { lemma_div248_aux x } wide_as_nat5 x / pow2 248; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.BignumQ.Definitions.qelem_wide5", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Hacl.Spec.BignumQ.Definitions.wide_as_nat5", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Tactics.CanonCommSemiring.semiring_reflect", "FStar.Tactics.CanonCommSemiring.int_cr", "FStar.Pervasives.Native.Mktuple2", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.nat", "FStar.Pervasives.Native.snd", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.sec_int_v", "FStar.Reflection.V2.Data.var", "FStar.Tactics.CanonCommSemiring.Pplus", "FStar.Tactics.CanonCommSemiring.Pvar", "FStar.Tactics.CanonCommSemiring.Pmult", "Prims.l_and", "Prims.bool", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Prims.op_Multiply", "Prims.squash", "Hacl.Spec.BignumQ.Lemmas.lemma_div248_x6", "Hacl.Spec.BignumQ.Lemmas.lemma_div248_x5", "Hacl.Spec.BignumQ.Lemmas.lemma_div248_x8", "Hacl.Spec.BignumQ.Lemmas.lemma_div248_x7", "Hacl.Spec.BignumQ.Lemmas.lemma_div248_x9", "Hacl.Spec.BignumQ.Lemmas.lemma_div248_aux", "Prims._assert", "Prims.op_LessThan", "Hacl.Spec.BignumQ.Lemmas.lemma_wide_as_nat_pow512" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) #push-options "--z3rlimit 50" let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; } #pop-options val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) open FStar.Tactics.CanonCommSemiring #push-options "--z3cliopt smt.arith.nl=false" let lemma_div248_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc (==) { wide_as_nat5 x / pow2 248; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; } #pop-options val lemma_div248_x5: x5:uint64 -> Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) let lemma_div248_x5 x5 = assert_norm (pow2 32 * pow2 24 = pow2 56) val lemma_div248_x6: x6:uint64 -> Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) let lemma_div248_x6 x6 = calc (==) { pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) } v x6 * pow2 88; } val lemma_div248_x7: x7:uint64 -> Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) let lemma_div248_x7 x7 = calc (==) { pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) } v x7 * pow2 144; } val lemma_div248_x8: x8:uint64 -> Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) let lemma_div248_x8 x8 = calc (==) { pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) } v x8 * pow2 200; } val lemma_div248_x9: x9:uint64{v x9 < pow2 24} -> Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) let lemma_div248_x9 x9 = calc (==) { pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 24) } pow2 32 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 256; } val lemma_wide_as_nat_pow512: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 24)) let lemma_wide_as_nat_pow512 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 8 = pow2 512); FStar.Math.Lemmas.pow2_minus 512 504; assert (v x9 < pow2 8); assert_norm (pow2 8 < pow2 24) val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
[]
Hacl.Spec.BignumQ.Lemmas.lemma_div248
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x < Prims.pow2 512) (ensures (let _ = x in (let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ _ _ _ _ x4 x5 x6 x7 x8 x9 = _ in let z0 = Lib.IntTypes.v x4 / Prims.pow2 24 + Prims.pow2 32 * (Lib.IntTypes.v x5 % Prims.pow2 24) in let z1 = Lib.IntTypes.v x5 / Prims.pow2 24 + Prims.pow2 32 * (Lib.IntTypes.v x6 % Prims.pow2 24) in let z2 = Lib.IntTypes.v x6 / Prims.pow2 24 + Prims.pow2 32 * (Lib.IntTypes.v x7 % Prims.pow2 24) in let z3 = Lib.IntTypes.v x7 / Prims.pow2 24 + Prims.pow2 32 * (Lib.IntTypes.v x8 % Prims.pow2 24) in let z4 = Lib.IntTypes.v x8 / Prims.pow2 24 + Prims.pow2 32 * (Lib.IntTypes.v x9 % Prims.pow2 24) in Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x / Prims.pow2 248 == z0 + z1 * Prims.pow2 56 + z2 * Prims.pow2 112 + z3 * Prims.pow2 168 + z4 * Prims.pow2 224) <: Type0))
{ "end_col": 3, "end_line": 270, "start_col": 20, "start_line": 240 }
FStar.Pervasives.Lemma
val lemma_div264: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommSemiring", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.BignumQ", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div264 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow528 x; assert (v x9 < pow2 40); calc (==) { (let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 + pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x5 x5; lemma_div264_x6 x6 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 + pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x7 x7; lemma_div264_x8 x8 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { lemma_div264_x9 x9 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; (==) { lemma_div264_aux x } wide_as_nat5 x / pow2 264; }
val lemma_div264: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) let lemma_div264 x =
false
null
true
let x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 = x in lemma_wide_as_nat_pow528 x; assert (v x9 < pow2 40); calc ( == ) { (let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); ( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ -> (Tactics.norm [delta; primops]; int_semiring ())) } v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) + (v x5 / pow2 40) * pow2 56 + (pow2 16 * (v x6 % pow2 40)) * pow2 56 + (v x6 / pow2 40) * pow2 112 + (pow2 16 * (v x7 % pow2 40)) * pow2 112 + (v x7 / pow2 40) * pow2 168 + (pow2 16 * (v x8 % pow2 40)) * pow2 168 + (v x8 / pow2 40) * pow2 224 + (pow2 16 * (v x9 % pow2 40)) * pow2 224; ( == ) { (lemma_div264_x5 x5; lemma_div264_x6 x6) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + (pow2 16 * (v x7 % pow2 40)) * pow2 112 + (v x7 / pow2 40) * pow2 168 + (pow2 16 * (v x8 % pow2 40)) * pow2 168 + (v x8 / pow2 40) * pow2 224 + (pow2 16 * (v x9 % pow2 40)) * pow2 224; ( == ) { (lemma_div264_x7 x7; lemma_div264_x8 x8) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + (pow2 16 * (v x9 % pow2 40)) * pow2 224; ( == ) { lemma_div264_x9 x9 } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; ( == ) { lemma_div264_aux x } wide_as_nat5 x / pow2 264; }
{ "checked_file": "Hacl.Spec.BignumQ.Lemmas.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.BignumQ.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.BignumQ.Definitions.qelem_wide5", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Hacl.Spec.BignumQ.Definitions.wide_as_nat5", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Tactics.CanonCommSemiring.semiring_reflect", "FStar.Tactics.CanonCommSemiring.int_cr", "FStar.Pervasives.Native.Mktuple2", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.nat", "FStar.Pervasives.Native.snd", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.sec_int_v", "FStar.Reflection.V2.Data.var", "FStar.Tactics.CanonCommSemiring.Pplus", "FStar.Tactics.CanonCommSemiring.Pvar", "FStar.Tactics.CanonCommSemiring.Pmult", "Prims.l_and", "Prims.bool", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Prims.op_Multiply", "Prims.squash", "Hacl.Spec.BignumQ.Lemmas.lemma_div264_x6", "Hacl.Spec.BignumQ.Lemmas.lemma_div264_x5", "Hacl.Spec.BignumQ.Lemmas.lemma_div264_x8", "Hacl.Spec.BignumQ.Lemmas.lemma_div264_x7", "Hacl.Spec.BignumQ.Lemmas.lemma_div264_x9", "Hacl.Spec.BignumQ.Lemmas.lemma_div264_aux", "Prims._assert", "Prims.op_LessThan", "Hacl.Spec.BignumQ.Lemmas.lemma_wide_as_nat_pow528" ]
[]
module Hacl.Spec.BignumQ.Lemmas open FStar.Tactics.CanonCommSemiring open FStar.Mul open Lib.IntTypes module S = Spec.Ed25519 include Hacl.Spec.BignumQ.Definitions let feq (#a #b:Type) (f:(a -> b)) (x y:a) : Lemma (requires x == y) (ensures f x == f y) = () let eq_eq2 (#a:eqtype) (x y:a) : Lemma (requires x = y) (ensures x == y) = () val lemma_mul_lt:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < b /\ c < d) (ensures a * c < b * d) let lemma_mul_lt a b c d = () val lemma_as_nat5: f:qelem5 -> Lemma (requires qelem_fits5 f (1, 1, 1, 1, 1)) (ensures as_nat5 f < pow2 280) let lemma_as_nat5 f = //let (f0, f1, f2, f3, f4) = f in //assert (as_nat5 f == v f0 + v f1 * pow56 + v f2 * pow112 + v f3 * pow168 + v f4 * pow224); assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) val lemma_choose_step: bit:uint64{v bit <= 1} -> x:uint64 -> y:uint64 -> Lemma (let mask = bit -. u64 1 in let z = x ^. (mask &. (x ^. y)) in if v bit = 1 then z == x else z == y) let lemma_choose_step bit p1 p2 = let mask = bit -. u64 1 in assert (v bit == 0 ==> v mask == pow2 64 - 1); assert (v bit == 1 ==> v mask == 0); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == 0); assert (v bit == 0 ==> v dummy == v (p1 ^. p2)); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then u64 0 else (p1 ^. p2))); logxor_lemma p1 p2 val lemma_subm_conditional: x0:nat -> x1:nat -> x2:nat -> x3:nat -> x4:nat -> y0:nat -> y1:nat -> y2:nat -> y3:nat -> y4:nat -> b0:nat -> b1:nat -> b2:nat -> b3:nat -> b4:nat -> Lemma ( x0 - y0 + b0 * pow2 56 + (x1 - y1 - b0 + b1 * pow2 56) * pow2 56 + (x2 - y2 - b1 + b2 * pow2 56) * pow2 112 + (x3 - y3 - b2 + b3 * pow2 56) * pow2 168 + (x4 - y4 - b3 + b4 * pow2 56) * pow2 224 == (x0 + x1 * pow2 56 + x2 * pow2 112 + x3 * pow2 168 + x4 * pow2 224) - (y0 + y1 * pow2 56 + y2 * pow2 112 + y3 * pow2 168 + y4 * pow2 224) + b4 * pow2 280) #push-options "--z3rlimit 50" let lemma_subm_conditional x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 b0 b1 b2 b3 b4 = assert_norm (pow2 56 * pow2 56 = pow2 112); assert_norm (pow2 56 * pow2 112 = pow2 168); assert_norm (pow2 56 * pow2 168 = pow2 224); assert_norm (pow2 56 * pow2 224 = pow2 280) #pop-options val lemma_div224: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 224 == v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280)) #push-options "--z3rlimit 50" let lemma_div224 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert (wide_as_nat5 x == v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224 + v x5 * pow2 280 + v x6 * pow2 336 + v x7 * pow2 392 + v x8 * pow2 448 + v x9 * pow2 504); assert_norm (pow2 56 * pow2 224 == pow2 280); assert_norm (pow2 112 * pow2 224 == pow2 336); assert_norm (pow2 168 * pow2 224 == pow2 392); assert_norm (pow2 224 * pow2 224 == pow2 448); assert_norm (pow2 280 * pow2 224 == pow2 504); calc (==) { wide_as_nat5 x / pow2 224; (==) { } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) * pow2 224) / pow2 224; (==) { FStar.Math.Lemmas.lemma_div_plus (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) (pow2 224) } (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) / pow2 224 + v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; (==) { FStar.Math.Lemmas.small_division_lemma_1 (v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168) (pow2 224) } v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280; } #pop-options val lemma_div248_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 248 == v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256)) open FStar.Tactics.CanonCommSemiring #push-options "--z3cliopt smt.arith.nl=false" let lemma_div248_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 248 == pow2 224 * pow2 24); assert_norm (pow2 56 == pow2 32 * pow2 24); assert_norm (pow2 112 == pow2 88 * pow2 24); assert_norm (pow2 168 == pow2 144 * pow2 24); assert_norm (pow2 224 == pow2 200 * pow2 24); assert_norm (pow2 280 == pow2 256 * pow2 24); assert_norm (0 < pow2 24); calc (==) { wide_as_nat5 x / pow2 248; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 24) } (wide_as_nat5 x / pow2 224) / pow2 24; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 24; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 24)); int_semiring ()) } (v x4 + (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) * pow2 24) / pow2 24; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256) (pow2 24) } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; } #pop-options val lemma_div248_x5: x5:uint64 -> Lemma ( pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 == v x5 * pow2 32) let lemma_div248_x5 x5 = assert_norm (pow2 32 * pow2 24 = pow2 56) val lemma_div248_x6: x6:uint64 -> Lemma (pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 == v x6 * pow2 88) let lemma_div248_x6 x6 = calc (==) { pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x6 / pow2 24) * pow2 24 + v x6 % pow2 24) * pow2 88; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x6) (pow2 24) } v x6 * pow2 88; } val lemma_div248_x7: x7:uint64 -> Lemma (pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 == v x7 * pow2 144) let lemma_div248_x7 x7 = calc (==) { pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x7 / pow2 24) * pow2 24 + v x7 % pow2 24) * pow2 144; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x7) (pow2 24) } v x7 * pow2 144; } val lemma_div248_x8: x8:uint64 -> Lemma (pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 == v x8 * pow2 200) let lemma_div248_x8 x8 = calc (==) { pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x8 / pow2 24) * pow2 24 + v x8 % pow2 24) * pow2 200; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x8) (pow2 24) } v x8 * pow2 200; } val lemma_div248_x9: x9:uint64{v x9 < pow2 24} -> Lemma (pow2 32 * (v x9 % pow2 24) * pow2 224 == v x9 * pow2 256) let lemma_div248_x9 x9 = calc (==) { pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 24) } pow2 32 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 256; } val lemma_wide_as_nat_pow512: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 24)) let lemma_wide_as_nat_pow512 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 8 = pow2 512); FStar.Math.Lemmas.pow2_minus 512 504; assert (v x9 < pow2 8); assert_norm (pow2 8 < pow2 24) val lemma_div248: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 512) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in wide_as_nat5 x / pow2 248 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224)) #push-options "--z3rlimit 50" let lemma_div248 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in lemma_wide_as_nat_pow512 x; assert (v x9 < pow2 24); calc (==) { (let z0 = v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) in let z1 = v x5 / pow2 24 + pow2 32 * (v x6 % pow2 24) in let z2 = v x6 / pow2 24 + pow2 32 * (v x7 % pow2 24) in let z3 = v x7 / pow2 24 + pow2 32 * (v x8 % pow2 24) in let z4 = v x8 / pow2 24 + pow2 32 * (v x9 % pow2 24) in z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224); (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x4 / pow2 24 + pow2 32 * (v x5 % pow2 24) + v x5 / pow2 24 * pow2 56 + pow2 32 * (v x6 % pow2 24) * pow2 56 + v x6 / pow2 24 * pow2 112 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x5 x5; lemma_div248_x6 x6 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + pow2 32 * (v x7 % pow2 24) * pow2 112 + v x7 / pow2 24 * pow2 168 + pow2 32 * (v x8 % pow2 24) * pow2 168 + v x8 / pow2 24 * pow2 224 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x7 x7; lemma_div248_x8 x8 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + pow2 32 * (v x9 % pow2 24) * pow2 224; (==) { lemma_div248_x9 x9 } v x4 / pow2 24 + v x5 * pow2 32 + v x6 * pow2 88 + v x7 * pow2 144 + v x8 * pow2 200 + v x9 * pow2 256; (==) { lemma_div248_aux x } wide_as_nat5 x / pow2 248; } #pop-options val lemma_add_modq5: x:qelem5 -> y:qelem5 -> t:qelem5 -> Lemma (requires qelem_fits5 x (1, 1, 1, 1, 1) /\ qelem_fits5 y (1, 1, 1, 1, 1) /\ qelem_fits5 t (1, 1, 1, 1, 1) /\ as_nat5 x < S.q /\ as_nat5 y < S.q /\ as_nat5 t == as_nat5 x + as_nat5 y) (ensures (let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in res < S.q /\ res == (as_nat5 x + as_nat5 y) % S.q)) let lemma_add_modq5 x y t = assert (as_nat5 t == as_nat5 x + as_nat5 y); let res = if as_nat5 t >= S.q then as_nat5 t - S.q else as_nat5 t in assert (res < S.q); if as_nat5 t >= S.q then ( FStar.Math.Lemmas.sub_div_mod_1 (as_nat5 t) S.q; assert (res % S.q == as_nat5 t % S.q)) else assert (res % S.q == as_nat5 t % S.q); FStar.Math.Lemmas.small_mod res S.q val lemma_wide_as_nat_pow528: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in v x9 < pow2 40)) let lemma_wide_as_nat_pow528 x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 504 * pow2 24 = pow2 528); FStar.Math.Lemmas.pow2_minus 528 504; assert (v x9 < pow2 24); assert_norm (pow2 24 < pow2 40) #push-options "--z3cliopt smt.arith.nl=false" val lemma_div264_aux: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in wide_as_nat5 x / pow2 264 == v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240)) let lemma_div264_aux x = let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in assert_norm (pow2 264 == pow2 224 * pow2 40); assert_norm (pow2 56 == pow2 16 * pow2 40); assert_norm (pow2 112 == pow2 72 * pow2 40); assert_norm (pow2 168 == pow2 128 * pow2 40); assert_norm (pow2 224 == pow2 184 * pow2 40); assert_norm (pow2 280 == pow2 240 * pow2 40); assert_norm (0 < pow2 40); calc (==) { wide_as_nat5 x / pow2 264; (==) { FStar.Math.Lemmas.division_multiplication_lemma (wide_as_nat5 x) (pow2 224) (pow2 40) } (wide_as_nat5 x / pow2 224) / pow2 40; (==) { lemma_div224 x } (v x4 + v x5 * pow2 56 + v x6 * pow2 112 + v x7 * pow2 168 + v x8 * pow2 224 + v x9 * pow2 280) / pow2 40; (==) { _ by (Tactics.mapply (`feq #int #int (fun x -> x / pow2 40)); int_semiring ()) } (v x4 + (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) * pow2 40) / pow2 40; (==) { FStar.Math.Lemmas.lemma_div_plus (v x4) (v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240) (pow2 40) } v x4 / pow2 40 + v x5 * pow2 16 + v x6 * pow2 72 + v x7 * pow2 128 + v x8 * pow2 184 + v x9 * pow2 240; } val lemma_div264_x5: x5:uint64 -> Lemma (pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56 == v x5 * pow2 16) let lemma_div264_x5 x5 = assert_norm (0 < pow2 24); calc (==) { pow2 16 * (v x5 % pow2 40) + v x5 / pow2 40 * pow2 56; (==) { _ by (Tactics.norm [delta_only [`%pow2]; primops]; int_semiring ()) } ((v x5 / pow2 40) * pow2 40 + v x5 % pow2 40) * pow2 16; (==) { FStar.Math.Lemmas.euclidean_division_definition (v x5) (pow2 40) } v x5 * pow2 16; } val lemma_div264_x6: x6:uint64 -> Lemma (pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112 == v x6 * pow2 72) let lemma_div264_x6 x6 = calc (==) { pow2 16 * (v x6 % pow2 40) * pow2 56 + v x6 / pow2 40 * pow2 112; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x6 / pow2 40) * pow2 40 + v x6 % pow2 40) * pow2 72; (==) { Math.Lemmas.euclidean_division_definition (v x6) (pow2 40) } v x6 * pow2 72; } val lemma_div264_x7: x7:uint64 -> Lemma (pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168 == v x7 * pow2 128) let lemma_div264_x7 x7 = calc (==) { pow2 16 * (v x7 % pow2 40) * pow2 112 + v x7 / pow2 40 * pow2 168; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x7 / pow2 40) * pow2 40 + v x7 % pow2 40) * pow2 128; (==) { Math.Lemmas.euclidean_division_definition (v x7) (pow2 40) } v x7 * pow2 128; } val lemma_div264_x8: x8:uint64 -> Lemma (pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224 == v x8 * pow2 184) let lemma_div264_x8 x8 = calc (==) { pow2 16 * (v x8 % pow2 40) * pow2 168 + v x8 / pow2 40 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } ((v x8 / pow2 40) * pow2 40 + v x8 % pow2 40) * pow2 184; (==) { Math.Lemmas.euclidean_division_definition (v x8) (pow2 40) } v x8 * pow2 184; } val lemma_div264_x9: x9:uint64{v x9 < pow2 40} -> Lemma (pow2 16 * (v x9 % pow2 40) * pow2 224 == v x9 * pow2 240) let lemma_div264_x9 x9 = calc (==) { pow2 16 * (v x9 % pow2 40) * pow2 224; (==) { Math.Lemmas.small_mod (v x9) (pow2 40) } pow2 16 * v x9 * pow2 224; (==) { _ by (Tactics.norm [delta; primops]; int_semiring ()) } v x9 * pow2 240; } val lemma_div264: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
false
false
Hacl.Spec.BignumQ.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div264: x:qelem_wide5 -> Lemma (requires qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ wide_as_nat5 x < pow2 528) (ensures (let (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x in let z0 = v x4 / pow2 40 + pow2 16 * (v x5 % pow2 40) in let z1 = v x5 / pow2 40 + pow2 16 * (v x6 % pow2 40) in let z2 = v x6 / pow2 40 + pow2 16 * (v x7 % pow2 40) in let z3 = v x7 / pow2 40 + pow2 16 * (v x8 % pow2 40) in let z4 = v x8 / pow2 40 + pow2 16 * (v x9 % pow2 40) in wide_as_nat5 x / pow2 264 == z0 + z1 * pow2 56 + z2 * pow2 112 + z3 * pow2 168 + z4 * pow2 224))
[]
Hacl.Spec.BignumQ.Lemmas.lemma_div264
{ "file_name": "code/ed25519/Hacl.Spec.BignumQ.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.BignumQ.Definitions.qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\ Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x < Prims.pow2 528) (ensures (let _ = x in (let FStar.Pervasives.Native.Mktuple10 #_ #_ #_ #_ #_ #_ #_ #_ #_ #_ _ _ _ _ x4 x5 x6 x7 x8 x9 = _ in let z0 = Lib.IntTypes.v x4 / Prims.pow2 40 + Prims.pow2 16 * (Lib.IntTypes.v x5 % Prims.pow2 40) in let z1 = Lib.IntTypes.v x5 / Prims.pow2 40 + Prims.pow2 16 * (Lib.IntTypes.v x6 % Prims.pow2 40) in let z2 = Lib.IntTypes.v x6 / Prims.pow2 40 + Prims.pow2 16 * (Lib.IntTypes.v x7 % Prims.pow2 40) in let z3 = Lib.IntTypes.v x7 / Prims.pow2 40 + Prims.pow2 16 * (Lib.IntTypes.v x8 % Prims.pow2 40) in let z4 = Lib.IntTypes.v x8 / Prims.pow2 40 + Prims.pow2 16 * (Lib.IntTypes.v x9 % Prims.pow2 40) in Hacl.Spec.BignumQ.Definitions.wide_as_nat5 x / Prims.pow2 264 == z0 + z1 * Prims.pow2 56 + z2 * Prims.pow2 112 + z3 * Prims.pow2 168 + z4 * Prims.pow2 224) <: Type0))
{ "end_col": 3, "end_line": 456, "start_col": 20, "start_line": 426 }
Prims.Tot
val decompose_int32le_3 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b3: nat{0 <= b3 /\ b3 < 256})
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216
val decompose_int32le_3 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b3: nat{0 <= b3 /\ b3 < 256}) let decompose_int32le_3 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b3: nat{0 <= b3 /\ b3 < 256}) =
false
null
false
v / 16777216
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Division" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val decompose_int32le_3 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b3: nat{0 <= b3 /\ b3 < 256})
[]
LowParse.Low.ConstInt32.decompose_int32le_3
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: Prims.nat{0 <= v /\ v < 4294967296} -> b3: Prims.nat{0 <= b3 /\ b3 < 256}
{ "end_col": 14, "end_line": 83, "start_col": 2, "start_line": 83 }
Prims.Tot
val decompose_int32le_0 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b0: nat{0 <= b0 /\ b0 < 256})
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256
val decompose_int32le_0 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b0: nat{0 <= b0 /\ b0 < 256}) let decompose_int32le_0 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b0: nat{0 <= b0 /\ b0 < 256}) =
false
null
false
v % 256
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Modulus" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val decompose_int32le_0 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b0: nat{0 <= b0 /\ b0 < 256})
[]
LowParse.Low.ConstInt32.decompose_int32le_0
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: Prims.nat{0 <= v /\ v < 4294967296} -> b0: Prims.nat{0 <= b0 /\ b0 < 256}
{ "end_col": 9, "end_line": 65, "start_col": 2, "start_line": 65 }
Prims.Tot
val decompose_int32le_1 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b1: nat{0 <= b1 /\ b1 < 256})
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256
val decompose_int32le_1 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b1: nat{0 <= b1 /\ b1 < 256}) let decompose_int32le_1 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b1: nat{0 <= b1 /\ b1 < 256}) =
false
null
false
v / 256 % 256
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Modulus", "Prims.op_Division" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val decompose_int32le_1 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b1: nat{0 <= b1 /\ b1 < 256})
[]
LowParse.Low.ConstInt32.decompose_int32le_1
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: Prims.nat{0 <= v /\ v < 4294967296} -> b1: Prims.nat{0 <= b1 /\ b1 < 256}
{ "end_col": 15, "end_line": 71, "start_col": 2, "start_line": 71 }
Prims.Tot
val compose_int32le (b0: nat{0 <= b0 /\ b0 < 256}) (b1: nat{0 <= b1 /\ b1 < 256}) (b2: nat{0 <= b2 /\ b2 < 256}) (b3: nat{0 <= b3 /\ b3 < 256}) : Tot (v: nat{0 <= v /\ v < 4294967296})
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } ) : Tot (v: nat { 0 <= v /\ v < 4294967296 } ) = b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3))
val compose_int32le (b0: nat{0 <= b0 /\ b0 < 256}) (b1: nat{0 <= b1 /\ b1 < 256}) (b2: nat{0 <= b2 /\ b2 < 256}) (b3: nat{0 <= b3 /\ b3 < 256}) : Tot (v: nat{0 <= v /\ v < 4294967296}) let compose_int32le (b0: nat{0 <= b0 /\ b0 < 256}) (b1: nat{0 <= b1 /\ b1 < 256}) (b2: nat{0 <= b2 /\ b2 < 256}) (b3: nat{0 <= b3 /\ b3 < 256}) : Tot (v: nat{0 <= v /\ v < 4294967296}) =
false
null
false
b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3))
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Mul.op_Star" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216 let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compose_int32le (b0: nat{0 <= b0 /\ b0 < 256}) (b1: nat{0 <= b1 /\ b1 < 256}) (b2: nat{0 <= b2 /\ b2 < 256}) (b3: nat{0 <= b3 /\ b3 < 256}) : Tot (v: nat{0 <= v /\ v < 4294967296})
[]
LowParse.Low.ConstInt32.compose_int32le
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
b0: Prims.nat{0 <= b0 /\ b0 < 256} -> b1: Prims.nat{0 <= b1 /\ b1 < 256} -> b2: Prims.nat{0 <= b2 /\ b2 < 256} -> b3: Prims.nat{0 <= b3 /\ b3 < 256} -> v: Prims.nat{0 <= v /\ v < 4294967296}
{ "end_col": 32, "end_line": 94, "start_col": 2, "start_line": 91 }
Prims.Tot
val decompose_int32le_2 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b2: nat{0 <= b2 /\ b2 < 256})
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256
val decompose_int32le_2 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b2: nat{0 <= b2 /\ b2 < 256}) let decompose_int32le_2 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b2: nat{0 <= b2 /\ b2 < 256}) =
false
null
false
v / 65536 % 256
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Modulus", "Prims.op_Division" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val decompose_int32le_2 (v: nat{0 <= v /\ v < 4294967296}) : Tot (b2: nat{0 <= b2 /\ b2 < 256})
[]
LowParse.Low.ConstInt32.decompose_int32le_2
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: Prims.nat{0 <= v /\ v < 4294967296} -> b2: Prims.nat{0 <= b2 /\ b2 < 256}
{ "end_col": 17, "end_line": 77, "start_col": 2, "start_line": 77 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compare_by_bytes (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = a0 = b0 && a1 = b1 && a2 = b2 && a3 = b3
let compare_by_bytes (a0: U8.t{0 <= U8.v a0 /\ U8.v a0 < 256}) (a1: U8.t{0 <= U8.v a1 /\ U8.v a1 < 256}) (a2: U8.t{0 <= U8.v a2 /\ U8.v a2 < 256}) (a3: U8.t{0 <= U8.v a3 /\ U8.v a3 < 256}) (b0: U8.t{0 <= U8.v b0 /\ U8.v b0 < 256}) (b1: U8.t{0 <= U8.v b1 /\ U8.v b1 < 256}) (b2: U8.t{0 <= U8.v b2 /\ U8.v b2 < 256}) (b3: U8.t{0 <= U8.v b3 /\ U8.v b3 < 256}) =
false
null
false
a0 = b0 && a1 = b1 && a2 = b2 && a3 = b3
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "FStar.UInt8.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.v", "Prims.op_LessThan", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.l_or", "Prims.bool" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216 let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } ) : Tot (v: nat { 0 <= v /\ v < 4294967296 } ) = b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3)) #push-options "--z3rlimit 16" let decompose_compose_equiv (v: nat { 0 <= v /\ v < 4294967296 } ) : Lemma (compose_int32le (decompose_int32le_0 v) (decompose_int32le_1 v) (decompose_int32le_2 v) (decompose_int32le_3 v) == v) = () #pop-options inline_for_extraction let compare_by_bytes (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compare_by_bytes : a0: FStar.UInt8.t{0 <= FStar.UInt8.v a0 /\ FStar.UInt8.v a0 < 256} -> a1: FStar.UInt8.t{0 <= FStar.UInt8.v a1 /\ FStar.UInt8.v a1 < 256} -> a2: FStar.UInt8.t{0 <= FStar.UInt8.v a2 /\ FStar.UInt8.v a2 < 256} -> a3: FStar.UInt8.t{0 <= FStar.UInt8.v a3 /\ FStar.UInt8.v a3 < 256} -> b0: FStar.UInt8.t{0 <= FStar.UInt8.v b0 /\ FStar.UInt8.v b0 < 256} -> b1: FStar.UInt8.t{0 <= FStar.UInt8.v b1 /\ FStar.UInt8.v b1 < 256} -> b2: FStar.UInt8.t{0 <= FStar.UInt8.v b2 /\ FStar.UInt8.v b2 < 256} -> b3: FStar.UInt8.t{0 <= FStar.UInt8.v b3 /\ FStar.UInt8.v b3 < 256} -> Prims.bool
[]
LowParse.Low.ConstInt32.compare_by_bytes
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
a0: FStar.UInt8.t{0 <= FStar.UInt8.v a0 /\ FStar.UInt8.v a0 < 256} -> a1: FStar.UInt8.t{0 <= FStar.UInt8.v a1 /\ FStar.UInt8.v a1 < 256} -> a2: FStar.UInt8.t{0 <= FStar.UInt8.v a2 /\ FStar.UInt8.v a2 < 256} -> a3: FStar.UInt8.t{0 <= FStar.UInt8.v a3 /\ FStar.UInt8.v a3 < 256} -> b0: FStar.UInt8.t{0 <= FStar.UInt8.v b0 /\ FStar.UInt8.v b0 < 256} -> b1: FStar.UInt8.t{0 <= FStar.UInt8.v b1 /\ FStar.UInt8.v b1 < 256} -> b2: FStar.UInt8.t{0 <= FStar.UInt8.v b2 /\ FStar.UInt8.v b2 < 256} -> b3: FStar.UInt8.t{0 <= FStar.UInt8.v b3 /\ FStar.UInt8.v b3 < 256} -> Prims.bool
{ "end_col": 42, "end_line": 115, "start_col": 2, "start_line": 115 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compare_by_bytes' (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = (compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3)) = (compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3))
let compare_by_bytes' (a0: U8.t{0 <= U8.v a0 /\ U8.v a0 < 256}) (a1: U8.t{0 <= U8.v a1 /\ U8.v a1 < 256}) (a2: U8.t{0 <= U8.v a2 /\ U8.v a2 < 256}) (a3: U8.t{0 <= U8.v a3 /\ U8.v a3 < 256}) (b0: U8.t{0 <= U8.v b0 /\ U8.v b0 < 256}) (b1: U8.t{0 <= U8.v b1 /\ U8.v b1 < 256}) (b2: U8.t{0 <= U8.v b2 /\ U8.v b2 < 256}) (b3: U8.t{0 <= U8.v b3 /\ U8.v b3 < 256}) =
false
null
false
(compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3)) = (compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3))
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "FStar.UInt8.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.v", "Prims.op_LessThan", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "LowParse.Low.ConstInt32.compose_int32le", "Prims.bool" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216 let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } ) : Tot (v: nat { 0 <= v /\ v < 4294967296 } ) = b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3)) #push-options "--z3rlimit 16" let decompose_compose_equiv (v: nat { 0 <= v /\ v < 4294967296 } ) : Lemma (compose_int32le (decompose_int32le_0 v) (decompose_int32le_1 v) (decompose_int32le_2 v) (decompose_int32le_3 v) == v) = () #pop-options inline_for_extraction let compare_by_bytes (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = a0 = b0 && a1 = b1 && a2 = b2 && a3 = b3 let compare_by_bytes' (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compare_by_bytes' : a0: FStar.UInt8.t{0 <= FStar.UInt8.v a0 /\ FStar.UInt8.v a0 < 256} -> a1: FStar.UInt8.t{0 <= FStar.UInt8.v a1 /\ FStar.UInt8.v a1 < 256} -> a2: FStar.UInt8.t{0 <= FStar.UInt8.v a2 /\ FStar.UInt8.v a2 < 256} -> a3: FStar.UInt8.t{0 <= FStar.UInt8.v a3 /\ FStar.UInt8.v a3 < 256} -> b0: FStar.UInt8.t{0 <= FStar.UInt8.v b0 /\ FStar.UInt8.v b0 < 256} -> b1: FStar.UInt8.t{0 <= FStar.UInt8.v b1 /\ FStar.UInt8.v b1 < 256} -> b2: FStar.UInt8.t{0 <= FStar.UInt8.v b2 /\ FStar.UInt8.v b2 < 256} -> b3: FStar.UInt8.t{0 <= FStar.UInt8.v b3 /\ FStar.UInt8.v b3 < 256} -> Prims.bool
[]
LowParse.Low.ConstInt32.compare_by_bytes'
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
a0: FStar.UInt8.t{0 <= FStar.UInt8.v a0 /\ FStar.UInt8.v a0 < 256} -> a1: FStar.UInt8.t{0 <= FStar.UInt8.v a1 /\ FStar.UInt8.v a1 < 256} -> a2: FStar.UInt8.t{0 <= FStar.UInt8.v a2 /\ FStar.UInt8.v a2 < 256} -> a3: FStar.UInt8.t{0 <= FStar.UInt8.v a3 /\ FStar.UInt8.v a3 < 256} -> b0: FStar.UInt8.t{0 <= FStar.UInt8.v b0 /\ FStar.UInt8.v b0 < 256} -> b1: FStar.UInt8.t{0 <= FStar.UInt8.v b1 /\ FStar.UInt8.v b1 < 256} -> b2: FStar.UInt8.t{0 <= FStar.UInt8.v b2 /\ FStar.UInt8.v b2 < 256} -> b3: FStar.UInt8.t{0 <= FStar.UInt8.v b3 /\ FStar.UInt8.v b3 < 256} -> Prims.bool
{ "end_col": 59, "end_line": 127, "start_col": 2, "start_line": 126 }
FStar.Pervasives.Lemma
val valid_constint32le (v: nat{0 <= v /\ v < 4294967296}) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos)
val valid_constint32le (v: nat{0 <= v /\ v < 4294967296}) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) let valid_constint32le (v: nat{0 <= v /\ v < 4294967296}) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) =
false
null
true
valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos)
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Spec.ConstInt32.parse_constint32le_unfold", "LowParse.Slice.bytes_of_slice_from", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.Base.total_constant_size_parser_kind", "LowParse.Spec.Int32le.parse_int32le", "LowParse.Spec.ConstInt32.parse_constint32le_kind", "LowParse.Spec.ConstInt32.constint32", "LowParse.Spec.ConstInt32.parse_constint32le", "Prims.l_True", "Prims.squash", "Prims.l_iff", "LowParse.Low.Base.Spec.valid", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "LowParse.Low.Base.Spec.contents", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_constint32le (v: nat{0 <= v /\ v < 4294967296}) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v))
[]
LowParse.Low.ConstInt32.valid_constint32le
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: Prims.nat{0 <= v /\ v < 4294967296} -> h: FStar.Monotonic.HyperStack.mem -> input: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (ensures LowParse.Low.Base.Spec.valid (LowParse.Spec.ConstInt32.parse_constint32le v) h input pos <==> LowParse.Low.Base.Spec.valid LowParse.Spec.Int32le.parse_int32le h input pos /\ FStar.UInt32.v (LowParse.Low.Base.Spec.contents LowParse.Spec.Int32le.parse_int32le h input pos) == v)
{ "end_col": 63, "end_line": 32, "start_col": 2, "start_line": 30 }
Prims.Tot
val read_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (leaf_reader (parse_constint32le (U32.v v)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v
val read_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (leaf_reader (parse_constint32le (U32.v v))) let read_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (leaf_reader (parse_constint32le (U32.v v))) =
false
null
false
fun #rrel #rel input pos -> v
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_LessThan", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "LowParse.Spec.ConstInt32.constint32", "LowParse.Low.Base.leaf_reader", "LowParse.Spec.ConstInt32.parse_constint32le_kind", "LowParse.Spec.ConstInt32.parse_constint32le" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val read_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (leaf_reader (parse_constint32le (U32.v v)))
[]
LowParse.Low.ConstInt32.read_constint32le
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: FStar.UInt32.t{0 <= FStar.UInt32.v v /\ FStar.UInt32.v v < 4294967296} -> LowParse.Low.Base.leaf_reader (LowParse.Spec.ConstInt32.parse_constint32le (FStar.UInt32.v v))
{ "end_col": 5, "end_line": 59, "start_col": 2, "start_line": 58 }
FStar.Pervasives.Lemma
val decompose_compare (v1: nat{0 <= v1 /\ v1 < 4294967296}) (v2: nat{0 <= v2 /\ v2 < 4294967296}) : Lemma ((v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2)) (U8.uint_to_t (decompose_int32le_3 v2))))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let decompose_compare (v1 : nat { 0 <= v1 /\ v1 < 4294967296 } ) (v2 : nat { 0 <= v2 /\ v2 < 4294967296 } ) : Lemma ( (v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2)) (U8.uint_to_t (decompose_int32le_3 v2)))) = let a0 = U8.uint_to_t (decompose_int32le_0 v1) in let a1 = U8.uint_to_t (decompose_int32le_1 v1) in let a2 = U8.uint_to_t (decompose_int32le_2 v1) in let a3 = U8.uint_to_t (decompose_int32le_3 v1) in let b0 = U8.uint_to_t (decompose_int32le_0 v2) in let b1 = U8.uint_to_t (decompose_int32le_1 v2) in let b2 = U8.uint_to_t (decompose_int32le_2 v2) in let b3 = U8.uint_to_t (decompose_int32le_3 v2) in compare_by_bytes_equiv a0 a1 a2 a3 b0 b1 b2 b3; decompose_compose_equiv v1; decompose_compose_equiv v2
val decompose_compare (v1: nat{0 <= v1 /\ v1 < 4294967296}) (v2: nat{0 <= v2 /\ v2 < 4294967296}) : Lemma ((v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2)) (U8.uint_to_t (decompose_int32le_3 v2)))) let decompose_compare (v1: nat{0 <= v1 /\ v1 < 4294967296}) (v2: nat{0 <= v2 /\ v2 < 4294967296}) : Lemma ((v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2)) (U8.uint_to_t (decompose_int32le_3 v2)))) =
false
null
true
let a0 = U8.uint_to_t (decompose_int32le_0 v1) in let a1 = U8.uint_to_t (decompose_int32le_1 v1) in let a2 = U8.uint_to_t (decompose_int32le_2 v1) in let a3 = U8.uint_to_t (decompose_int32le_3 v1) in let b0 = U8.uint_to_t (decompose_int32le_0 v2) in let b1 = U8.uint_to_t (decompose_int32le_1 v2) in let b2 = U8.uint_to_t (decompose_int32le_2 v2) in let b3 = U8.uint_to_t (decompose_int32le_3 v2) in compare_by_bytes_equiv a0 a1 a2 a3 b0 b1 b2 b3; decompose_compose_equiv v1; decompose_compose_equiv v2
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Low.ConstInt32.decompose_compose_equiv", "Prims.unit", "LowParse.Low.ConstInt32.compare_by_bytes_equiv", "FStar.UInt8.t", "FStar.UInt8.uint_to_t", "LowParse.Low.ConstInt32.decompose_int32le_3", "LowParse.Low.ConstInt32.decompose_int32le_2", "LowParse.Low.ConstInt32.decompose_int32le_1", "LowParse.Low.ConstInt32.decompose_int32le_0", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "Prims.op_Equality", "Prims.l_or", "LowParse.Low.ConstInt32.compare_by_bytes", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216 let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } ) : Tot (v: nat { 0 <= v /\ v < 4294967296 } ) = b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3)) #push-options "--z3rlimit 16" let decompose_compose_equiv (v: nat { 0 <= v /\ v < 4294967296 } ) : Lemma (compose_int32le (decompose_int32le_0 v) (decompose_int32le_1 v) (decompose_int32le_2 v) (decompose_int32le_3 v) == v) = () #pop-options inline_for_extraction let compare_by_bytes (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = a0 = b0 && a1 = b1 && a2 = b2 && a3 = b3 let compare_by_bytes' (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = (compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3)) = (compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3)) #push-options "--max_fuel 5 --z3rlimit 64" let compare_by_bytes_equiv (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3) = let a = compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3) in let b = compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3) in decompose_compose_equiv a; decompose_compose_equiv b #pop-options let decompose_compare (v1 : nat { 0 <= v1 /\ v1 < 4294967296 } ) (v2 : nat { 0 <= v2 /\ v2 < 4294967296 } ) : Lemma ( (v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2))
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val decompose_compare (v1: nat{0 <= v1 /\ v1 < 4294967296}) (v2: nat{0 <= v2 /\ v2 < 4294967296}) : Lemma ((v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2)) (U8.uint_to_t (decompose_int32le_3 v2))))
[]
LowParse.Low.ConstInt32.decompose_compare
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v1: Prims.nat{0 <= v1 /\ v1 < 4294967296} -> v2: Prims.nat{0 <= v2 /\ v2 < 4294967296} -> FStar.Pervasives.Lemma (ensures v1 = v2 == LowParse.Low.ConstInt32.compare_by_bytes (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_0 v1)) (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_1 v1)) (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_2 v1)) (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_3 v1)) (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_0 v2)) (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_1 v2)) (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_2 v2)) (FStar.UInt8.uint_to_t (LowParse.Low.ConstInt32.decompose_int32le_3 v2)))
{ "end_col": 28, "end_line": 173, "start_col": 1, "start_line": 163 }
FStar.HyperStack.ST.Stack
val inplace_compare (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : HST.Stack bool (requires (fun h -> valid parse_int32le h input pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res == (U32.eq (contents parse_int32le h input pos) v)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let inplace_compare (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) (#rrel: _) (#rel: _) (input: slice rrel rel) (pos: U32.t) : HST.Stack bool (requires (fun h -> valid parse_int32le h input pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res == (U32.eq (contents parse_int32le h input pos) v))) = let h = HST.get () in let b = input.base in [@inline_let] let _ = decode_int32le_eq (Seq.slice (B.as_seq h b) (U32.v pos) (U32.v pos + 4)); decode_int32le_total_constant (); valid_facts parse_int32le h input pos; [@inline_let] let v' = contents parse_int32le h input pos in decompose_compose_equiv (U32.v v); decompose_compose_equiv (U32.v v'); decompose_compare (U32.v v) (U32.v v') in let r0 = B.index b pos in let r1 = B.index b (pos `U32.add` 1ul) in let r2 = B.index b (pos `U32.add` 2ul) in let r3 = B.index b (pos `U32.add` 3ul) in [@inline_let] let b0 = U8.uint_to_t (decompose_int32le_0 (U32.v v)) in [@inline_let] let b1 = U8.uint_to_t (decompose_int32le_1 (U32.v v)) in [@inline_let] let b2 = U8.uint_to_t (decompose_int32le_2 (U32.v v)) in [@inline_let] let b3 = U8.uint_to_t (decompose_int32le_3 (U32.v v)) in compare_by_bytes r0 r1 r2 r3 b0 b1 b2 b3
val inplace_compare (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : HST.Stack bool (requires (fun h -> valid parse_int32le h input pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res == (U32.eq (contents parse_int32le h input pos) v))) let inplace_compare (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : HST.Stack bool (requires (fun h -> valid parse_int32le h input pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res == (U32.eq (contents parse_int32le h input pos) v))) =
true
null
false
let h = HST.get () in let b = input.base in [@@ inline_let ]let _ = decode_int32le_eq (Seq.slice (B.as_seq h b) (U32.v pos) (U32.v pos + 4)); decode_int32le_total_constant (); valid_facts parse_int32le h input pos; [@@ inline_let ]let v' = contents parse_int32le h input pos in decompose_compose_equiv (U32.v v); decompose_compose_equiv (U32.v v'); decompose_compare (U32.v v) (U32.v v') in let r0 = B.index b pos in let r1 = B.index b (pos `U32.add` 1ul) in let r2 = B.index b (pos `U32.add` 2ul) in let r3 = B.index b (pos `U32.add` 3ul) in [@@ inline_let ]let b0 = U8.uint_to_t (decompose_int32le_0 (U32.v v)) in [@@ inline_let ]let b1 = U8.uint_to_t (decompose_int32le_1 (U32.v v)) in [@@ inline_let ]let b2 = U8.uint_to_t (decompose_int32le_2 (U32.v v)) in [@@ inline_let ]let b3 = U8.uint_to_t (decompose_int32le_3 (U32.v v)) in compare_by_bytes r0 r1 r2 r3 b0 b1 b2 b3
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_LessThan", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "LowParse.Low.ConstInt32.compare_by_bytes", "FStar.UInt8.t", "FStar.UInt8.uint_to_t", "LowParse.Low.ConstInt32.decompose_int32le_3", "LowParse.Low.ConstInt32.decompose_int32le_2", "LowParse.Low.ConstInt32.decompose_int32le_1", "LowParse.Low.ConstInt32.decompose_int32le_0", "Prims.bool", "LowStar.Monotonic.Buffer.index", "LowParse.Slice.buffer_srel_of_srel", "FStar.UInt32.add", "FStar.UInt32.__uint_to_t", "Prims.unit", "LowParse.Low.ConstInt32.decompose_compare", "LowParse.Low.ConstInt32.decompose_compose_equiv", "LowParse.Low.Base.Spec.contents", "LowParse.Spec.Base.total_constant_size_parser_kind", "LowParse.Spec.Int32le.parse_int32le", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.Int32le.decode_int32le_total_constant", "LowParse.Spec.Int32le.decode_int32le_eq", "FStar.Seq.Base.slice", "LowStar.Monotonic.Buffer.as_seq", "Prims.op_Addition", "LowStar.Monotonic.Buffer.mbuffer", "LowParse.Slice.__proj__Mkslice__item__base", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.Spec.valid", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_none", "Prims.eq2", "FStar.UInt32.eq" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216 let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } ) : Tot (v: nat { 0 <= v /\ v < 4294967296 } ) = b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3)) #push-options "--z3rlimit 16" let decompose_compose_equiv (v: nat { 0 <= v /\ v < 4294967296 } ) : Lemma (compose_int32le (decompose_int32le_0 v) (decompose_int32le_1 v) (decompose_int32le_2 v) (decompose_int32le_3 v) == v) = () #pop-options inline_for_extraction let compare_by_bytes (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = a0 = b0 && a1 = b1 && a2 = b2 && a3 = b3 let compare_by_bytes' (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = (compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3)) = (compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3)) #push-options "--max_fuel 5 --z3rlimit 64" let compare_by_bytes_equiv (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3) = let a = compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3) in let b = compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3) in decompose_compose_equiv a; decompose_compose_equiv b #pop-options let decompose_compare (v1 : nat { 0 <= v1 /\ v1 < 4294967296 } ) (v2 : nat { 0 <= v2 /\ v2 < 4294967296 } ) : Lemma ( (v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2)) (U8.uint_to_t (decompose_int32le_3 v2)))) = let a0 = U8.uint_to_t (decompose_int32le_0 v1) in let a1 = U8.uint_to_t (decompose_int32le_1 v1) in let a2 = U8.uint_to_t (decompose_int32le_2 v1) in let a3 = U8.uint_to_t (decompose_int32le_3 v1) in let b0 = U8.uint_to_t (decompose_int32le_0 v2) in let b1 = U8.uint_to_t (decompose_int32le_1 v2) in let b2 = U8.uint_to_t (decompose_int32le_2 v2) in let b3 = U8.uint_to_t (decompose_int32le_3 v2) in compare_by_bytes_equiv a0 a1 a2 a3 b0 b1 b2 b3; decompose_compose_equiv v1; decompose_compose_equiv v2 #push-options " --max_fuel 6 --z3rlimit 64 " inline_for_extraction let inplace_compare (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) (#rrel: _) (#rel: _) (input: slice rrel rel) (pos: U32.t) : HST.Stack bool (requires (fun h -> valid parse_int32le h input pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 6, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val inplace_compare (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : HST.Stack bool (requires (fun h -> valid parse_int32le h input pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res == (U32.eq (contents parse_int32le h input pos) v)))
[]
LowParse.Low.ConstInt32.inplace_compare
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: FStar.UInt32.t{0 <= FStar.UInt32.v v /\ FStar.UInt32.v v < 4294967296} -> input: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 42, "end_line": 209, "start_col": 1, "start_line": 190 }
Prims.Tot
val validate_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let validate_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else if inplace_compare v input (uint64_to_uint32 pos) then pos `U64.add` 4uL else validator_error_generic
val validate_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v))) let validate_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v))) =
false
null
false
fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get () in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt ((Cast.uint32_to_uint64 input.len) `U64.sub` pos) 4uL then validator_error_not_enough_data else if inplace_compare v input (uint64_to_uint32 pos) then pos `U64.add` 4uL else validator_error_generic
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_LessThan", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "FStar.UInt64.lt", "FStar.UInt64.sub", "FStar.Int.Cast.uint32_to_uint64", "LowParse.Slice.__proj__Mkslice__item__len", "FStar.UInt64.__uint_to_t", "LowParse.Low.ErrorCode.validator_error_not_enough_data", "Prims.bool", "FStar.UInt64.add", "LowParse.Low.ErrorCode.validator_error_generic", "LowParse.Low.ConstInt32.inplace_compare", "LowParse.Low.ErrorCode.uint64_to_uint32", "Prims.unit", "LowParse.Low.Base.Spec.valid_equiv", "LowParse.Spec.Base.total_constant_size_parser_kind", "LowParse.Spec.Int32le.parse_int32le", "LowParse.Low.ConstInt32.valid_constint32le", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.validator", "LowParse.Spec.ConstInt32.parse_constint32le_kind", "LowParse.Spec.ConstInt32.constint32", "LowParse.Spec.ConstInt32.parse_constint32le" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216 let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } ) : Tot (v: nat { 0 <= v /\ v < 4294967296 } ) = b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3)) #push-options "--z3rlimit 16" let decompose_compose_equiv (v: nat { 0 <= v /\ v < 4294967296 } ) : Lemma (compose_int32le (decompose_int32le_0 v) (decompose_int32le_1 v) (decompose_int32le_2 v) (decompose_int32le_3 v) == v) = () #pop-options inline_for_extraction let compare_by_bytes (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = a0 = b0 && a1 = b1 && a2 = b2 && a3 = b3 let compare_by_bytes' (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = (compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3)) = (compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3)) #push-options "--max_fuel 5 --z3rlimit 64" let compare_by_bytes_equiv (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3) = let a = compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3) in let b = compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3) in decompose_compose_equiv a; decompose_compose_equiv b #pop-options let decompose_compare (v1 : nat { 0 <= v1 /\ v1 < 4294967296 } ) (v2 : nat { 0 <= v2 /\ v2 < 4294967296 } ) : Lemma ( (v1 = v2) == (compare_by_bytes (U8.uint_to_t (decompose_int32le_0 v1)) (U8.uint_to_t (decompose_int32le_1 v1)) (U8.uint_to_t (decompose_int32le_2 v1)) (U8.uint_to_t (decompose_int32le_3 v1)) (U8.uint_to_t (decompose_int32le_0 v2)) (U8.uint_to_t (decompose_int32le_1 v2)) (U8.uint_to_t (decompose_int32le_2 v2)) (U8.uint_to_t (decompose_int32le_3 v2)))) = let a0 = U8.uint_to_t (decompose_int32le_0 v1) in let a1 = U8.uint_to_t (decompose_int32le_1 v1) in let a2 = U8.uint_to_t (decompose_int32le_2 v1) in let a3 = U8.uint_to_t (decompose_int32le_3 v1) in let b0 = U8.uint_to_t (decompose_int32le_0 v2) in let b1 = U8.uint_to_t (decompose_int32le_1 v2) in let b2 = U8.uint_to_t (decompose_int32le_2 v2) in let b3 = U8.uint_to_t (decompose_int32le_3 v2) in compare_by_bytes_equiv a0 a1 a2 a3 b0 b1 b2 b3; decompose_compose_equiv v1; decompose_compose_equiv v2 #push-options " --max_fuel 6 --z3rlimit 64 " inline_for_extraction let inplace_compare (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) (#rrel: _) (#rel: _) (input: slice rrel rel) (pos: U32.t) : HST.Stack bool (requires (fun h -> valid parse_int32le h input pos)) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res == (U32.eq (contents parse_int32le h input pos) v))) = let h = HST.get () in let b = input.base in [@inline_let] let _ = decode_int32le_eq (Seq.slice (B.as_seq h b) (U32.v pos) (U32.v pos + 4)); decode_int32le_total_constant (); valid_facts parse_int32le h input pos; [@inline_let] let v' = contents parse_int32le h input pos in decompose_compose_equiv (U32.v v); decompose_compose_equiv (U32.v v'); decompose_compare (U32.v v) (U32.v v') in let r0 = B.index b pos in let r1 = B.index b (pos `U32.add` 1ul) in let r2 = B.index b (pos `U32.add` 2ul) in let r3 = B.index b (pos `U32.add` 3ul) in [@inline_let] let b0 = U8.uint_to_t (decompose_int32le_0 (U32.v v)) in [@inline_let] let b1 = U8.uint_to_t (decompose_int32le_1 (U32.v v)) in [@inline_let] let b2 = U8.uint_to_t (decompose_int32le_2 (U32.v v)) in [@inline_let] let b3 = U8.uint_to_t (decompose_int32le_3 (U32.v v)) in compare_by_bytes r0 r1 r2 r3 b0 b1 b2 b3 #pop-options inline_for_extraction let validate_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val validate_constint32le (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v)))
[]
LowParse.Low.ConstInt32.validate_constint32le
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: FStar.UInt32.t{0 <= FStar.UInt32.v v /\ FStar.UInt32.v v < 4294967296} -> LowParse.Low.Base.validator (LowParse.Spec.ConstInt32.parse_constint32le (FStar.UInt32.v v))
{ "end_col": 29, "end_line": 230, "start_col": 2, "start_line": 217 }
Prims.Tot
val validate_constint32le_slow (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic
val validate_constint32le_slow (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v))) let validate_constint32le_slow (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v))) =
false
null
false
fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get () in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt ((Cast.uint32_to_uint64 input.len) `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "total" ]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_LessThan", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "FStar.UInt64.lt", "FStar.UInt64.sub", "FStar.Int.Cast.uint32_to_uint64", "LowParse.Slice.__proj__Mkslice__item__len", "FStar.UInt64.__uint_to_t", "LowParse.Low.ErrorCode.validator_error_not_enough_data", "Prims.bool", "FStar.UInt32.eq", "FStar.UInt64.add", "LowParse.Low.ErrorCode.validator_error_generic", "LowParse.Low.Int32le.read_int32le", "LowParse.Low.ErrorCode.uint64_to_uint32", "Prims.unit", "LowParse.Low.Base.Spec.valid_equiv", "LowParse.Spec.Base.total_constant_size_parser_kind", "LowParse.Spec.Int32le.parse_int32le", "LowParse.Low.ConstInt32.valid_constint32le", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.validator", "LowParse.Spec.ConstInt32.parse_constint32le_kind", "LowParse.Spec.ConstInt32.constint32", "LowParse.Spec.ConstInt32.parse_constint32le" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } )
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val validate_constint32le_slow (v: U32.t{0 <= U32.v v /\ U32.v v < 4294967296}) : Tot (validator (parse_constint32le (U32.v v)))
[]
LowParse.Low.ConstInt32.validate_constint32le_slow
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
v: FStar.UInt32.t{0 <= FStar.UInt32.v v /\ FStar.UInt32.v v < 4294967296} -> LowParse.Low.Base.validator (LowParse.Spec.ConstInt32.parse_constint32le (FStar.UInt32.v v))
{ "end_col": 29, "end_line": 52, "start_col": 2, "start_line": 38 }
FStar.Pervasives.Lemma
val compare_by_bytes_equiv (a0: U8.t{0 <= U8.v a0 /\ U8.v a0 < 256}) (a1: U8.t{0 <= U8.v a1 /\ U8.v a1 < 256}) (a2: U8.t{0 <= U8.v a2 /\ U8.v a2 < 256}) (a3: U8.t{0 <= U8.v a3 /\ U8.v a3 < 256}) (b0: U8.t{0 <= U8.v b0 /\ U8.v b0 < 256}) (b1: U8.t{0 <= U8.v b1 /\ U8.v b1 < 256}) (b2: U8.t{0 <= U8.v b2 /\ U8.v b2 < 256}) (b3: U8.t{0 <= U8.v b3 /\ U8.v b3 < 256}) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3)
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Low.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int32le", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.ConstInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Endianness", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compare_by_bytes_equiv (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3) = let a = compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3) in let b = compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3) in decompose_compose_equiv a; decompose_compose_equiv b
val compare_by_bytes_equiv (a0: U8.t{0 <= U8.v a0 /\ U8.v a0 < 256}) (a1: U8.t{0 <= U8.v a1 /\ U8.v a1 < 256}) (a2: U8.t{0 <= U8.v a2 /\ U8.v a2 < 256}) (a3: U8.t{0 <= U8.v a3 /\ U8.v a3 < 256}) (b0: U8.t{0 <= U8.v b0 /\ U8.v b0 < 256}) (b1: U8.t{0 <= U8.v b1 /\ U8.v b1 < 256}) (b2: U8.t{0 <= U8.v b2 /\ U8.v b2 < 256}) (b3: U8.t{0 <= U8.v b3 /\ U8.v b3 < 256}) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3) let compare_by_bytes_equiv (a0: U8.t{0 <= U8.v a0 /\ U8.v a0 < 256}) (a1: U8.t{0 <= U8.v a1 /\ U8.v a1 < 256}) (a2: U8.t{0 <= U8.v a2 /\ U8.v a2 < 256}) (a3: U8.t{0 <= U8.v a3 /\ U8.v a3 < 256}) (b0: U8.t{0 <= U8.v b0 /\ U8.v b0 < 256}) (b1: U8.t{0 <= U8.v b1 /\ U8.v b1 < 256}) (b2: U8.t{0 <= U8.v b2 /\ U8.v b2 < 256}) (b3: U8.t{0 <= U8.v b3 /\ U8.v b3 < 256}) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3) =
false
null
true
let a = compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3) in let b = compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3) in decompose_compose_equiv a; decompose_compose_equiv b
{ "checked_file": "LowParse.Low.ConstInt32.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.Int32le.fst.checked", "LowParse.Spec.ConstInt32.fst.checked", "LowParse.Low.Int32le.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.ConstInt32.fst" }
[ "lemma" ]
[ "FStar.UInt8.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.v", "Prims.op_LessThan", "LowParse.Low.ConstInt32.decompose_compose_equiv", "Prims.unit", "Prims.nat", "LowParse.Low.ConstInt32.compose_int32le", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "LowParse.Low.ConstInt32.compare_by_bytes", "LowParse.Low.ConstInt32.compare_by_bytes'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.ConstInt32 (* LowParse implementation module for 32 bits contants *) include FStar.Endianness include LowParse.Spec.ConstInt32 include LowParse.Spec.Int32le include LowParse.Low.Combinators include LowParse.Low.Int32le module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_constint32le (v: nat { 0 <= v /\ v < 4294967296 } ) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (valid (parse_constint32le v) h input pos <==> (valid parse_int32le h input pos /\ U32.v (contents parse_int32le h input pos) == v)) = valid_facts (parse_constint32le v) h input pos; valid_facts parse_int32le h input pos; parse_constint32le_unfold v (bytes_of_slice_from h input pos) inline_for_extraction let validate_constint32le_slow (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (validator (parse_constint32le (U32.v v))) = fun #rrel #rel (input: slice rrel rel) pos -> let h = HST.get() in let _ = valid_constint32le (U32.v v) h input (uint64_to_uint32 pos); valid_equiv parse_int32le h input (uint64_to_uint32 pos) in if U64.lt (Cast.uint32_to_uint64 input.len `U64.sub` pos) 4uL then validator_error_not_enough_data else let v' = read_int32le input (uint64_to_uint32 pos) in if U32.eq v v' then pos `U64.add` 4uL else validator_error_generic inline_for_extraction let read_constint32le (v: U32.t { 0 <= U32.v v /\ U32.v v < 4294967296 } ) : Tot (leaf_reader (parse_constint32le (U32.v v))) = fun #rrel #rel input pos -> v inline_for_extraction let decompose_int32le_0 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b0: nat { 0 <= b0 /\ b0 < 256 } ) = v % 256 inline_for_extraction let decompose_int32le_1 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b1: nat { 0 <= b1 /\ b1 < 256 } ) = v / 256 % 256 inline_for_extraction let decompose_int32le_2 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b2: nat { 0 <= b2 /\ b2 < 256 } ) = v / 65536 % 256 inline_for_extraction let decompose_int32le_3 (v: nat { 0 <= v /\ v < 4294967296 } ) : Tot (b3: nat { 0 <= b3 /\ b3 < 256 } ) = v / 16777216 let compose_int32le (b0: nat { 0 <= b0 /\ b0 < 256 } ) (b1: nat { 0 <= b1 /\ b1 < 256 } ) (b2: nat { 0 <= b2 /\ b2 < 256 } ) (b3: nat { 0 <= b3 /\ b3 < 256 } ) : Tot (v: nat { 0 <= v /\ v < 4294967296 } ) = b0 + 256 `FStar.Mul.op_Star` (b1 + 256 `FStar.Mul.op_Star` (b2 + 256 `FStar.Mul.op_Star` b3)) #push-options "--z3rlimit 16" let decompose_compose_equiv (v: nat { 0 <= v /\ v < 4294967296 } ) : Lemma (compose_int32le (decompose_int32le_0 v) (decompose_int32le_1 v) (decompose_int32le_2 v) (decompose_int32le_3 v) == v) = () #pop-options inline_for_extraction let compare_by_bytes (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = a0 = b0 && a1 = b1 && a2 = b2 && a3 = b3 let compare_by_bytes' (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) = (compose_int32le (U8.v a0) (U8.v a1) (U8.v a2) (U8.v a3)) = (compose_int32le (U8.v b0) (U8.v b1) (U8.v b2) (U8.v b3)) #push-options "--max_fuel 5 --z3rlimit 64" let compare_by_bytes_equiv (a0: U8.t { 0 <= U8.v a0 /\ U8.v a0 < 256 } ) (a1: U8.t { 0 <= U8.v a1 /\ U8.v a1 < 256 } ) (a2: U8.t { 0 <= U8.v a2 /\ U8.v a2 < 256 } ) (a3: U8.t { 0 <= U8.v a3 /\ U8.v a3 < 256 } ) (b0: U8.t { 0 <= U8.v b0 /\ U8.v b0 < 256 } ) (b1: U8.t { 0 <= U8.v b1 /\ U8.v b1 < 256 } ) (b2: U8.t { 0 <= U8.v b2 /\ U8.v b2 < 256 } ) (b3: U8.t { 0 <= U8.v b3 /\ U8.v b3 < 256 } ) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) ==
false
false
LowParse.Low.ConstInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compare_by_bytes_equiv (a0: U8.t{0 <= U8.v a0 /\ U8.v a0 < 256}) (a1: U8.t{0 <= U8.v a1 /\ U8.v a1 < 256}) (a2: U8.t{0 <= U8.v a2 /\ U8.v a2 < 256}) (a3: U8.t{0 <= U8.v a3 /\ U8.v a3 < 256}) (b0: U8.t{0 <= U8.v b0 /\ U8.v b0 < 256}) (b1: U8.t{0 <= U8.v b1 /\ U8.v b1 < 256}) (b2: U8.t{0 <= U8.v b2 /\ U8.v b2 < 256}) (b3: U8.t{0 <= U8.v b3 /\ U8.v b3 < 256}) : Lemma ((compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3) == compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3)
[]
LowParse.Low.ConstInt32.compare_by_bytes_equiv
{ "file_name": "src/lowparse/LowParse.Low.ConstInt32.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
a0: FStar.UInt8.t{0 <= FStar.UInt8.v a0 /\ FStar.UInt8.v a0 < 256} -> a1: FStar.UInt8.t{0 <= FStar.UInt8.v a1 /\ FStar.UInt8.v a1 < 256} -> a2: FStar.UInt8.t{0 <= FStar.UInt8.v a2 /\ FStar.UInt8.v a2 < 256} -> a3: FStar.UInt8.t{0 <= FStar.UInt8.v a3 /\ FStar.UInt8.v a3 < 256} -> b0: FStar.UInt8.t{0 <= FStar.UInt8.v b0 /\ FStar.UInt8.v b0 < 256} -> b1: FStar.UInt8.t{0 <= FStar.UInt8.v b1 /\ FStar.UInt8.v b1 < 256} -> b2: FStar.UInt8.t{0 <= FStar.UInt8.v b2 /\ FStar.UInt8.v b2 < 256} -> b3: FStar.UInt8.t{0 <= FStar.UInt8.v b3 /\ FStar.UInt8.v b3 < 256} -> FStar.Pervasives.Lemma (ensures LowParse.Low.ConstInt32.compare_by_bytes a0 a1 a2 a3 b0 b1 b2 b3 == LowParse.Low.ConstInt32.compare_by_bytes' a0 a1 a2 a3 b0 b1 b2 b3)
{ "end_col": 27, "end_line": 146, "start_col": 1, "start_line": 143 }
Prims.Tot
val write_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_writer_strong (serialize_bounded_der_length32 (vmin) (vmax)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let write_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot (leaf_writer_strong (serialize_bounded_der_length32 (vmin) (vmax))) = leaf_writer_strong_of_serializer32 (serialize32_bounded_der_length32 vmin vmax) ()
val write_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_writer_strong (serialize_bounded_der_length32 (vmin) (vmax))) let write_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_writer_strong (serialize_bounded_der_length32 (vmin) (vmax))) =
false
null
false
leaf_writer_strong_of_serializer32 (serialize32_bounded_der_length32 vmin vmax) ()
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Low.Base.leaf_writer_strong_of_serializer32", "LowParse.Spec.DER.parse_bounded_der_length32_kind", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.DER.parse_bounded_der_length32", "LowParse.Spec.DER.serialize_bounded_der_length32", "LowParse.Low.DER.serialize32_bounded_der_length32", "LowParse.Low.Base.leaf_writer_strong" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len inline_for_extraction let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (leaf_reader (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@inline_let] let res = Cast.uint8_to_uint32 x in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@inline_let] let res = Cast.uint8_to_uint32 z in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) inline_for_extraction let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t { U32.v min == vmin } ) (vmax: der_length_t) (max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } ) : Tot ( validator (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (U32.v min) (U32.v max)) h input (uint64_to_uint32 pos); parse_bounded_der_length32_unfold (U32.v min) (U32.v max) (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let x = read_u8 input (uint64_to_uint32 pos) in let len = der_length_payload_size_of_tag8 x in let tg1 = tag_of_der_length32_impl min in let l1 = der_length_payload_size_of_tag8 tg1 in let tg2 = tag_of_der_length32_impl max in let l2 = der_length_payload_size_of_tag8 tg2 in if (len `U8.lt` l1) || ( l2 `U8.lt` len) then validator_error_generic else [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 v) in let v2 = validate_der_length_payload32 x input v in if is_error v2 then v2 else let y = read_der_length_payload32 x input (uint64_to_uint32 v) in if y `U32.lt` min || max `U32.lt` y then validator_error_generic else v2 inline_for_extraction let jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( jumper (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in jump_der_length_payload32 x input v inline_for_extraction let read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( leaf_reader (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in let y = read_der_length_payload32 x input v in (y <: bounded_int32 (vmin) (vmax)) #pop-options #push-options "--z3rlimit 64" inline_for_extraction let serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 } ) (y' : bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 ( min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h )) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ ( B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` sx ))) = [@inline_let] let gpos = Ghost.hide (U32.v pos) in [@inline_let] let gpos' = Ghost.hide (U32.v pos + Seq.length (serialize (serialize_bounded_der_length32 min max) y')) in [@inline_let] let _ = serialize_bounded_der_length32_unfold (min) (max) y' in let x = tag_of_der_length32_impl y' in if x `U8.lt` 128uy then begin mbuffer_upd b gpos gpos' pos x; 1ul end else if x = 129uy then begin mbuffer_upd b gpos gpos' pos x; mbuffer_upd b gpos gpos' (pos `U32.add` 1ul) (Cast.uint32_to_uint8 y'); 2ul end else if x = 130uy then begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 3); let z = serialize32_bounded_integer_2 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 3)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 3ul)) h h' ; 3ul // 1ul `U32.add` z end else if x = 131uy then begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 4); let z = serialize32_bounded_integer_3 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 4)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 4ul)) h h' ; 4ul // 1ul `U32.add` z end else begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 5); let z = serialize32_bounded_integer_4 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 5)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 5ul)) h h' ; 5ul // 1ul `U32.add` z end #pop-options inline_for_extraction let serialize32_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot (serializer32 (serialize_bounded_der_length32 (vmin) (vmax))) = fun (y' : bounded_int32 (vmin) (vmax)) #rrel #rel b pos -> serialize32_bounded_der_length32' vmin vmax y' b pos inline_for_extraction let write_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } )
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val write_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_writer_strong (serialize_bounded_der_length32 (vmin) (vmax)))
[]
LowParse.Low.DER.write_bounded_der_length32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
vmin: LowParse.Spec.DER.der_length_t -> vmax: LowParse.Spec.DER.der_length_t{vmin <= vmax /\ vmax < 4294967296} -> LowParse.Low.Base.leaf_writer_strong (LowParse.Spec.DER.serialize_bounded_der_length32 vmin vmax)
{ "end_col": 84, "end_line": 326, "start_col": 2, "start_line": 326 }
Prims.Tot
val serialize32_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (serializer32 (serialize_bounded_der_length32 (vmin) (vmax)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize32_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot (serializer32 (serialize_bounded_der_length32 (vmin) (vmax))) = fun (y' : bounded_int32 (vmin) (vmax)) #rrel #rel b pos -> serialize32_bounded_der_length32' vmin vmax y' b pos
val serialize32_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (serializer32 (serialize_bounded_der_length32 (vmin) (vmax))) let serialize32_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (serializer32 (serialize_bounded_der_length32 (vmin) (vmax))) =
false
null
false
fun (y': bounded_int32 (vmin) (vmax)) #rrel #rel b pos -> serialize32_bounded_der_length32' vmin vmax y' b pos
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.BoundedInt.bounded_int32", "LowStar.Monotonic.Buffer.srel", "LowParse.Bytes.byte", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowParse.Low.DER.serialize32_bounded_der_length32'", "LowParse.Low.Base.serializer32", "LowParse.Spec.DER.parse_bounded_der_length32_kind", "LowParse.Spec.DER.parse_bounded_der_length32", "LowParse.Spec.DER.serialize_bounded_der_length32" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len inline_for_extraction let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (leaf_reader (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@inline_let] let res = Cast.uint8_to_uint32 x in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@inline_let] let res = Cast.uint8_to_uint32 z in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) inline_for_extraction let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t { U32.v min == vmin } ) (vmax: der_length_t) (max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } ) : Tot ( validator (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (U32.v min) (U32.v max)) h input (uint64_to_uint32 pos); parse_bounded_der_length32_unfold (U32.v min) (U32.v max) (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let x = read_u8 input (uint64_to_uint32 pos) in let len = der_length_payload_size_of_tag8 x in let tg1 = tag_of_der_length32_impl min in let l1 = der_length_payload_size_of_tag8 tg1 in let tg2 = tag_of_der_length32_impl max in let l2 = der_length_payload_size_of_tag8 tg2 in if (len `U8.lt` l1) || ( l2 `U8.lt` len) then validator_error_generic else [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 v) in let v2 = validate_der_length_payload32 x input v in if is_error v2 then v2 else let y = read_der_length_payload32 x input (uint64_to_uint32 v) in if y `U32.lt` min || max `U32.lt` y then validator_error_generic else v2 inline_for_extraction let jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( jumper (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in jump_der_length_payload32 x input v inline_for_extraction let read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( leaf_reader (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in let y = read_der_length_payload32 x input v in (y <: bounded_int32 (vmin) (vmax)) #pop-options #push-options "--z3rlimit 64" inline_for_extraction let serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 } ) (y' : bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 ( min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h )) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ ( B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` sx ))) = [@inline_let] let gpos = Ghost.hide (U32.v pos) in [@inline_let] let gpos' = Ghost.hide (U32.v pos + Seq.length (serialize (serialize_bounded_der_length32 min max) y')) in [@inline_let] let _ = serialize_bounded_der_length32_unfold (min) (max) y' in let x = tag_of_der_length32_impl y' in if x `U8.lt` 128uy then begin mbuffer_upd b gpos gpos' pos x; 1ul end else if x = 129uy then begin mbuffer_upd b gpos gpos' pos x; mbuffer_upd b gpos gpos' (pos `U32.add` 1ul) (Cast.uint32_to_uint8 y'); 2ul end else if x = 130uy then begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 3); let z = serialize32_bounded_integer_2 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 3)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 3ul)) h h' ; 3ul // 1ul `U32.add` z end else if x = 131uy then begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 4); let z = serialize32_bounded_integer_3 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 4)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 4ul)) h h' ; 4ul // 1ul `U32.add` z end else begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 5); let z = serialize32_bounded_integer_4 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 5)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 5ul)) h h' ; 5ul // 1ul `U32.add` z end #pop-options inline_for_extraction let serialize32_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } )
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize32_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (serializer32 (serialize_bounded_der_length32 (vmin) (vmax)))
[]
LowParse.Low.DER.serialize32_bounded_der_length32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
vmin: LowParse.Spec.DER.der_length_t -> vmax: LowParse.Spec.DER.der_length_t{vmin <= vmax /\ vmax < 4294967296} -> LowParse.Low.Base.serializer32 (LowParse.Spec.DER.serialize_bounded_der_length32 vmin vmax)
{ "end_col": 54, "end_line": 319, "start_col": 2, "start_line": 318 }
Prims.Tot
val read_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (leaf_reader (parse_der_length_payload32 x))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (leaf_reader (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@inline_let] let res = Cast.uint8_to_uint32 x in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@inline_let] let res = Cast.uint8_to_uint32 z in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x)
val read_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (leaf_reader (parse_der_length_payload32 x)) let read_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (leaf_reader (parse_der_length_payload32 x)) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@@ inline_let ]let res = Cast.uint8_to_uint32 x in [@@ inline_let ]let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@@ inline_let ]let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@@ inline_let ]let res = Cast.uint8_to_uint32 z in [@@ inline_let ]let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@@ inline_let ]let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@@ inline_let ]let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@@ inline_let ]let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@@ inline_let ]let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x)
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.UInt8.lt", "FStar.UInt8.__uint_to_t", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.tag_of_der_length32", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.v", "FStar.UInt8.v", "FStar.Int.Cast.uint8_to_uint32", "Prims.bool", "LowParse.Low.Int.read_u8", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Low.BoundedInt.read_bounded_integer_2", "LowParse.Low.BoundedInt.read_bounded_integer_3", "LowParse.Low.BoundedInt.read_bounded_integer_4", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.parse_bounded_integer", "FStar.UInt8.sub", "FStar.Pervasives.assert_norm", "Prims.pow2", "FStar.Mul.op_Star", "LowParse.Spec.DER.parse_der_length_payload32_unfold", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.DER.parse_der_length_payload32", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.leaf_reader" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len inline_for_extraction let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } )
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val read_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (leaf_reader (parse_der_length_payload32 x))
[]
LowParse.Low.DER.read_der_length_payload32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: FStar.UInt8.t{LowParse.Spec.DER.der_length_payload_size_of_tag x <= 4} -> LowParse.Low.Base.leaf_reader (LowParse.Spec.DER.parse_der_length_payload32 x)
{ "end_col": 54, "end_line": 151, "start_col": 2, "start_line": 112 }
Prims.Tot
val jump_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (jumper (parse_der_length_payload32 x))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len
val jump_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (jumper (parse_der_length_payload32 x)) let jump_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (jumper (parse_der_length_payload32 x)) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@@ inline_let ]let len = x `U8.sub` 128uy in [@@ inline_let ]let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` (Cast.uint8_to_uint32 len)
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.UInt8.lt", "FStar.UInt8.__uint_to_t", "Prims.bool", "FStar.UInt32.add", "FStar.Int.Cast.uint8_to_uint32", "Prims.unit", "LowParse.Spec.Base.parser_kind_prop_equiv", "LowParse.Spec.BoundedInt.bounded_integer", "FStar.UInt8.v", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.parse_bounded_integer", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "FStar.UInt8.sub", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "FStar.Mul.op_Star", "LowParse.Spec.DER.parse_der_length_payload32_unfold", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "LowParse.Spec.DER.tag_of_der_length32", "LowParse.Spec.DER.parse_der_length_payload32", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.jumper" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } )
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val jump_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (jumper (parse_der_length_payload32 x))
[]
LowParse.Low.DER.jump_der_length_payload32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: FStar.UInt8.t{LowParse.Spec.DER.der_length_payload_size_of_tag x <= 4} -> LowParse.Low.Base.jumper (LowParse.Spec.DER.parse_der_length_payload32 x)
{ "end_col": 44, "end_line": 106, "start_col": 2, "start_line": 85 }
Prims.Tot
val read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_reader (parse_bounded_der_length32 (vmin) (vmax)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( leaf_reader (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in let y = read_der_length_payload32 x input v in (y <: bounded_int32 (vmin) (vmax))
val read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_reader (parse_bounded_der_length32 (vmin) (vmax))) let read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_reader (parse_bounded_der_length32 (vmin) (vmax))) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@@ inline_let ]let _ = valid_facts (parse_der_length_payload32 x) h input v in let y = read_der_length_payload32 x input v in (y <: bounded_int32 (vmin) (vmax))
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.Base.refine_with_tag", "FStar.UInt8.t", "LowParse.Spec.DER.tag_of_der_length32", "LowParse.Low.DER.read_der_length_payload32", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.DER.parse_der_length_payload32", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "Prims.op_GreaterThanOrEqual", "FStar.UInt8.v", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Spec.DER.der_length_payload_size_of_tag8", "LowParse.Low.Int.read_u8", "LowParse.Low.Int.jump_u8", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.parse_bounded_der_length32_unfold", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.DER.parse_bounded_der_length32_kind", "LowParse.Spec.DER.parse_bounded_der_length32", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.leaf_reader" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len inline_for_extraction let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (leaf_reader (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@inline_let] let res = Cast.uint8_to_uint32 x in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@inline_let] let res = Cast.uint8_to_uint32 z in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) inline_for_extraction let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t { U32.v min == vmin } ) (vmax: der_length_t) (max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } ) : Tot ( validator (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (U32.v min) (U32.v max)) h input (uint64_to_uint32 pos); parse_bounded_der_length32_unfold (U32.v min) (U32.v max) (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let x = read_u8 input (uint64_to_uint32 pos) in let len = der_length_payload_size_of_tag8 x in let tg1 = tag_of_der_length32_impl min in let l1 = der_length_payload_size_of_tag8 tg1 in let tg2 = tag_of_der_length32_impl max in let l2 = der_length_payload_size_of_tag8 tg2 in if (len `U8.lt` l1) || ( l2 `U8.lt` len) then validator_error_generic else [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 v) in let v2 = validate_der_length_payload32 x input v in if is_error v2 then v2 else let y = read_der_length_payload32 x input (uint64_to_uint32 v) in if y `U32.lt` min || max `U32.lt` y then validator_error_generic else v2 inline_for_extraction let jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( jumper (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in jump_der_length_payload32 x input v inline_for_extraction let read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot (
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (leaf_reader (parse_bounded_der_length32 (vmin) (vmax)))
[]
LowParse.Low.DER.read_bounded_der_length32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
vmin: LowParse.Spec.DER.der_length_t -> vmax: LowParse.Spec.DER.der_length_t{vmin <= vmax /\ vmax < 4294967296} -> LowParse.Low.Base.leaf_reader (LowParse.Spec.DER.parse_bounded_der_length32 vmin vmax)
{ "end_col": 38, "end_line": 231, "start_col": 2, "start_line": 218 }
Prims.Tot
val jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (jumper (parse_bounded_der_length32 (vmin) (vmax)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( jumper (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in jump_der_length_payload32 x input v
val jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (jumper (parse_bounded_der_length32 (vmin) (vmax))) let jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (jumper (parse_bounded_der_length32 (vmin) (vmax))) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@@ inline_let ]let _ = valid_facts (parse_der_length_payload32 x) h input v in jump_der_length_payload32 x input v
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Low.DER.jump_der_length_payload32", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "FStar.UInt8.t", "LowParse.Spec.DER.tag_of_der_length32", "LowParse.Spec.DER.parse_der_length_payload32", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "Prims.op_GreaterThanOrEqual", "FStar.UInt8.v", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Spec.DER.der_length_payload_size_of_tag8", "LowParse.Low.Int.read_u8", "LowParse.Low.Int.jump_u8", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.parse_bounded_der_length32_unfold", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.DER.parse_bounded_der_length32_kind", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.DER.parse_bounded_der_length32", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.jumper" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len inline_for_extraction let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (leaf_reader (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@inline_let] let res = Cast.uint8_to_uint32 x in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@inline_let] let res = Cast.uint8_to_uint32 z in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) inline_for_extraction let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t { U32.v min == vmin } ) (vmax: der_length_t) (max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } ) : Tot ( validator (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (U32.v min) (U32.v max)) h input (uint64_to_uint32 pos); parse_bounded_der_length32_unfold (U32.v min) (U32.v max) (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let x = read_u8 input (uint64_to_uint32 pos) in let len = der_length_payload_size_of_tag8 x in let tg1 = tag_of_der_length32_impl min in let l1 = der_length_payload_size_of_tag8 tg1 in let tg2 = tag_of_der_length32_impl max in let l2 = der_length_payload_size_of_tag8 tg2 in if (len `U8.lt` l1) || ( l2 `U8.lt` len) then validator_error_generic else [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 v) in let v2 = validate_der_length_payload32 x input v in if is_error v2 then v2 else let y = read_der_length_payload32 x input (uint64_to_uint32 v) in if y `U32.lt` min || max `U32.lt` y then validator_error_generic else v2 inline_for_extraction let jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot (
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t{vmin <= vmax /\ vmax < 4294967296}) : Tot (jumper (parse_bounded_der_length32 (vmin) (vmax)))
[]
LowParse.Low.DER.jump_bounded_der_length32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
vmin: LowParse.Spec.DER.der_length_t -> vmax: LowParse.Spec.DER.der_length_t{vmin <= vmax /\ vmax < 4294967296} -> LowParse.Low.Base.jumper (LowParse.Spec.DER.parse_bounded_der_length32 vmin vmax)
{ "end_col": 39, "end_line": 210, "start_col": 2, "start_line": 198 }
Prims.Tot
val validate_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (validator (parse_der_length_payload32 x))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v
val validate_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (validator (parse_der_length_payload32 x)) let validate_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (validator (parse_der_length_payload32 x)) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@@ inline_let ]let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@@ inline_let ]let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt` 256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt` 65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "FStar.UInt8.lt", "FStar.UInt8.__uint_to_t", "Prims.bool", "Prims.op_BarBar", "Prims.op_Equality", "LowParse.Low.ErrorCode.validator_error_generic", "LowParse.Low.ErrorCode.is_error", "LowParse.Low.Int.read_u8", "LowParse.Low.ErrorCode.uint64_to_uint32", "LowParse.Low.Int.validate_u8", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "FStar.UInt32.lt", "FStar.UInt32.__uint_to_t", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Low.BoundedInt.read_bounded_integer_2", "LowParse.Low.BoundedInt.validate_bounded_integer", "LowParse.Low.BoundedInt.read_bounded_integer_3", "LowParse.Low.BoundedInt.read_bounded_integer_4", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "FStar.UInt8.v", "LowParse.Spec.BoundedInt.parse_bounded_integer", "FStar.UInt8.sub", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "FStar.Mul.op_Star", "LowParse.Spec.DER.parse_der_length_payload32_unfold", "LowParse.Slice.bytes_of_slice_from", "Prims._assert", "FStar.UInt64.v", "FStar.UInt32.v", "LowParse.Slice.__proj__Mkslice__item__len", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.Base.refine_with_tag", "FStar.UInt32.t", "LowParse.Spec.DER.tag_of_der_length32", "LowParse.Spec.DER.parse_der_length_payload32", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.validator" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } )
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val validate_der_length_payload32 (x: U8.t{der_length_payload_size_of_tag x <= 4}) : Tot (validator (parse_der_length_payload32 x))
[]
LowParse.Low.DER.validate_der_length_payload32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: FStar.UInt8.t{LowParse.Spec.DER.der_length_payload_size_of_tag x <= 4} -> LowParse.Low.Base.validator (LowParse.Spec.DER.parse_der_length_payload32 x)
{ "end_col": 16, "end_line": 79, "start_col": 2, "start_line": 22 }
Prims.Tot
val validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t{U32.v min == vmin}) (vmax: der_length_t) (max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max}) : Tot (validator (parse_bounded_der_length32 (vmin) (vmax)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t { U32.v min == vmin } ) (vmax: der_length_t) (max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } ) : Tot ( validator (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (U32.v min) (U32.v max)) h input (uint64_to_uint32 pos); parse_bounded_der_length32_unfold (U32.v min) (U32.v max) (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let x = read_u8 input (uint64_to_uint32 pos) in let len = der_length_payload_size_of_tag8 x in let tg1 = tag_of_der_length32_impl min in let l1 = der_length_payload_size_of_tag8 tg1 in let tg2 = tag_of_der_length32_impl max in let l2 = der_length_payload_size_of_tag8 tg2 in if (len `U8.lt` l1) || ( l2 `U8.lt` len) then validator_error_generic else [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 v) in let v2 = validate_der_length_payload32 x input v in if is_error v2 then v2 else let y = read_der_length_payload32 x input (uint64_to_uint32 v) in if y `U32.lt` min || max `U32.lt` y then validator_error_generic else v2
val validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t{U32.v min == vmin}) (vmax: der_length_t) (max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max}) : Tot (validator (parse_bounded_der_length32 (vmin) (vmax))) let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t{U32.v min == vmin}) (vmax: der_length_t) (max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max}) : Tot (validator (parse_bounded_der_length32 (vmin) (vmax))) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_bounded_der_length32 (U32.v min) (U32.v max)) h input (uint64_to_uint32 pos); parse_bounded_der_length32_unfold (U32.v min) (U32.v max) (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let x = read_u8 input (uint64_to_uint32 pos) in let len = der_length_payload_size_of_tag8 x in let tg1 = tag_of_der_length32_impl min in let l1 = der_length_payload_size_of_tag8 tg1 in let tg2 = tag_of_der_length32_impl max in let l2 = der_length_payload_size_of_tag8 tg2 in if (len `U8.lt` l1) || (l2 `U8.lt` len) then validator_error_generic else [@@ inline_let ]let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 v) in let v2 = validate_der_length_payload32 x input v in if is_error v2 then v2 else let y = read_der_length_payload32 x input (uint64_to_uint32 v) in if y `U32.lt` min || max `U32.lt` y then validator_error_generic else v2
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[ "total" ]
[ "LowParse.Spec.DER.der_length_t", "FStar.UInt32.t", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThanOrEqual", "LowParse.Spec.DER.der_length_max", "FStar.UInt32.v", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.Low.ErrorCode.is_error", "Prims.bool", "Prims.op_BarBar", "FStar.UInt8.lt", "LowParse.Low.ErrorCode.validator_error_generic", "FStar.UInt32.lt", "LowParse.Spec.Base.refine_with_tag", "FStar.UInt8.t", "LowParse.Spec.DER.tag_of_der_length32", "LowParse.Low.DER.read_der_length_payload32", "LowParse.Low.ErrorCode.uint64_to_uint32", "LowParse.Low.DER.validate_der_length_payload32", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.DER.parse_der_length_payload_kind", "LowParse.Spec.DER.parse_der_length_payload32", "FStar.UInt8.v", "LowParse.Spec.DER.der_length_payload_size_of_tag", "LowParse.Spec.DER.der_length_payload_size_of_tag8", "Prims.op_LessThan", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.tag_of_der_length32_impl", "LowParse.Low.Int.read_u8", "LowParse.Low.Int.validate_u8", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.DER.parse_bounded_der_length32_unfold", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.DER.parse_bounded_der_length32_kind", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.DER.parse_bounded_der_length32", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.Base.validator" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len inline_for_extraction let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (leaf_reader (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@inline_let] let res = Cast.uint8_to_uint32 x in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@inline_let] let res = Cast.uint8_to_uint32 z in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) inline_for_extraction let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t { U32.v min == vmin } ) (vmax: der_length_t) (max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } ) : Tot (
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t{U32.v min == vmin}) (vmax: der_length_t) (max: U32.t{U32.v max == vmax /\ U32.v min <= U32.v max}) : Tot (validator (parse_bounded_der_length32 (vmin) (vmax)))
[]
LowParse.Low.DER.validate_bounded_der_length32
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
vmin: LowParse.Spec.DER.der_length_t -> min: FStar.UInt32.t{FStar.UInt32.v min == vmin} -> vmax: LowParse.Spec.DER.der_length_t -> max: FStar.UInt32.t{FStar.UInt32.v max == vmax /\ FStar.UInt32.v min <= FStar.UInt32.v max} -> LowParse.Low.Base.validator (LowParse.Spec.DER.parse_bounded_der_length32 vmin vmax)
{ "end_col": 17, "end_line": 190, "start_col": 2, "start_line": 161 }
FStar.HyperStack.ST.Stack
val serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (y': bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 (min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h)) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ (B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len)) `Seq.equal` sx)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.DER", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 } ) (y' : bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 ( min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h )) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ ( B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` sx ))) = [@inline_let] let gpos = Ghost.hide (U32.v pos) in [@inline_let] let gpos' = Ghost.hide (U32.v pos + Seq.length (serialize (serialize_bounded_der_length32 min max) y')) in [@inline_let] let _ = serialize_bounded_der_length32_unfold (min) (max) y' in let x = tag_of_der_length32_impl y' in if x `U8.lt` 128uy then begin mbuffer_upd b gpos gpos' pos x; 1ul end else if x = 129uy then begin mbuffer_upd b gpos gpos' pos x; mbuffer_upd b gpos gpos' (pos `U32.add` 1ul) (Cast.uint32_to_uint8 y'); 2ul end else if x = 130uy then begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 3); let z = serialize32_bounded_integer_2 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 3)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 3ul)) h h' ; 3ul // 1ul `U32.add` z end else if x = 131uy then begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 4); let z = serialize32_bounded_integer_3 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 4)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 4ul)) h h' ; 4ul // 1ul `U32.add` z end else begin mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 5); let z = serialize32_bounded_integer_4 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 5)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 5ul)) h h' ; 5ul // 1ul `U32.add` z end
val serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (y': bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 (min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h)) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ (B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len)) `Seq.equal` sx))) let serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (y': bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 (min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h)) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ (B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len)) `Seq.equal` sx))) =
true
null
false
[@@ inline_let ]let gpos = Ghost.hide (U32.v pos) in [@@ inline_let ]let gpos' = Ghost.hide (U32.v pos + Seq.length (serialize (serialize_bounded_der_length32 min max) y')) in [@@ inline_let ]let _ = serialize_bounded_der_length32_unfold (min) (max) y' in let x = tag_of_der_length32_impl y' in if x `U8.lt` 128uy then (mbuffer_upd b gpos gpos' pos x; 1ul) else if x = 129uy then (mbuffer_upd b gpos gpos' pos x; mbuffer_upd b gpos gpos' (pos `U32.add` 1ul) (Cast.uint32_to_uint8 y'); 2ul) else if x = 130uy then (mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 3); let z = serialize32_bounded_integer_2 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 3)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 3ul)) h h'; 3ul) else if x = 131uy then (mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 4); let z = serialize32_bounded_integer_3 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 4)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 4ul)) h h'; 4ul) else (mbuffer_upd b gpos gpos' pos x; let h = HST.get () in writable_weaken b (Ghost.reveal gpos) (Ghost.reveal gpos') h (U32.v pos + 1) (U32.v pos + 5); let z = serialize32_bounded_integer_4 () y' b (pos `U32.add` 1ul) in let h' = HST.get () in Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 5)) 1; B.modifies_buffer_from_to_elim b pos (pos `U32.add` 1ul) (B.loc_buffer_from_to b (pos `U32.add` 1ul) (pos `U32.add` 5ul)) h h'; 5ul)
{ "checked_file": "LowParse.Low.DER.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.DER.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Low.DER.fst" }
[]
[ "LowParse.Spec.DER.der_length_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.BoundedInt.bounded_int32", "LowStar.Monotonic.Buffer.srel", "FStar.UInt8.t", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.UInt8.lt", "FStar.UInt8.__uint_to_t", "FStar.UInt32.__uint_to_t", "Prims.unit", "LowParse.Low.Base.mbuffer_upd", "Prims.bool", "Prims.op_Equality", "FStar.UInt32.add", "FStar.Int.Cast.uint32_to_uint8", "LowStar.Monotonic.Buffer.modifies_buffer_from_to_elim", "LowStar.Monotonic.Buffer.loc_buffer_from_to", "FStar.Seq.Properties.lemma_split", "FStar.Seq.Base.slice", "LowStar.Monotonic.Buffer.as_seq", "FStar.UInt32.v", "Prims.op_Addition", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "LowParse.Low.BoundedInt.serialize32_bounded_integer_2", "LowParse.Low.Base.writable_weaken", "FStar.Ghost.reveal", "Prims.nat", "LowParse.Low.BoundedInt.serialize32_bounded_integer_3", "LowParse.Low.BoundedInt.serialize32_bounded_integer_4", "LowParse.Spec.DER.der_length_max", "Prims.eq2", "LowParse.Spec.DER.tag_of_der_length", "LowParse.Spec.DER.tag_of_der_length32_impl", "LowParse.Spec.DER.serialize_bounded_der_length32_unfold", "FStar.Ghost.erased", "FStar.Ghost.hide", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "LowParse.Spec.Base.serialize", "LowParse.Spec.DER.parse_bounded_der_length32_kind", "LowParse.Spec.DER.parse_bounded_der_length32", "LowParse.Spec.DER.serialize_bounded_der_length32", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.length", "LowParse.Low.Base.writable", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "LowStar.Monotonic.Buffer.modifies", "FStar.Seq.Base.equal", "LowParse.Bytes.bytes" ]
[]
module LowParse.Low.DER include LowParse.Spec.DER include LowParse.Low.Int // for parse_u8 include LowParse.Low.BoundedInt // for bounded_integer open FStar.Mul module U8 = FStar.UInt8 module U32 = FStar.UInt32 module HST = FStar.HyperStack.ST module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 #reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0 --max_ifuel 0" #push-options "--z3rlimit 32" inline_for_extraction let validate_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (validator (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 pos); assert (U64.v pos <= U32.v input.len); parse_der_length_payload32_unfold x (bytes_of_slice_from h input (uint64_to_uint32 pos)); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else if x = 128uy || x = 255uy then validator_error_generic else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let z = read_u8 input (uint64_to_uint32 pos) in if z `U8.lt` 128uy then validator_error_generic else v else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input (uint64_to_uint32 pos) in if len = 2uy then let v = validate_bounded_integer 2 input pos in if is_error v then v else let y = read_bounded_integer_2 () input (uint64_to_uint32 pos) in if y `U32.lt `256ul then validator_error_generic else v else if len = 3uy then let v = validate_bounded_integer 3 input pos in if is_error v then v else let y = read_bounded_integer_3 () input (uint64_to_uint32 pos) in if y `U32.lt `65536ul then validator_error_generic else v else let v = validate_bounded_integer 4 input pos in if is_error v then v else let y = read_bounded_integer_4 () input (uint64_to_uint32 pos) in if y `U32.lt` 16777216ul then validator_error_generic else v inline_for_extraction let jump_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (jumper (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then pos else [@inline_let] let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts parse_u8 h input pos; parser_kind_prop_equiv parse_u8_kind parse_u8; valid_facts (parse_bounded_integer (U8.v len)) h input pos; parser_kind_prop_equiv (parse_bounded_integer_kind (U8.v len)) (parse_bounded_integer (U8.v len)) in pos `U32.add` Cast.uint8_to_uint32 len inline_for_extraction let read_der_length_payload32 (x: U8.t { der_length_payload_size_of_tag x <= 4 } ) : Tot (leaf_reader (parse_der_length_payload32 x)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input pos; parse_der_length_payload32_unfold x (bytes_of_slice_from h input pos); assert_norm (pow2 (8 * 1) == 256); assert_norm (pow2 (8 * 2) == 65536); assert_norm (pow2 (8 * 3) == 16777216); assert_norm (pow2 (8 * 4) == 4294967296) in if x `U8.lt` 128uy then [@inline_let] let res = Cast.uint8_to_uint32 x in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if x = 129uy then [@inline_let] let _ = valid_facts parse_u8 h input pos in let z = read_u8 input pos in [@inline_let] let res = Cast.uint8_to_uint32 z in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let len = x `U8.sub` 128uy in [@inline_let] let _ = valid_facts (parse_bounded_integer (U8.v len)) h input pos in if len = 2uy then let res = read_bounded_integer_2 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else if len = 3uy then let res = read_bounded_integer_3 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) else let res = read_bounded_integer_4 () input pos in [@inline_let] let _ = assert (tag_of_der_length32 res == x) in (res <: refine_with_tag tag_of_der_length32 x) inline_for_extraction let validate_bounded_der_length32 (vmin: der_length_t) (min: U32.t { U32.v min == vmin } ) (vmax: der_length_t) (max: U32.t { U32.v max == vmax /\ U32.v min <= U32.v max } ) : Tot ( validator (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (U32.v min) (U32.v max)) h input (uint64_to_uint32 pos); parse_bounded_der_length32_unfold (U32.v min) (U32.v max) (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts parse_u8 h input (uint64_to_uint32 pos) in let v = validate_u8 () input pos in if is_error v then v else let x = read_u8 input (uint64_to_uint32 pos) in let len = der_length_payload_size_of_tag8 x in let tg1 = tag_of_der_length32_impl min in let l1 = der_length_payload_size_of_tag8 tg1 in let tg2 = tag_of_der_length32_impl max in let l2 = der_length_payload_size_of_tag8 tg2 in if (len `U8.lt` l1) || ( l2 `U8.lt` len) then validator_error_generic else [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input (uint64_to_uint32 v) in let v2 = validate_der_length_payload32 x input v in if is_error v2 then v2 else let y = read_der_length_payload32 x input (uint64_to_uint32 v) in if y `U32.lt` min || max `U32.lt` y then validator_error_generic else v2 inline_for_extraction let jump_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( jumper (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in jump_der_length_payload32 x input v inline_for_extraction let read_bounded_der_length32 (vmin: der_length_t) (vmax: der_length_t { vmin <= vmax /\ vmax < 4294967296 } ) : Tot ( leaf_reader (parse_bounded_der_length32 (vmin) (vmax))) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bounded_der_length32 (vmin) (vmax)) h input pos; parse_bounded_der_length32_unfold (vmin) (vmax) (bytes_of_slice_from h input pos); valid_facts parse_u8 h input pos in let v = jump_u8 input pos in let x = read_u8 input pos in let len = der_length_payload_size_of_tag8 x in [@inline_let] let _ = valid_facts (parse_der_length_payload32 x) h input v in let y = read_der_length_payload32 x input v in (y <: bounded_int32 (vmin) (vmax)) #pop-options #push-options "--z3rlimit 64" inline_for_extraction let serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t { min <= max /\ max < 4294967296 } ) (y' : bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 ( min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h )) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ ( B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` sx
false
false
LowParse.Low.DER.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize32_bounded_der_length32' (min: der_length_t) (max: der_length_t{min <= max /\ max < 4294967296}) (y': bounded_int32 (min) (max)) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t) : HST.Stack U32.t (requires (fun h -> let len = Seq.length (serialize (serialize_bounded_der_length32 (min) (max)) y') in B.live h b /\ U32.v pos + len <= B.length b /\ writable b (U32.v pos) (U32.v pos + len) h)) (ensures (fun h len h' -> let sx = serialize (serialize_bounded_der_length32 (min) (max)) y' in Seq.length sx == U32.v len /\ (B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\ (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len)) `Seq.equal` sx)))
[]
LowParse.Low.DER.serialize32_bounded_der_length32'
{ "file_name": "src/lowparse/LowParse.Low.DER.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: LowParse.Spec.DER.der_length_t -> max: LowParse.Spec.DER.der_length_t{min <= max /\ max < 4294967296} -> y': LowParse.Spec.BoundedInt.bounded_int32 min max -> b: LowStar.Monotonic.Buffer.mbuffer FStar.UInt8.t rrel rel -> pos: FStar.UInt32.t -> FStar.HyperStack.ST.Stack FStar.UInt32.t
{ "end_col": 5, "end_line": 309, "start_col": 2, "start_line": 259 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let stable = FStar.Preorder.stable
let stable =
false
null
false
FStar.Preorder.stable
{ "checked_file": "FStar.MRef.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.ST.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.MRef.fsti" }
[ "total" ]
[ "FStar.Preorder.stable", "FStar.Preorder.predicate", "FStar.Preorder.relation", "FStar.Preorder.preorder_rel", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MRef open FStar.Heap open FStar.ST open FStar.Preorder
false
false
FStar.MRef.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val stable : p: FStar.Preorder.predicate _ -> rel: FStar.Preorder.relation _ {FStar.Preorder.preorder_rel rel} -> Prims.logical
[]
FStar.MRef.stable
{ "file_name": "ulib/FStar.MRef.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: FStar.Preorder.predicate _ -> rel: FStar.Preorder.relation _ {FStar.Preorder.preorder_rel rel} -> Prims.logical
{ "end_col": 34, "end_line": 22, "start_col": 13, "start_line": 22 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let spred (#a:Type) (rel:preorder a) = p:(a -> Type){Preorder.stable p rel}
let spred (#a: Type) (rel: preorder a) =
false
null
false
p: (a -> Type){Preorder.stable p rel}
{ "checked_file": "FStar.MRef.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.ST.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.MRef.fsti" }
[ "total" ]
[ "FStar.Preorder.preorder", "FStar.Preorder.stable" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MRef open FStar.Heap open FStar.ST open FStar.Preorder let stable = FStar.Preorder.stable val token (#a:Type) (#b:preorder a) (r:mref a b) (p:(a -> Type){stable p b}) : Type0 val witness_token: #a:Type -> #b:preorder a -> m:mref a b -> p:(a -> Type){stable p b} -> ST unit (requires (fun h0 -> p (sel h0 m))) (ensures (fun h0 _ h1 -> h0==h1 /\ token m p)) val recall_token: #a:Type -> #b:preorder a -> m:mref a b -> p:(a -> Type){stable p b} -> ST unit (requires (fun _ -> token m p)) (ensures (fun h0 _ h1 -> h0==h1 /\ p (sel h1 m)))
false
false
FStar.MRef.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spred : rel: FStar.Preorder.preorder a -> Type
[]
FStar.MRef.spred
{ "file_name": "ulib/FStar.MRef.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
rel: FStar.Preorder.preorder a -> Type
{ "end_col": 75, "end_line": 34, "start_col": 39, "start_line": 34 }
Prims.Tot
val list_ffdhe_g2:List.Tot.llist pub_uint8 1
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l
val list_ffdhe_g2:List.Tot.llist pub_uint8 1 let list_ffdhe_g2:List.Tot.llist pub_uint8 1 =
false
null
false
[@@ inline_let ]let l = [0x02uy] in assert_norm (List.Tot.length l == 1); l
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_ffdhe_g2:List.Tot.llist pub_uint8 1
[]
Spec.FFDHE.list_ffdhe_g2
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 1
{ "end_col": 3, "end_line": 28, "start_col": 2, "start_line": 25 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_sk_t (a:ffdhe_alg) = sk:lseq uint8 (ffdhe_len a){1 < nat_from_bytes_be sk}
let ffdhe_sk_t (a: ffdhe_alg) =
false
null
false
sk: lseq uint8 (ffdhe_len a) {1 < nat_from_bytes_be sk}
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.ffdhe_alg", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.FFDHE.ffdhe_len", "Prims.b2t", "Prims.op_LessThan", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.SEC" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192 let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192 let ffdhe_len (a:ffdhe_alg) : x:size_pos{x <= 1024} = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024 val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2) let ffdhe_g2_lemma () = let g = of_list list_ffdhe_g2 in assert_norm (Seq.index (Seq.seq_of_list list_ffdhe_g2) 0 = 0x02uy); nat_from_intseq_be_lemma0 g val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy) let ffdhe_p_lemma0 a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 255 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 255 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 383 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 383 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 511 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 511 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 767 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 767 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 1023 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 1023 == 0xffuy) val ffdhe_p_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n) // 2 < p_n <==> g_n < p_n let ffdhe_p_lemma a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in nat_from_intseq_be_slice_lemma p (len - 1); assert (p_n == nat_from_bytes_be (slice p (len - 1) len) + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); nat_from_intseq_be_lemma0 (slice p (len - 1) len); assert (p_n == v p.[len - 1] + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); ffdhe_p_lemma0 a // RFC4419: 1 < sk /\ sk < (p - 1) / 2 = q
false
true
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_sk_t : a: Spec.FFDHE.ffdhe_alg -> Type0
[]
Spec.FFDHE.ffdhe_sk_t
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> Type0
{ "end_col": 55, "end_line": 572, "start_col": 2, "start_line": 572 }
Prims.Tot
val get_ffdhe_params (a: ffdhe_alg) : ffdhe_params_t
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192
val get_ffdhe_params (a: ffdhe_alg) : ffdhe_params_t let get_ffdhe_params (a: ffdhe_alg) : ffdhe_params_t =
false
null
false
allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.ffdhe_alg", "Spec.FFDHE.ffdhe_params_2048", "Spec.FFDHE.ffdhe_params_3072", "Spec.FFDHE.ffdhe_params_4096", "Spec.FFDHE.ffdhe_params_6144", "Spec.FFDHE.ffdhe_params_8192", "Spec.FFDHE.ffdhe_params_t", "Prims.unit", "FStar.Pervasives.allow_inversion" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192
false
true
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_ffdhe_params (a: ffdhe_alg) : ffdhe_params_t
[]
Spec.FFDHE.get_ffdhe_params
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> Spec.FFDHE.ffdhe_params_t
{ "end_col": 34, "end_line": 496, "start_col": 2, "start_line": 490 }
Prims.Tot
val ffdhe_params_4096:ffdhe_params_t
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2
val ffdhe_params_4096:ffdhe_params_t let ffdhe_params_4096:ffdhe_params_t =
false
null
false
Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.Mk_ffdhe_params", "Spec.FFDHE.ffdhe_p4096", "Spec.FFDHE.ffdhe_g2" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits.
false
true
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_params_4096:ffdhe_params_t
[]
Spec.FFDHE.ffdhe_params_4096
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.FFDHE.ffdhe_params_t
{ "end_col": 44, "end_line": 222, "start_col": 2, "start_line": 222 }
Prims.Tot
val ffdhe_params_6144:ffdhe_params_t
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2
val ffdhe_params_6144:ffdhe_params_t let ffdhe_params_6144:ffdhe_params_t =
false
null
false
Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.Mk_ffdhe_params", "Spec.FFDHE.ffdhe_p6144", "Spec.FFDHE.ffdhe_g2" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits.
false
true
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_params_6144:ffdhe_params_t
[]
Spec.FFDHE.ffdhe_params_6144
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.FFDHE.ffdhe_params_t
{ "end_col": 44, "end_line": 334, "start_col": 2, "start_line": 334 }
Prims.Tot
val ffdhe_params_8192:ffdhe_params_t
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2
val ffdhe_params_8192:ffdhe_params_t let ffdhe_params_8192:ffdhe_params_t =
false
null
false
Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.Mk_ffdhe_params", "Spec.FFDHE.ffdhe_p8192", "Spec.FFDHE.ffdhe_g2" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits.
false
true
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_params_8192:ffdhe_params_t
[]
Spec.FFDHE.ffdhe_params_8192
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.FFDHE.ffdhe_params_t
{ "end_col": 45, "end_line": 478, "start_col": 2, "start_line": 478 }
Prims.Tot
val ffdhe_params_2048:ffdhe_params_t
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2
val ffdhe_params_2048:ffdhe_params_t let ffdhe_params_2048:ffdhe_params_t =
false
null
false
Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.Mk_ffdhe_params", "Spec.FFDHE.ffdhe_p2048", "Spec.FFDHE.ffdhe_g2" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits.
false
true
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_params_2048:ffdhe_params_t
[]
Spec.FFDHE.ffdhe_params_2048
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.FFDHE.ffdhe_params_t
{ "end_col": 44, "end_line": 78, "start_col": 2, "start_line": 78 }
Prims.Tot
val ffdhe_params_3072:ffdhe_params_t
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2
val ffdhe_params_3072:ffdhe_params_t let ffdhe_params_3072:ffdhe_params_t =
false
null
false
Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.Mk_ffdhe_params", "Spec.FFDHE.ffdhe_p3072", "Spec.FFDHE.ffdhe_g2" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits.
false
true
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_params_3072:ffdhe_params_t
[]
Spec.FFDHE.ffdhe_params_3072
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.FFDHE.ffdhe_params_t
{ "end_col": 44, "end_line": 142, "start_col": 2, "start_line": 142 }
Prims.Tot
val ffdhe_secret_to_public: a:ffdhe_alg -> sk:ffdhe_sk_t a -> lseq uint8 (ffdhe_len a)
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_secret_to_public a sk = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let g = Mk_ffdhe_params?.ffdhe_g ffdhe_p in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let g_n = nat_from_bytes_be g in let p_n = nat_from_bytes_be p in let sk_n = nat_from_bytes_be sk in ffdhe_g2_lemma (); ffdhe_p_lemma a; let pk_n = Lib.NatMod.pow_mod #p_n g_n sk_n in nat_to_bytes_be len pk_n
val ffdhe_secret_to_public: a:ffdhe_alg -> sk:ffdhe_sk_t a -> lseq uint8 (ffdhe_len a) let ffdhe_secret_to_public a sk =
false
null
false
let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let g = Mk_ffdhe_params?.ffdhe_g ffdhe_p in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let g_n = nat_from_bytes_be g in let p_n = nat_from_bytes_be p in let sk_n = nat_from_bytes_be sk in ffdhe_g2_lemma (); ffdhe_p_lemma a; let pk_n = Lib.NatMod.pow_mod #p_n g_n sk_n in nat_to_bytes_be len pk_n
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.ffdhe_alg", "Spec.FFDHE.ffdhe_sk_t", "Lib.ByteSequence.nat_to_bytes_be", "Lib.IntTypes.SEC", "Lib.NatMod.nat_mod", "Lib.NatMod.pow_mod", "Prims.unit", "Spec.FFDHE.ffdhe_p_lemma", "Spec.FFDHE.ffdhe_g2_lemma", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.PUB", "Lib.Sequence.lseq", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p_len", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_g_len", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_g", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Spec.FFDHE.ffdhe_len", "Spec.FFDHE.ffdhe_params_t", "Spec.FFDHE.get_ffdhe_params", "Lib.IntTypes.uint8" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192 let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192 let ffdhe_len (a:ffdhe_alg) : x:size_pos{x <= 1024} = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024 val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2) let ffdhe_g2_lemma () = let g = of_list list_ffdhe_g2 in assert_norm (Seq.index (Seq.seq_of_list list_ffdhe_g2) 0 = 0x02uy); nat_from_intseq_be_lemma0 g val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy) let ffdhe_p_lemma0 a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 255 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 255 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 383 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 383 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 511 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 511 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 767 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 767 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 1023 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 1023 == 0xffuy) val ffdhe_p_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n) // 2 < p_n <==> g_n < p_n let ffdhe_p_lemma a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in nat_from_intseq_be_slice_lemma p (len - 1); assert (p_n == nat_from_bytes_be (slice p (len - 1) len) + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); nat_from_intseq_be_lemma0 (slice p (len - 1) len); assert (p_n == v p.[len - 1] + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); ffdhe_p_lemma0 a // RFC4419: 1 < sk /\ sk < (p - 1) / 2 = q unfold let ffdhe_sk_t (a:ffdhe_alg) = sk:lseq uint8 (ffdhe_len a){1 < nat_from_bytes_be sk} // pk_A = g ^^ sk_A % p
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_secret_to_public: a:ffdhe_alg -> sk:ffdhe_sk_t a -> lseq uint8 (ffdhe_len a)
[]
Spec.FFDHE.ffdhe_secret_to_public
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> sk: Spec.FFDHE.ffdhe_sk_t a -> Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.FFDHE.ffdhe_len a)
{ "end_col": 26, "end_line": 589, "start_col": 33, "start_line": 576 }
Prims.Tot
val ffdhe_len (a: ffdhe_alg) : x: size_pos{x <= 1024}
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_len (a:ffdhe_alg) : x:size_pos{x <= 1024} = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024
val ffdhe_len (a: ffdhe_alg) : x: size_pos{x <= 1024} let ffdhe_len (a: ffdhe_alg) : x: size_pos{x <= 1024} =
false
null
false
allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.ffdhe_alg", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.unit", "FStar.Pervasives.allow_inversion" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192 let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_len (a: ffdhe_alg) : x: size_pos{x <= 1024}
[]
Spec.FFDHE.ffdhe_len
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> x: Lib.IntTypes.size_pos{x <= 1024}
{ "end_col": 21, "end_line": 506, "start_col": 2, "start_line": 500 }
Prims.Tot
val ffdhe_g2:lseq pub_uint8 1
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2
val ffdhe_g2:lseq pub_uint8 1 let ffdhe_g2:lseq pub_uint8 1 =
false
null
false
of_list list_ffdhe_g2
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_g2" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_g2:lseq pub_uint8 1
[]
Spec.FFDHE.ffdhe_g2
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 1
{ "end_col": 54, "end_line": 30, "start_col": 33, "start_line": 30 }
FStar.Pervasives.Lemma
val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2)
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_g2_lemma () = let g = of_list list_ffdhe_g2 in assert_norm (Seq.index (Seq.seq_of_list list_ffdhe_g2) 0 = 0x02uy); nat_from_intseq_be_lemma0 g
val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2) let ffdhe_g2_lemma () =
false
null
true
let g = of_list list_ffdhe_g2 in assert_norm (Seq.index (Seq.seq_of_list list_ffdhe_g2) 0 = 0x02uy); nat_from_intseq_be_lemma0 g
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "lemma" ]
[ "Prims.unit", "Lib.ByteSequence.nat_from_intseq_be_lemma0", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "FStar.UInt8.t", "FStar.Seq.Base.index", "Lib.IntTypes.int_t", "FStar.Seq.Properties.seq_of_list", "Spec.FFDHE.list_ffdhe_g2", "FStar.UInt8.__uint_to_t", "Lib.Sequence.lseq", "FStar.List.Tot.Base.length", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "Lib.Sequence.of_list" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192 let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192 let ffdhe_len (a:ffdhe_alg) : x:size_pos{x <= 1024} = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2)
[]
Spec.FFDHE.ffdhe_g2_lemma
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Lib.ByteSequence.nat_from_bytes_be (Lib.Sequence.of_list Spec.FFDHE.list_ffdhe_g2) = 2)
{ "end_col": 29, "end_line": 513, "start_col": 23, "start_line": 510 }
Prims.Tot
val ffdhe_shared_secret: a:ffdhe_alg -> sk:ffdhe_sk_t a -> pk:lseq uint8 (ffdhe_len a) -> option (lseq uint8 (ffdhe_len a))
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_shared_secret a sk pk = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in let sk_n = nat_from_bytes_be sk in let pk_n = nat_from_bytes_be pk in if 1 < pk_n && pk_n < p_n - 1 then begin ffdhe_p_lemma a; let ss_n = Lib.NatMod.pow_mod #p_n pk_n sk_n in let ss = nat_to_bytes_be len ss_n in Some ss end else None
val ffdhe_shared_secret: a:ffdhe_alg -> sk:ffdhe_sk_t a -> pk:lseq uint8 (ffdhe_len a) -> option (lseq uint8 (ffdhe_len a)) let ffdhe_shared_secret a sk pk =
false
null
false
let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in let sk_n = nat_from_bytes_be sk in let pk_n = nat_from_bytes_be pk in if 1 < pk_n && pk_n < p_n - 1 then (ffdhe_p_lemma a; let ss_n = Lib.NatMod.pow_mod #p_n pk_n sk_n in let ss = nat_to_bytes_be len ss_n in Some ss) else None
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Spec.FFDHE.ffdhe_alg", "Spec.FFDHE.ffdhe_sk_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.FFDHE.ffdhe_len", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Pervasives.Native.Some", "Lib.Sequence.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.l_or", "Prims.b2t", "Prims.pow2", "Prims.op_Multiply", "Lib.ByteSequence.nat_from_intseq_be", "Lib.ByteSequence.nat_to_bytes_be", "Lib.NatMod.nat_mod", "Lib.NatMod.pow_mod", "Prims.unit", "Spec.FFDHE.ffdhe_p_lemma", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.PUB", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p_len", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p", "Prims.pos", "Prims.op_LessThanOrEqual", "Spec.FFDHE.ffdhe_params_t", "Spec.FFDHE.get_ffdhe_params" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192 let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192 let ffdhe_len (a:ffdhe_alg) : x:size_pos{x <= 1024} = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024 val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2) let ffdhe_g2_lemma () = let g = of_list list_ffdhe_g2 in assert_norm (Seq.index (Seq.seq_of_list list_ffdhe_g2) 0 = 0x02uy); nat_from_intseq_be_lemma0 g val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy) let ffdhe_p_lemma0 a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 255 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 255 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 383 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 383 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 511 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 511 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 767 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 767 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 1023 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 1023 == 0xffuy) val ffdhe_p_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n) // 2 < p_n <==> g_n < p_n let ffdhe_p_lemma a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in nat_from_intseq_be_slice_lemma p (len - 1); assert (p_n == nat_from_bytes_be (slice p (len - 1) len) + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); nat_from_intseq_be_lemma0 (slice p (len - 1) len); assert (p_n == v p.[len - 1] + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); ffdhe_p_lemma0 a // RFC4419: 1 < sk /\ sk < (p - 1) / 2 = q unfold let ffdhe_sk_t (a:ffdhe_alg) = sk:lseq uint8 (ffdhe_len a){1 < nat_from_bytes_be sk} // pk_A = g ^^ sk_A % p val ffdhe_secret_to_public: a:ffdhe_alg -> sk:ffdhe_sk_t a -> lseq uint8 (ffdhe_len a) let ffdhe_secret_to_public a sk = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let g = Mk_ffdhe_params?.ffdhe_g ffdhe_p in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let g_n = nat_from_bytes_be g in let p_n = nat_from_bytes_be p in let sk_n = nat_from_bytes_be sk in ffdhe_g2_lemma (); ffdhe_p_lemma a; let pk_n = Lib.NatMod.pow_mod #p_n g_n sk_n in nat_to_bytes_be len pk_n (** 5.1. Checking the Peer's Public Key Peers MUST validate each other's public key Y (dh_Ys offered by the server or dh_Yc offered by the client) by ensuring that 1 < Y < p-1. *) // ss = pk_B ^^ sk_A % p val ffdhe_shared_secret: a:ffdhe_alg -> sk:ffdhe_sk_t a -> pk:lseq uint8 (ffdhe_len a) -> option (lseq uint8 (ffdhe_len a))
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_shared_secret: a:ffdhe_alg -> sk:ffdhe_sk_t a -> pk:lseq uint8 (ffdhe_len a) -> option (lseq uint8 (ffdhe_len a))
[]
Spec.FFDHE.ffdhe_shared_secret
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> sk: Spec.FFDHE.ffdhe_sk_t a -> pk: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.FFDHE.ffdhe_len a) -> FStar.Pervasives.Native.option (Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.FFDHE.ffdhe_len a))
{ "end_col": 11, "end_line": 616, "start_col": 33, "start_line": 602 }
Prims.Tot
val list_ffdhe_p2048:List.Tot.llist pub_uint8 256
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l
val list_ffdhe_p2048:List.Tot.llist pub_uint8 256 let list_ffdhe_p2048:List.Tot.llist pub_uint8 256 =
false
null
false
[@@ inline_let ]let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_ffdhe_p2048:List.Tot.llist pub_uint8 256
[]
Spec.FFDHE.list_ffdhe_p2048
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 256
{ "end_col": 3, "end_line": 72, "start_col": 2, "start_line": 36 }
FStar.Pervasives.Lemma
val ffdhe_p_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n)
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p_lemma a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in nat_from_intseq_be_slice_lemma p (len - 1); assert (p_n == nat_from_bytes_be (slice p (len - 1) len) + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); nat_from_intseq_be_lemma0 (slice p (len - 1) len); assert (p_n == v p.[len - 1] + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); ffdhe_p_lemma0 a
val ffdhe_p_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n) let ffdhe_p_lemma a =
false
null
true
let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in nat_from_intseq_be_slice_lemma p (len - 1); assert (p_n == nat_from_bytes_be (slice p (len - 1) len) + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); nat_from_intseq_be_lemma0 (slice p (len - 1) len); assert (p_n == v p.[ len - 1 ] + pow2 8 * nat_from_bytes_be (slice p 0 (len - 1))); ffdhe_p_lemma0 a
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "lemma" ]
[ "Spec.FFDHE.ffdhe_alg", "Spec.FFDHE.ffdhe_p_lemma0", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Lib.Sequence.op_String_Access", "Lib.IntTypes.pub_uint8", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p_len", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Prims.pow2", "Lib.ByteSequence.nat_from_bytes_be", "Lib.Sequence.slice", "Lib.ByteSequence.nat_from_intseq_be_lemma0", "Lib.ByteSequence.nat_from_intseq_be_slice_lemma", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.Sequence.lseq", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p", "Prims.pos", "Prims.op_LessThanOrEqual", "Spec.FFDHE.ffdhe_len", "Spec.FFDHE.ffdhe_params_t", "Spec.FFDHE.get_ffdhe_params" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192 let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192 let ffdhe_len (a:ffdhe_alg) : x:size_pos{x <= 1024} = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024 val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2) let ffdhe_g2_lemma () = let g = of_list list_ffdhe_g2 in assert_norm (Seq.index (Seq.seq_of_list list_ffdhe_g2) 0 = 0x02uy); nat_from_intseq_be_lemma0 g val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy) let ffdhe_p_lemma0 a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 255 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 255 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 383 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 383 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 511 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 511 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 767 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 767 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 1023 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 1023 == 0xffuy) val ffdhe_p_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n) // 2 < p_n <==> g_n < p_n
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n)
[]
Spec.FFDHE.ffdhe_p_lemma
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> FStar.Pervasives.Lemma (ensures (let ffdhe_p = Spec.FFDHE.get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = Lib.ByteSequence.nat_from_bytes_be p in p_n % 2 = 1 /\ 255 <= p_n))
{ "end_col": 18, "end_line": 567, "start_col": 21, "start_line": 557 }
Prims.Tot
val ffdhe_p2048:lseq pub_uint8 256
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048
val ffdhe_p2048:lseq pub_uint8 256 let ffdhe_p2048:lseq pub_uint8 256 =
false
null
false
of_list list_ffdhe_p2048
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p2048" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p2048:lseq pub_uint8 256
[]
Spec.FFDHE.ffdhe_p2048
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 256
{ "end_col": 62, "end_line": 74, "start_col": 38, "start_line": 74 }
Prims.Tot
val list_ffdhe_p3072:List.Tot.llist pub_uint8 384
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l
val list_ffdhe_p3072:List.Tot.llist pub_uint8 384 let list_ffdhe_p3072:List.Tot.llist pub_uint8 384 =
false
null
false
[@@ inline_let ]let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_ffdhe_p3072:List.Tot.llist pub_uint8 384
[]
Spec.FFDHE.list_ffdhe_p3072
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 384
{ "end_col": 3, "end_line": 136, "start_col": 2, "start_line": 84 }
Prims.Tot
val ffdhe_p3072:lseq pub_uint8 384
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072
val ffdhe_p3072:lseq pub_uint8 384 let ffdhe_p3072:lseq pub_uint8 384 =
false
null
false
of_list list_ffdhe_p3072
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p3072" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p3072:lseq pub_uint8 384
[]
Spec.FFDHE.ffdhe_p3072
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 384
{ "end_col": 62, "end_line": 138, "start_col": 38, "start_line": 138 }
Prims.Tot
val list_ffdhe_p4096:List.Tot.llist pub_uint8 512
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l
val list_ffdhe_p4096:List.Tot.llist pub_uint8 512 let list_ffdhe_p4096:List.Tot.llist pub_uint8 512 =
false
null
false
[@@ inline_let ]let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_ffdhe_p4096:List.Tot.llist pub_uint8 512
[]
Spec.FFDHE.list_ffdhe_p4096
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 512
{ "end_col": 3, "end_line": 216, "start_col": 2, "start_line": 148 }
Prims.Tot
val ffdhe_p4096:lseq pub_uint8 512
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096
val ffdhe_p4096:lseq pub_uint8 512 let ffdhe_p4096:lseq pub_uint8 512 =
false
null
false
of_list list_ffdhe_p4096
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p4096" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p4096:lseq pub_uint8 512
[]
Spec.FFDHE.ffdhe_p4096
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 512
{ "end_col": 62, "end_line": 218, "start_col": 38, "start_line": 218 }
Prims.Tot
val list_ffdhe_p6144:List.Tot.llist pub_uint8 768
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l
val list_ffdhe_p6144:List.Tot.llist pub_uint8 768 let list_ffdhe_p6144:List.Tot.llist pub_uint8 768 =
false
null
false
[@@ inline_let ]let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_ffdhe_p6144:List.Tot.llist pub_uint8 768
[]
Spec.FFDHE.list_ffdhe_p6144
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 768
{ "end_col": 3, "end_line": 328, "start_col": 2, "start_line": 228 }
Prims.Tot
val ffdhe_p6144:lseq pub_uint8 768
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144
val ffdhe_p6144:lseq pub_uint8 768 let ffdhe_p6144:lseq pub_uint8 768 =
false
null
false
of_list list_ffdhe_p6144
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p6144" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p6144:lseq pub_uint8 768
[]
Spec.FFDHE.ffdhe_p6144
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 768
{ "end_col": 62, "end_line": 330, "start_col": 38, "start_line": 330 }
Prims.Tot
val list_ffdhe_p8192:List.Tot.llist pub_uint8 1024
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l
val list_ffdhe_p8192:List.Tot.llist pub_uint8 1024 let list_ffdhe_p8192:List.Tot.llist pub_uint8 1024 =
false
null
false
[@@ inline_let ]let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_ffdhe_p8192:List.Tot.llist pub_uint8 1024
[]
Spec.FFDHE.list_ffdhe_p8192
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 1024
{ "end_col": 3, "end_line": 472, "start_col": 2, "start_line": 340 }
Prims.Tot
val ffdhe_p8192:lseq pub_uint8 1024
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192
val ffdhe_p8192:lseq pub_uint8 1024 let ffdhe_p8192:lseq pub_uint8 1024 =
false
null
false
of_list list_ffdhe_p8192
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p8192" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p8192:lseq pub_uint8 1024
[]
Spec.FFDHE.ffdhe_p8192
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) 1024
{ "end_col": 63, "end_line": 474, "start_col": 39, "start_line": 474 }
FStar.Pervasives.Lemma
val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy)
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p_lemma0 a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 255 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 255 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 383 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 383 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 511 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 511 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 767 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 767 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 1023 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 1023 == 0xffuy)
val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy) let ffdhe_p_lemma0 a =
false
null
true
let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 255 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 255 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 383 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 383 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 511 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 511 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 767 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 767 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 1023 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 1023 == 0xffuy)
{ "checked_file": "Spec.FFDHE.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.FFDHE.fst" }
[ "lemma" ]
[ "Spec.FFDHE.ffdhe_alg", "Prims._assert", "Prims.eq2", "FStar.UInt8.t", "FStar.Seq.Base.index", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "FStar.Seq.Properties.seq_of_list", "Spec.FFDHE.list_ffdhe_p2048", "FStar.UInt8.__uint_to_t", "Prims.unit", "FStar.Pervasives.assert_norm", "FStar.List.Tot.Base.index", "Lib.Sequence.seq", "Lib.IntTypes.pub_uint8", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p_len", "Prims.l_and", "FStar.List.Tot.Base.length", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "Lib.Sequence.of_list", "Spec.FFDHE.list_ffdhe_p3072", "Spec.FFDHE.list_ffdhe_p4096", "Spec.FFDHE.list_ffdhe_p6144", "Spec.FFDHE.list_ffdhe_p8192", "FStar.Pervasives.allow_inversion", "Lib.Sequence.lseq", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Spec.FFDHE.ffdhe_len", "Spec.FFDHE.ffdhe_params_t", "Spec.FFDHE.get_ffdhe_params" ]
[]
module Spec.FFDHE open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** https://tools.ietf.org/html/rfc7919#appendix-A *) noeq type ffdhe_params_t = | Mk_ffdhe_params: ffdhe_p_len:size_nat -> ffdhe_p:lseq pub_uint8 ffdhe_p_len -> ffdhe_g_len:size_nat -> ffdhe_g:lseq pub_uint8 ffdhe_g_len -> ffdhe_params_t [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_g2: List.Tot.llist pub_uint8 1 = [@inline_let] let l = [ 0x02uy ] in assert_norm (List.Tot.length l == 1); l let ffdhe_g2: lseq pub_uint8 1 = of_list list_ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p2048: List.Tot.llist pub_uint8 256 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x28uy; 0x5Cuy; 0x97uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 256); l let ffdhe_p2048: lseq pub_uint8 256 = of_list list_ffdhe_p2048 // The estimated symmetric-equivalent strength of this group is 103 bits. let ffdhe_params_2048 : ffdhe_params_t = Mk_ffdhe_params 256 ffdhe_p2048 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p3072: List.Tot.llist pub_uint8 384 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0xC6uy; 0x2Euy; 0x37uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 384); l let ffdhe_p3072: lseq pub_uint8 384 = of_list list_ffdhe_p3072 // The estimated symmetric-equivalent strength of this group is 125 bits. let ffdhe_params_3072 : ffdhe_params_t = Mk_ffdhe_params 384 ffdhe_p3072 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p4096: List.Tot.llist pub_uint8 512 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x65uy; 0x5Fuy; 0x6Auy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 512); l let ffdhe_p4096: lseq pub_uint8 512 = of_list list_ffdhe_p4096 // The estimated symmetric-equivalent strength of this group is 150 bits. let ffdhe_params_4096 : ffdhe_params_t = Mk_ffdhe_params 512 ffdhe_p4096 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p6144: List.Tot.llist pub_uint8 768 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xD0uy; 0xE4uy; 0x0Euy; 0x65uy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 768); l let ffdhe_p6144: lseq pub_uint8 768 = of_list list_ffdhe_p6144 // The estimated symmetric-equivalent strength of this group is 175 bits. let ffdhe_params_6144 : ffdhe_params_t = Mk_ffdhe_params 768 ffdhe_p6144 1 ffdhe_g2 [@"opaque_to_smt"] inline_for_extraction let list_ffdhe_p8192: List.Tot.llist pub_uint8 1024 = [@inline_let] let l = [ 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xADuy; 0xF8uy; 0x54uy; 0x58uy; 0xA2uy; 0xBBuy; 0x4Auy; 0x9Auy; 0xAFuy; 0xDCuy; 0x56uy; 0x20uy; 0x27uy; 0x3Duy; 0x3Cuy; 0xF1uy; 0xD8uy; 0xB9uy; 0xC5uy; 0x83uy; 0xCEuy; 0x2Duy; 0x36uy; 0x95uy; 0xA9uy; 0xE1uy; 0x36uy; 0x41uy; 0x14uy; 0x64uy; 0x33uy; 0xFBuy; 0xCCuy; 0x93uy; 0x9Duy; 0xCEuy; 0x24uy; 0x9Buy; 0x3Euy; 0xF9uy; 0x7Duy; 0x2Fuy; 0xE3uy; 0x63uy; 0x63uy; 0x0Cuy; 0x75uy; 0xD8uy; 0xF6uy; 0x81uy; 0xB2uy; 0x02uy; 0xAEuy; 0xC4uy; 0x61uy; 0x7Auy; 0xD3uy; 0xDFuy; 0x1Euy; 0xD5uy; 0xD5uy; 0xFDuy; 0x65uy; 0x61uy; 0x24uy; 0x33uy; 0xF5uy; 0x1Fuy; 0x5Fuy; 0x06uy; 0x6Euy; 0xD0uy; 0x85uy; 0x63uy; 0x65uy; 0x55uy; 0x3Duy; 0xEDuy; 0x1Auy; 0xF3uy; 0xB5uy; 0x57uy; 0x13uy; 0x5Euy; 0x7Fuy; 0x57uy; 0xC9uy; 0x35uy; 0x98uy; 0x4Fuy; 0x0Cuy; 0x70uy; 0xE0uy; 0xE6uy; 0x8Buy; 0x77uy; 0xE2uy; 0xA6uy; 0x89uy; 0xDAuy; 0xF3uy; 0xEFuy; 0xE8uy; 0x72uy; 0x1Duy; 0xF1uy; 0x58uy; 0xA1uy; 0x36uy; 0xADuy; 0xE7uy; 0x35uy; 0x30uy; 0xACuy; 0xCAuy; 0x4Fuy; 0x48uy; 0x3Auy; 0x79uy; 0x7Auy; 0xBCuy; 0x0Auy; 0xB1uy; 0x82uy; 0xB3uy; 0x24uy; 0xFBuy; 0x61uy; 0xD1uy; 0x08uy; 0xA9uy; 0x4Buy; 0xB2uy; 0xC8uy; 0xE3uy; 0xFBuy; 0xB9uy; 0x6Auy; 0xDAuy; 0xB7uy; 0x60uy; 0xD7uy; 0xF4uy; 0x68uy; 0x1Duy; 0x4Fuy; 0x42uy; 0xA3uy; 0xDEuy; 0x39uy; 0x4Duy; 0xF4uy; 0xAEuy; 0x56uy; 0xEDuy; 0xE7uy; 0x63uy; 0x72uy; 0xBBuy; 0x19uy; 0x0Buy; 0x07uy; 0xA7uy; 0xC8uy; 0xEEuy; 0x0Auy; 0x6Duy; 0x70uy; 0x9Euy; 0x02uy; 0xFCuy; 0xE1uy; 0xCDuy; 0xF7uy; 0xE2uy; 0xECuy; 0xC0uy; 0x34uy; 0x04uy; 0xCDuy; 0x28uy; 0x34uy; 0x2Fuy; 0x61uy; 0x91uy; 0x72uy; 0xFEuy; 0x9Cuy; 0xE9uy; 0x85uy; 0x83uy; 0xFFuy; 0x8Euy; 0x4Fuy; 0x12uy; 0x32uy; 0xEEuy; 0xF2uy; 0x81uy; 0x83uy; 0xC3uy; 0xFEuy; 0x3Buy; 0x1Buy; 0x4Cuy; 0x6Fuy; 0xADuy; 0x73uy; 0x3Buy; 0xB5uy; 0xFCuy; 0xBCuy; 0x2Euy; 0xC2uy; 0x20uy; 0x05uy; 0xC5uy; 0x8Euy; 0xF1uy; 0x83uy; 0x7Duy; 0x16uy; 0x83uy; 0xB2uy; 0xC6uy; 0xF3uy; 0x4Auy; 0x26uy; 0xC1uy; 0xB2uy; 0xEFuy; 0xFAuy; 0x88uy; 0x6Buy; 0x42uy; 0x38uy; 0x61uy; 0x1Fuy; 0xCFuy; 0xDCuy; 0xDEuy; 0x35uy; 0x5Buy; 0x3Buy; 0x65uy; 0x19uy; 0x03uy; 0x5Buy; 0xBCuy; 0x34uy; 0xF4uy; 0xDEuy; 0xF9uy; 0x9Cuy; 0x02uy; 0x38uy; 0x61uy; 0xB4uy; 0x6Fuy; 0xC9uy; 0xD6uy; 0xE6uy; 0xC9uy; 0x07uy; 0x7Auy; 0xD9uy; 0x1Duy; 0x26uy; 0x91uy; 0xF7uy; 0xF7uy; 0xEEuy; 0x59uy; 0x8Cuy; 0xB0uy; 0xFAuy; 0xC1uy; 0x86uy; 0xD9uy; 0x1Cuy; 0xAEuy; 0xFEuy; 0x13uy; 0x09uy; 0x85uy; 0x13uy; 0x92uy; 0x70uy; 0xB4uy; 0x13uy; 0x0Cuy; 0x93uy; 0xBCuy; 0x43uy; 0x79uy; 0x44uy; 0xF4uy; 0xFDuy; 0x44uy; 0x52uy; 0xE2uy; 0xD7uy; 0x4Duy; 0xD3uy; 0x64uy; 0xF2uy; 0xE2uy; 0x1Euy; 0x71uy; 0xF5uy; 0x4Buy; 0xFFuy; 0x5Cuy; 0xAEuy; 0x82uy; 0xABuy; 0x9Cuy; 0x9Duy; 0xF6uy; 0x9Euy; 0xE8uy; 0x6Duy; 0x2Buy; 0xC5uy; 0x22uy; 0x36uy; 0x3Auy; 0x0Duy; 0xABuy; 0xC5uy; 0x21uy; 0x97uy; 0x9Buy; 0x0Duy; 0xEAuy; 0xDAuy; 0x1Duy; 0xBFuy; 0x9Auy; 0x42uy; 0xD5uy; 0xC4uy; 0x48uy; 0x4Euy; 0x0Auy; 0xBCuy; 0xD0uy; 0x6Buy; 0xFAuy; 0x53uy; 0xDDuy; 0xEFuy; 0x3Cuy; 0x1Buy; 0x20uy; 0xEEuy; 0x3Fuy; 0xD5uy; 0x9Duy; 0x7Cuy; 0x25uy; 0xE4uy; 0x1Duy; 0x2Buy; 0x66uy; 0x9Euy; 0x1Euy; 0xF1uy; 0x6Euy; 0x6Fuy; 0x52uy; 0xC3uy; 0x16uy; 0x4Duy; 0xF4uy; 0xFBuy; 0x79uy; 0x30uy; 0xE9uy; 0xE4uy; 0xE5uy; 0x88uy; 0x57uy; 0xB6uy; 0xACuy; 0x7Duy; 0x5Fuy; 0x42uy; 0xD6uy; 0x9Fuy; 0x6Duy; 0x18uy; 0x77uy; 0x63uy; 0xCFuy; 0x1Duy; 0x55uy; 0x03uy; 0x40uy; 0x04uy; 0x87uy; 0xF5uy; 0x5Buy; 0xA5uy; 0x7Euy; 0x31uy; 0xCCuy; 0x7Auy; 0x71uy; 0x35uy; 0xC8uy; 0x86uy; 0xEFuy; 0xB4uy; 0x31uy; 0x8Auy; 0xEDuy; 0x6Auy; 0x1Euy; 0x01uy; 0x2Duy; 0x9Euy; 0x68uy; 0x32uy; 0xA9uy; 0x07uy; 0x60uy; 0x0Auy; 0x91uy; 0x81uy; 0x30uy; 0xC4uy; 0x6Duy; 0xC7uy; 0x78uy; 0xF9uy; 0x71uy; 0xADuy; 0x00uy; 0x38uy; 0x09uy; 0x29uy; 0x99uy; 0xA3uy; 0x33uy; 0xCBuy; 0x8Buy; 0x7Auy; 0x1Auy; 0x1Duy; 0xB9uy; 0x3Duy; 0x71uy; 0x40uy; 0x00uy; 0x3Cuy; 0x2Auy; 0x4Euy; 0xCEuy; 0xA9uy; 0xF9uy; 0x8Duy; 0x0Auy; 0xCCuy; 0x0Auy; 0x82uy; 0x91uy; 0xCDuy; 0xCEuy; 0xC9uy; 0x7Duy; 0xCFuy; 0x8Euy; 0xC9uy; 0xB5uy; 0x5Auy; 0x7Fuy; 0x88uy; 0xA4uy; 0x6Buy; 0x4Duy; 0xB5uy; 0xA8uy; 0x51uy; 0xF4uy; 0x41uy; 0x82uy; 0xE1uy; 0xC6uy; 0x8Auy; 0x00uy; 0x7Euy; 0x5Euy; 0x0Duy; 0xD9uy; 0x02uy; 0x0Buy; 0xFDuy; 0x64uy; 0xB6uy; 0x45uy; 0x03uy; 0x6Cuy; 0x7Auy; 0x4Euy; 0x67uy; 0x7Duy; 0x2Cuy; 0x38uy; 0x53uy; 0x2Auy; 0x3Auy; 0x23uy; 0xBAuy; 0x44uy; 0x42uy; 0xCAuy; 0xF5uy; 0x3Euy; 0xA6uy; 0x3Buy; 0xB4uy; 0x54uy; 0x32uy; 0x9Buy; 0x76uy; 0x24uy; 0xC8uy; 0x91uy; 0x7Buy; 0xDDuy; 0x64uy; 0xB1uy; 0xC0uy; 0xFDuy; 0x4Cuy; 0xB3uy; 0x8Euy; 0x8Cuy; 0x33uy; 0x4Cuy; 0x70uy; 0x1Cuy; 0x3Auy; 0xCDuy; 0xADuy; 0x06uy; 0x57uy; 0xFCuy; 0xCFuy; 0xECuy; 0x71uy; 0x9Buy; 0x1Fuy; 0x5Cuy; 0x3Euy; 0x4Euy; 0x46uy; 0x04uy; 0x1Fuy; 0x38uy; 0x81uy; 0x47uy; 0xFBuy; 0x4Cuy; 0xFDuy; 0xB4uy; 0x77uy; 0xA5uy; 0x24uy; 0x71uy; 0xF7uy; 0xA9uy; 0xA9uy; 0x69uy; 0x10uy; 0xB8uy; 0x55uy; 0x32uy; 0x2Euy; 0xDBuy; 0x63uy; 0x40uy; 0xD8uy; 0xA0uy; 0x0Euy; 0xF0uy; 0x92uy; 0x35uy; 0x05uy; 0x11uy; 0xE3uy; 0x0Auy; 0xBEuy; 0xC1uy; 0xFFuy; 0xF9uy; 0xE3uy; 0xA2uy; 0x6Euy; 0x7Fuy; 0xB2uy; 0x9Fuy; 0x8Cuy; 0x18uy; 0x30uy; 0x23uy; 0xC3uy; 0x58uy; 0x7Euy; 0x38uy; 0xDAuy; 0x00uy; 0x77uy; 0xD9uy; 0xB4uy; 0x76uy; 0x3Euy; 0x4Euy; 0x4Buy; 0x94uy; 0xB2uy; 0xBBuy; 0xC1uy; 0x94uy; 0xC6uy; 0x65uy; 0x1Euy; 0x77uy; 0xCAuy; 0xF9uy; 0x92uy; 0xEEuy; 0xAAuy; 0xC0uy; 0x23uy; 0x2Auy; 0x28uy; 0x1Buy; 0xF6uy; 0xB3uy; 0xA7uy; 0x39uy; 0xC1uy; 0x22uy; 0x61uy; 0x16uy; 0x82uy; 0x0Auy; 0xE8uy; 0xDBuy; 0x58uy; 0x47uy; 0xA6uy; 0x7Cuy; 0xBEuy; 0xF9uy; 0xC9uy; 0x09uy; 0x1Buy; 0x46uy; 0x2Duy; 0x53uy; 0x8Cuy; 0xD7uy; 0x2Buy; 0x03uy; 0x74uy; 0x6Auy; 0xE7uy; 0x7Fuy; 0x5Euy; 0x62uy; 0x29uy; 0x2Cuy; 0x31uy; 0x15uy; 0x62uy; 0xA8uy; 0x46uy; 0x50uy; 0x5Duy; 0xC8uy; 0x2Duy; 0xB8uy; 0x54uy; 0x33uy; 0x8Auy; 0xE4uy; 0x9Fuy; 0x52uy; 0x35uy; 0xC9uy; 0x5Buy; 0x91uy; 0x17uy; 0x8Cuy; 0xCFuy; 0x2Duy; 0xD5uy; 0xCAuy; 0xCEuy; 0xF4uy; 0x03uy; 0xECuy; 0x9Duy; 0x18uy; 0x10uy; 0xC6uy; 0x27uy; 0x2Buy; 0x04uy; 0x5Buy; 0x3Buy; 0x71uy; 0xF9uy; 0xDCuy; 0x6Buy; 0x80uy; 0xD6uy; 0x3Fuy; 0xDDuy; 0x4Auy; 0x8Euy; 0x9Auy; 0xDBuy; 0x1Euy; 0x69uy; 0x62uy; 0xA6uy; 0x95uy; 0x26uy; 0xD4uy; 0x31uy; 0x61uy; 0xC1uy; 0xA4uy; 0x1Duy; 0x57uy; 0x0Duy; 0x79uy; 0x38uy; 0xDAuy; 0xD4uy; 0xA4uy; 0x0Euy; 0x32uy; 0x9Cuy; 0xCFuy; 0xF4uy; 0x6Auy; 0xAAuy; 0x36uy; 0xADuy; 0x00uy; 0x4Cuy; 0xF6uy; 0x00uy; 0xC8uy; 0x38uy; 0x1Euy; 0x42uy; 0x5Auy; 0x31uy; 0xD9uy; 0x51uy; 0xAEuy; 0x64uy; 0xFDuy; 0xB2uy; 0x3Fuy; 0xCEuy; 0xC9uy; 0x50uy; 0x9Duy; 0x43uy; 0x68uy; 0x7Fuy; 0xEBuy; 0x69uy; 0xEDuy; 0xD1uy; 0xCCuy; 0x5Euy; 0x0Buy; 0x8Cuy; 0xC3uy; 0xBDuy; 0xF6uy; 0x4Buy; 0x10uy; 0xEFuy; 0x86uy; 0xB6uy; 0x31uy; 0x42uy; 0xA3uy; 0xABuy; 0x88uy; 0x29uy; 0x55uy; 0x5Buy; 0x2Fuy; 0x74uy; 0x7Cuy; 0x93uy; 0x26uy; 0x65uy; 0xCBuy; 0x2Cuy; 0x0Fuy; 0x1Cuy; 0xC0uy; 0x1Buy; 0xD7uy; 0x02uy; 0x29uy; 0x38uy; 0x88uy; 0x39uy; 0xD2uy; 0xAFuy; 0x05uy; 0xE4uy; 0x54uy; 0x50uy; 0x4Auy; 0xC7uy; 0x8Buy; 0x75uy; 0x82uy; 0x82uy; 0x28uy; 0x46uy; 0xC0uy; 0xBAuy; 0x35uy; 0xC3uy; 0x5Fuy; 0x5Cuy; 0x59uy; 0x16uy; 0x0Cuy; 0xC0uy; 0x46uy; 0xFDuy; 0x82uy; 0x51uy; 0x54uy; 0x1Fuy; 0xC6uy; 0x8Cuy; 0x9Cuy; 0x86uy; 0xB0uy; 0x22uy; 0xBBuy; 0x70uy; 0x99uy; 0x87uy; 0x6Auy; 0x46uy; 0x0Euy; 0x74uy; 0x51uy; 0xA8uy; 0xA9uy; 0x31uy; 0x09uy; 0x70uy; 0x3Fuy; 0xEEuy; 0x1Cuy; 0x21uy; 0x7Euy; 0x6Cuy; 0x38uy; 0x26uy; 0xE5uy; 0x2Cuy; 0x51uy; 0xAAuy; 0x69uy; 0x1Euy; 0x0Euy; 0x42uy; 0x3Cuy; 0xFCuy; 0x99uy; 0xE9uy; 0xE3uy; 0x16uy; 0x50uy; 0xC1uy; 0x21uy; 0x7Buy; 0x62uy; 0x48uy; 0x16uy; 0xCDuy; 0xADuy; 0x9Auy; 0x95uy; 0xF9uy; 0xD5uy; 0xB8uy; 0x01uy; 0x94uy; 0x88uy; 0xD9uy; 0xC0uy; 0xA0uy; 0xA1uy; 0xFEuy; 0x30uy; 0x75uy; 0xA5uy; 0x77uy; 0xE2uy; 0x31uy; 0x83uy; 0xF8uy; 0x1Duy; 0x4Auy; 0x3Fuy; 0x2Fuy; 0xA4uy; 0x57uy; 0x1Euy; 0xFCuy; 0x8Cuy; 0xE0uy; 0xBAuy; 0x8Auy; 0x4Fuy; 0xE8uy; 0xB6uy; 0x85uy; 0x5Duy; 0xFEuy; 0x72uy; 0xB0uy; 0xA6uy; 0x6Euy; 0xDEuy; 0xD2uy; 0xFBuy; 0xABuy; 0xFBuy; 0xE5uy; 0x8Auy; 0x30uy; 0xFAuy; 0xFAuy; 0xBEuy; 0x1Cuy; 0x5Duy; 0x71uy; 0xA8uy; 0x7Euy; 0x2Fuy; 0x74uy; 0x1Euy; 0xF8uy; 0xC1uy; 0xFEuy; 0x86uy; 0xFEuy; 0xA6uy; 0xBBuy; 0xFDuy; 0xE5uy; 0x30uy; 0x67uy; 0x7Fuy; 0x0Duy; 0x97uy; 0xD1uy; 0x1Duy; 0x49uy; 0xF7uy; 0xA8uy; 0x44uy; 0x3Duy; 0x08uy; 0x22uy; 0xE5uy; 0x06uy; 0xA9uy; 0xF4uy; 0x61uy; 0x4Euy; 0x01uy; 0x1Euy; 0x2Auy; 0x94uy; 0x83uy; 0x8Fuy; 0xF8uy; 0x8Cuy; 0xD6uy; 0x8Cuy; 0x8Buy; 0xB7uy; 0xC5uy; 0xC6uy; 0x42uy; 0x4Cuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy; 0xFFuy ] in assert_norm (List.Tot.length l == 1024); l let ffdhe_p8192: lseq pub_uint8 1024 = of_list list_ffdhe_p8192 // The estimated symmetric-equivalent strength of this group is 192 bits. let ffdhe_params_8192 : ffdhe_params_t = Mk_ffdhe_params 1024 ffdhe_p8192 1 ffdhe_g2 type ffdhe_alg = | FFDHE2048 | FFDHE3072 | FFDHE4096 | FFDHE6144 | FFDHE8192 let get_ffdhe_params (a:ffdhe_alg) : ffdhe_params_t = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> ffdhe_params_2048 | FFDHE3072 -> ffdhe_params_3072 | FFDHE4096 -> ffdhe_params_4096 | FFDHE6144 -> ffdhe_params_6144 | FFDHE8192 -> ffdhe_params_8192 let ffdhe_len (a:ffdhe_alg) : x:size_pos{x <= 1024} = allow_inversion ffdhe_alg; match a with | FFDHE2048 -> 256 | FFDHE3072 -> 384 | FFDHE4096 -> 512 | FFDHE6144 -> 768 | FFDHE8192 -> 1024 val ffdhe_g2_lemma: unit -> Lemma (nat_from_bytes_be (of_list list_ffdhe_g2) = 2) let ffdhe_g2_lemma () = let g = of_list list_ffdhe_g2 in assert_norm (Seq.index (Seq.seq_of_list list_ffdhe_g2) 0 = 0x02uy); nat_from_intseq_be_lemma0 g val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy)
false
false
Spec.FFDHE.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p_lemma0: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p (len - 1) == 0xffuy)
[]
Spec.FFDHE.ffdhe_p_lemma0
{ "file_name": "specs/Spec.FFDHE.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> FStar.Pervasives.Lemma (ensures (let ffdhe_p = Spec.FFDHE.get_ffdhe_params a in let len = Spec.FFDHE.ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in FStar.Seq.Base.index p (len - 1) == 0xffuy))
{ "end_col": 72, "end_line": 548, "start_col": 22, "start_line": 522 }
Prims.GTot
val loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r))
val loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc =
false
null
false
loc_regions preserve_liveness (HS.mod_set (Set.singleton r))
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "sometrivial" ]
[ "Prims.bool", "FStar.Monotonic.HyperHeap.rid", "FStar.Modifies.loc_regions", "FStar.Monotonic.HyperHeap.mod_set", "FStar.Set.singleton", "FStar.Modifies.loc" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid)
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc
[]
FStar.Modifies.loc_all_regions_from
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness: Prims.bool -> r: FStar.Monotonic.HyperHeap.rid -> Prims.GTot FStar.Modifies.loc
{ "end_col": 62, "end_line": 103, "start_col": 2, "start_line": 103 }
Prims.GTot
val loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r)
val loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc =
false
null
false
loc_regions preserve_liveness (Set.singleton r)
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "sometrivial" ]
[ "Prims.bool", "FStar.Monotonic.HyperHeap.rid", "FStar.Modifies.loc_regions", "FStar.Set.singleton", "FStar.Modifies.loc" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid)
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc
[]
FStar.Modifies.loc_region_only
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness: Prims.bool -> r: FStar.Monotonic.HyperHeap.rid -> Prims.GTot FStar.Modifies.loc
{ "end_col": 49, "end_line": 97, "start_col": 2, "start_line": 97 }
Prims.GTot
val loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b))
val loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc =
false
null
false
loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b))
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "sometrivial" ]
[ "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "FStar.Modifies.loc_addresses", "FStar.Monotonic.HyperStack.frameOf", "FStar.Set.singleton", "Prims.nat", "FStar.Monotonic.HyperStack.as_addr", "FStar.Modifies.loc" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p)
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc
[]
FStar.Modifies.loc_freed_mreference
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Monotonic.HyperStack.mreference a p -> Prims.GTot FStar.Modifies.loc
{ "end_col": 67, "end_line": 91, "start_col": 2, "start_line": 91 }
Prims.GTot
val loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b))
val loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc =
false
null
false
loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b))
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "sometrivial" ]
[ "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "FStar.Modifies.loc_addresses", "FStar.Monotonic.HyperStack.frameOf", "FStar.Set.singleton", "Prims.nat", "FStar.Monotonic.HyperStack.as_addr", "FStar.Modifies.loc" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p)
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc
[]
FStar.Modifies.loc_mreference
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Monotonic.HyperStack.mreference a p -> Prims.GTot FStar.Modifies.loc
{ "end_col": 66, "end_line": 84, "start_col": 2, "start_line": 84 }
FStar.Pervasives.Lemma
val loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1
val loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] =
false
null
true
Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "lemma" ]
[ "FStar.Modifies.loc", "FStar.Classical.move_requires", "FStar.Modifies.loc_disjoint", "FStar.Modifies.loc_disjoint_sym", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) (* Inclusion of memory locations *) val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val loc_includes_buffer (#t: Type) (b1 b2: B.buffer t) : Lemma (requires (b1 `B.includes` b2)) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.includes b1 b2)]; [SMTPat (loc_includes(loc_buffer b1) (loc_buffer b2))] ]] val loc_includes_gsub_buffer_r (l: loc) (#t: Type) (b: B.buffer t) (i: UInt32.t) (len: UInt32.t) : Lemma (requires (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer b))) (ensures (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer (B.sub b i len)))) [SMTPat (loc_includes l (loc_buffer (B.sub b i len)))] val loc_includes_gsub_buffer_l (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1)) (ensures (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))) [SMTPat (loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_includes_addresses_buffer (#t: Type) (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) (p: B.buffer t) : Lemma (requires (B.frameOf p == r /\ Set.mem (B.as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] val loc_includes_region_buffer (#t: Type) (preserve_liveness: bool) (s: Set.set HS.rid) (b: B.buffer t) : Lemma (requires (Set.mem (B.frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) (* Disjointness of two memory locations *) val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1)
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)]
[]
FStar.Modifies.loc_disjoint_sym'
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Modifies.loc -> s2: FStar.Modifies.loc -> FStar.Pervasives.Lemma (ensures FStar.Modifies.loc_disjoint s1 s2 <==> FStar.Modifies.loc_disjoint s2 s1) [SMTPat (FStar.Modifies.loc_disjoint s1 s2)]
{ "end_col": 50, "end_line": 255, "start_col": 2, "start_line": 254 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_mreference_weak (l: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x) ) (ensures (h' `HS.contains` x)) [ SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h')]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h')] ] ]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_mreference loc_none l h h' x
val modifies_liveness_insensitive_mreference_weak (l: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x) ) (ensures (h' `HS.contains` x)) [ SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h')]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h')] ] ] let modifies_liveness_insensitive_mreference_weak (l: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x) ) (ensures (h' `HS.contains` x)) [ SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h')]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h')] ] ] =
false
null
true
modifies_liveness_insensitive_mreference loc_none l h h' x
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "lemma" ]
[ "FStar.Modifies.loc", "FStar.Monotonic.HyperStack.mem", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "FStar.Modifies.modifies_liveness_insensitive_mreference", "FStar.Modifies.loc_none", "Prims.unit", "Prims.l_and", "FStar.Modifies.modifies", "FStar.Modifies.loc_includes", "FStar.Modifies.address_liveness_insensitive_locs", "FStar.Monotonic.HyperStack.contains", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.logical", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) (* Inclusion of memory locations *) val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val loc_includes_buffer (#t: Type) (b1 b2: B.buffer t) : Lemma (requires (b1 `B.includes` b2)) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.includes b1 b2)]; [SMTPat (loc_includes(loc_buffer b1) (loc_buffer b2))] ]] val loc_includes_gsub_buffer_r (l: loc) (#t: Type) (b: B.buffer t) (i: UInt32.t) (len: UInt32.t) : Lemma (requires (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer b))) (ensures (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer (B.sub b i len)))) [SMTPat (loc_includes l (loc_buffer (B.sub b i len)))] val loc_includes_gsub_buffer_l (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1)) (ensures (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))) [SMTPat (loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_includes_addresses_buffer (#t: Type) (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) (p: B.buffer t) : Lemma (requires (B.frameOf p == r /\ Set.mem (B.as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] val loc_includes_region_buffer (#t: Type) (preserve_liveness: bool) (s: Set.set HS.rid) (b: B.buffer t) : Lemma (requires (Set.mem (B.frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) (* Disjointness of two memory locations *) val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1 val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) [SMTPatOr [ [SMTPat (loc_disjoint p1 p2); SMTPat (loc_disjoint p1' p2')]; [SMTPat (loc_includes p1 p1'); SMTPat (loc_includes p2 p2')]; ]] val loc_disjoint_buffer (#t1 #t2: Type) (b1: B.buffer t1) (b2: B.buffer t2) : Lemma (requires (B.disjoint b1 b2)) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.disjoint b1 b2)]; [SMTPat (loc_disjoint (loc_buffer b1) (loc_buffer b2))]; ]] val loc_disjoint_gsub_buffer (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ ( UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 ))) (ensures ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)) )) [SMTPat (loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_disjoint_addresses (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (n1 n2: Set.set nat) : Lemma (requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty)) (ensures (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))) [SMTPat (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))] val loc_disjoint_buffer_addresses (#t: Type) (p: B.buffer t) (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : Lemma (requires (r <> B.frameOf p \/ (~ (Set.mem (B.as_addr p) n)))) (ensures (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))) [SMTPat (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))] val loc_disjoint_regions (preserve_liveness1 preserve_liveness2: bool) (rs1 rs2: Set.set HS.rid) : Lemma (requires (Set.subset (Set.intersect rs1 rs2) Set.empty)) (ensures (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))) [SMTPat (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))] (** The modifies clause proper *) val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] val modifies_buffer_elim (#t1: Type) (b: B.buffer t1) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_buffer b) p /\ B.live h b /\ modifies p h h' )) (ensures ( B.live h' b /\ ( B.as_seq h b == B.as_seq h' b ))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (B.as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h b) ]; [ SMTPat (modifies p h h'); SMTPat (B.as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h' b) ] ] ] val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPatOr [ [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]; [SMTPat (modifies s1 h h'); SMTPat (loc_includes s1 s2)]; [SMTPat (modifies s2 h h'); SMTPat (loc_includes s1 s2)]; ]] /// Some memory locations are tagged as liveness-insensitive: the /// liveness preservation of a memory location only depends on its /// disjointness from the liveness-sensitive memory locations of a /// modifies clause. val address_liveness_insensitive_locs: loc val region_liveness_insensitive_locs: loc val address_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] val region_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] val region_liveness_insensitive_regions (rs: Set.set HS.rid) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs))] val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) (* TODO: pattern *) val modifies_liveness_insensitive_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ B.live h x)) (ensures (B.live h' x)) (* TODO: pattern *) let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');];
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_mreference_weak (l: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x) ) (ensures (h' `HS.contains` x)) [ SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h')]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h')] ] ]
[]
FStar.Modifies.modifies_liveness_insensitive_mreference_weak
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: FStar.Modifies.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: FStar.Monotonic.HyperStack.mreference t pre -> FStar.Pervasives.Lemma (requires FStar.Modifies.modifies l h h' /\ FStar.Modifies.loc_includes FStar.Modifies.address_liveness_insensitive_locs l /\ FStar.Monotonic.HyperStack.contains h x) (ensures FStar.Monotonic.HyperStack.contains h' x) [ SMTPatOr [ [ SMTPat (FStar.Monotonic.HyperStack.contains h x); SMTPat (FStar.Modifies.modifies l h h') ]; [ SMTPat (FStar.Monotonic.HyperStack.contains h' x); SMTPat (FStar.Modifies.modifies l h h') ] ] ]
{ "end_col": 60, "end_line": 481, "start_col": 2, "start_line": 481 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_region_mreference_weak (l2: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))] ] ]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_region_mreference_weak (l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))]; ]] = modifies_liveness_insensitive_region_mreference loc_none l2 h h' x
val modifies_liveness_insensitive_region_mreference_weak (l2: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))] ] ] let modifies_liveness_insensitive_region_mreference_weak (l2: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))] ] ] =
false
null
true
modifies_liveness_insensitive_region_mreference loc_none l2 h h' x
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "lemma" ]
[ "FStar.Modifies.loc", "FStar.Monotonic.HyperStack.mem", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "FStar.Modifies.modifies_liveness_insensitive_region_mreference", "FStar.Modifies.loc_none", "Prims.unit", "Prims.l_and", "FStar.Modifies.modifies", "FStar.Modifies.loc_includes", "FStar.Modifies.region_liveness_insensitive_locs", "Prims.b2t", "FStar.Monotonic.HyperStack.live_region", "FStar.Monotonic.HyperStack.frameOf", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.bool", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) (* Inclusion of memory locations *) val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val loc_includes_buffer (#t: Type) (b1 b2: B.buffer t) : Lemma (requires (b1 `B.includes` b2)) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.includes b1 b2)]; [SMTPat (loc_includes(loc_buffer b1) (loc_buffer b2))] ]] val loc_includes_gsub_buffer_r (l: loc) (#t: Type) (b: B.buffer t) (i: UInt32.t) (len: UInt32.t) : Lemma (requires (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer b))) (ensures (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer (B.sub b i len)))) [SMTPat (loc_includes l (loc_buffer (B.sub b i len)))] val loc_includes_gsub_buffer_l (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1)) (ensures (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))) [SMTPat (loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_includes_addresses_buffer (#t: Type) (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) (p: B.buffer t) : Lemma (requires (B.frameOf p == r /\ Set.mem (B.as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] val loc_includes_region_buffer (#t: Type) (preserve_liveness: bool) (s: Set.set HS.rid) (b: B.buffer t) : Lemma (requires (Set.mem (B.frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) (* Disjointness of two memory locations *) val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1 val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) [SMTPatOr [ [SMTPat (loc_disjoint p1 p2); SMTPat (loc_disjoint p1' p2')]; [SMTPat (loc_includes p1 p1'); SMTPat (loc_includes p2 p2')]; ]] val loc_disjoint_buffer (#t1 #t2: Type) (b1: B.buffer t1) (b2: B.buffer t2) : Lemma (requires (B.disjoint b1 b2)) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.disjoint b1 b2)]; [SMTPat (loc_disjoint (loc_buffer b1) (loc_buffer b2))]; ]] val loc_disjoint_gsub_buffer (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ ( UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 ))) (ensures ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)) )) [SMTPat (loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_disjoint_addresses (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (n1 n2: Set.set nat) : Lemma (requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty)) (ensures (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))) [SMTPat (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))] val loc_disjoint_buffer_addresses (#t: Type) (p: B.buffer t) (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : Lemma (requires (r <> B.frameOf p \/ (~ (Set.mem (B.as_addr p) n)))) (ensures (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))) [SMTPat (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))] val loc_disjoint_regions (preserve_liveness1 preserve_liveness2: bool) (rs1 rs2: Set.set HS.rid) : Lemma (requires (Set.subset (Set.intersect rs1 rs2) Set.empty)) (ensures (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))) [SMTPat (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))] (** The modifies clause proper *) val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] val modifies_buffer_elim (#t1: Type) (b: B.buffer t1) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_buffer b) p /\ B.live h b /\ modifies p h h' )) (ensures ( B.live h' b /\ ( B.as_seq h b == B.as_seq h' b ))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (B.as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h b) ]; [ SMTPat (modifies p h h'); SMTPat (B.as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h' b) ] ] ] val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPatOr [ [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]; [SMTPat (modifies s1 h h'); SMTPat (loc_includes s1 s2)]; [SMTPat (modifies s2 h h'); SMTPat (loc_includes s1 s2)]; ]] /// Some memory locations are tagged as liveness-insensitive: the /// liveness preservation of a memory location only depends on its /// disjointness from the liveness-sensitive memory locations of a /// modifies clause. val address_liveness_insensitive_locs: loc val region_liveness_insensitive_locs: loc val address_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] val region_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] val region_liveness_insensitive_regions (rs: Set.set HS.rid) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs))] val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) (* TODO: pattern *) val modifies_liveness_insensitive_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ B.live h x)) (ensures (B.live h' x)) (* TODO: pattern *) let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_mreference loc_none l h h' x let modifies_liveness_insensitive_buffer_weak (l : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h');]; [SMTPat (B.live h' x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_buffer loc_none l h h' x val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) (* TODO: pattern *) val modifies_liveness_insensitive_region_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) (* TODO: pattern *) val modifies_liveness_insensitive_region_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) (* TODO: pattern *) let modifies_liveness_insensitive_region_weak (l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)]; ]] = modifies_liveness_insensitive_region loc_none l2 h h' x let modifies_liveness_insensitive_region_mreference_weak (l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))];
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_region_mreference_weak (l2: loc) (h h': HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))] ] ]
[]
FStar.Modifies.modifies_liveness_insensitive_region_mreference_weak
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l2: FStar.Modifies.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: FStar.Monotonic.HyperStack.mreference t pre -> FStar.Pervasives.Lemma (requires FStar.Modifies.modifies l2 h h' /\ FStar.Modifies.loc_includes FStar.Modifies.region_liveness_insensitive_locs l2 /\ FStar.Monotonic.HyperStack.live_region h (FStar.Monotonic.HyperStack.frameOf x)) (ensures FStar.Monotonic.HyperStack.live_region h' (FStar.Monotonic.HyperStack.frameOf x)) [ SMTPatOr [ [ SMTPat (FStar.Modifies.modifies l2 h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h (FStar.Monotonic.HyperStack.frameOf x)) ]; [ SMTPat (FStar.Modifies.modifies l2 h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h' (FStar.Monotonic.HyperStack.frameOf x)) ] ] ]
{ "end_col": 68, "end_line": 553, "start_col": 2, "start_line": 553 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_buffer_weak (l: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [ SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h')]; [SMTPat (B.live h' x); SMTPat (modifies l h h')] ] ]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_buffer_weak (l : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h');]; [SMTPat (B.live h' x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_buffer loc_none l h h' x
val modifies_liveness_insensitive_buffer_weak (l: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [ SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h')]; [SMTPat (B.live h' x); SMTPat (modifies l h h')] ] ] let modifies_liveness_insensitive_buffer_weak (l: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [ SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h')]; [SMTPat (B.live h' x); SMTPat (modifies l h h')] ] ] =
false
null
true
modifies_liveness_insensitive_buffer loc_none l h h' x
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "lemma" ]
[ "FStar.Modifies.loc", "FStar.Monotonic.HyperStack.mem", "FStar.Buffer.buffer", "FStar.Modifies.modifies_liveness_insensitive_buffer", "FStar.Modifies.loc_none", "Prims.unit", "Prims.l_and", "FStar.Modifies.modifies", "FStar.Modifies.loc_includes", "FStar.Modifies.address_liveness_insensitive_locs", "FStar.Buffer.live", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) (* Inclusion of memory locations *) val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val loc_includes_buffer (#t: Type) (b1 b2: B.buffer t) : Lemma (requires (b1 `B.includes` b2)) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.includes b1 b2)]; [SMTPat (loc_includes(loc_buffer b1) (loc_buffer b2))] ]] val loc_includes_gsub_buffer_r (l: loc) (#t: Type) (b: B.buffer t) (i: UInt32.t) (len: UInt32.t) : Lemma (requires (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer b))) (ensures (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer (B.sub b i len)))) [SMTPat (loc_includes l (loc_buffer (B.sub b i len)))] val loc_includes_gsub_buffer_l (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1)) (ensures (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))) [SMTPat (loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_includes_addresses_buffer (#t: Type) (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) (p: B.buffer t) : Lemma (requires (B.frameOf p == r /\ Set.mem (B.as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] val loc_includes_region_buffer (#t: Type) (preserve_liveness: bool) (s: Set.set HS.rid) (b: B.buffer t) : Lemma (requires (Set.mem (B.frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) (* Disjointness of two memory locations *) val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1 val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) [SMTPatOr [ [SMTPat (loc_disjoint p1 p2); SMTPat (loc_disjoint p1' p2')]; [SMTPat (loc_includes p1 p1'); SMTPat (loc_includes p2 p2')]; ]] val loc_disjoint_buffer (#t1 #t2: Type) (b1: B.buffer t1) (b2: B.buffer t2) : Lemma (requires (B.disjoint b1 b2)) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.disjoint b1 b2)]; [SMTPat (loc_disjoint (loc_buffer b1) (loc_buffer b2))]; ]] val loc_disjoint_gsub_buffer (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ ( UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 ))) (ensures ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)) )) [SMTPat (loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_disjoint_addresses (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (n1 n2: Set.set nat) : Lemma (requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty)) (ensures (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))) [SMTPat (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))] val loc_disjoint_buffer_addresses (#t: Type) (p: B.buffer t) (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : Lemma (requires (r <> B.frameOf p \/ (~ (Set.mem (B.as_addr p) n)))) (ensures (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))) [SMTPat (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))] val loc_disjoint_regions (preserve_liveness1 preserve_liveness2: bool) (rs1 rs2: Set.set HS.rid) : Lemma (requires (Set.subset (Set.intersect rs1 rs2) Set.empty)) (ensures (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))) [SMTPat (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))] (** The modifies clause proper *) val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] val modifies_buffer_elim (#t1: Type) (b: B.buffer t1) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_buffer b) p /\ B.live h b /\ modifies p h h' )) (ensures ( B.live h' b /\ ( B.as_seq h b == B.as_seq h' b ))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (B.as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h b) ]; [ SMTPat (modifies p h h'); SMTPat (B.as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h' b) ] ] ] val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPatOr [ [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]; [SMTPat (modifies s1 h h'); SMTPat (loc_includes s1 s2)]; [SMTPat (modifies s2 h h'); SMTPat (loc_includes s1 s2)]; ]] /// Some memory locations are tagged as liveness-insensitive: the /// liveness preservation of a memory location only depends on its /// disjointness from the liveness-sensitive memory locations of a /// modifies clause. val address_liveness_insensitive_locs: loc val region_liveness_insensitive_locs: loc val address_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] val region_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] val region_liveness_insensitive_regions (rs: Set.set HS.rid) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs))] val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) (* TODO: pattern *) val modifies_liveness_insensitive_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ B.live h x)) (ensures (B.live h' x)) (* TODO: pattern *) let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_mreference loc_none l h h' x let modifies_liveness_insensitive_buffer_weak (l : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h');]; [SMTPat (B.live h' x); SMTPat (modifies l h h');];
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_buffer_weak (l: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [ SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h')]; [SMTPat (B.live h' x); SMTPat (modifies l h h')] ] ]
[]
FStar.Modifies.modifies_liveness_insensitive_buffer_weak
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: FStar.Modifies.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: FStar.Buffer.buffer t -> FStar.Pervasives.Lemma (requires FStar.Modifies.modifies l h h' /\ FStar.Modifies.loc_includes FStar.Modifies.address_liveness_insensitive_locs l /\ FStar.Buffer.live h x) (ensures FStar.Buffer.live h' x) [ SMTPatOr [ [SMTPat (FStar.Buffer.live h x); SMTPat (FStar.Modifies.modifies l h h')]; [SMTPat (FStar.Buffer.live h' x); SMTPat (FStar.Modifies.modifies l h h')] ] ]
{ "end_col": 56, "end_line": 495, "start_col": 2, "start_line": 495 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_region_weak (l2: loc) (h h': HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)] ] ]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_region_weak (l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)]; ]] = modifies_liveness_insensitive_region loc_none l2 h h' x
val modifies_liveness_insensitive_region_weak (l2: loc) (h h': HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)] ] ] let modifies_liveness_insensitive_region_weak (l2: loc) (h h': HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)] ] ] =
false
null
true
modifies_liveness_insensitive_region loc_none l2 h h' x
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "lemma" ]
[ "FStar.Modifies.loc", "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.HyperHeap.rid", "FStar.Modifies.modifies_liveness_insensitive_region", "FStar.Modifies.loc_none", "Prims.unit", "Prims.l_and", "FStar.Modifies.modifies", "FStar.Modifies.loc_includes", "FStar.Modifies.region_liveness_insensitive_locs", "Prims.b2t", "FStar.Monotonic.HyperStack.live_region", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.bool", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) (* Inclusion of memory locations *) val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val loc_includes_buffer (#t: Type) (b1 b2: B.buffer t) : Lemma (requires (b1 `B.includes` b2)) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.includes b1 b2)]; [SMTPat (loc_includes(loc_buffer b1) (loc_buffer b2))] ]] val loc_includes_gsub_buffer_r (l: loc) (#t: Type) (b: B.buffer t) (i: UInt32.t) (len: UInt32.t) : Lemma (requires (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer b))) (ensures (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer (B.sub b i len)))) [SMTPat (loc_includes l (loc_buffer (B.sub b i len)))] val loc_includes_gsub_buffer_l (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1)) (ensures (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))) [SMTPat (loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_includes_addresses_buffer (#t: Type) (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) (p: B.buffer t) : Lemma (requires (B.frameOf p == r /\ Set.mem (B.as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] val loc_includes_region_buffer (#t: Type) (preserve_liveness: bool) (s: Set.set HS.rid) (b: B.buffer t) : Lemma (requires (Set.mem (B.frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) (* Disjointness of two memory locations *) val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1 val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) [SMTPatOr [ [SMTPat (loc_disjoint p1 p2); SMTPat (loc_disjoint p1' p2')]; [SMTPat (loc_includes p1 p1'); SMTPat (loc_includes p2 p2')]; ]] val loc_disjoint_buffer (#t1 #t2: Type) (b1: B.buffer t1) (b2: B.buffer t2) : Lemma (requires (B.disjoint b1 b2)) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.disjoint b1 b2)]; [SMTPat (loc_disjoint (loc_buffer b1) (loc_buffer b2))]; ]] val loc_disjoint_gsub_buffer (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ ( UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 ))) (ensures ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)) )) [SMTPat (loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_disjoint_addresses (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (n1 n2: Set.set nat) : Lemma (requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty)) (ensures (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))) [SMTPat (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))] val loc_disjoint_buffer_addresses (#t: Type) (p: B.buffer t) (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : Lemma (requires (r <> B.frameOf p \/ (~ (Set.mem (B.as_addr p) n)))) (ensures (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))) [SMTPat (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))] val loc_disjoint_regions (preserve_liveness1 preserve_liveness2: bool) (rs1 rs2: Set.set HS.rid) : Lemma (requires (Set.subset (Set.intersect rs1 rs2) Set.empty)) (ensures (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))) [SMTPat (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))] (** The modifies clause proper *) val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] val modifies_buffer_elim (#t1: Type) (b: B.buffer t1) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_buffer b) p /\ B.live h b /\ modifies p h h' )) (ensures ( B.live h' b /\ ( B.as_seq h b == B.as_seq h' b ))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (B.as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h b) ]; [ SMTPat (modifies p h h'); SMTPat (B.as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h' b) ] ] ] val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPatOr [ [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]; [SMTPat (modifies s1 h h'); SMTPat (loc_includes s1 s2)]; [SMTPat (modifies s2 h h'); SMTPat (loc_includes s1 s2)]; ]] /// Some memory locations are tagged as liveness-insensitive: the /// liveness preservation of a memory location only depends on its /// disjointness from the liveness-sensitive memory locations of a /// modifies clause. val address_liveness_insensitive_locs: loc val region_liveness_insensitive_locs: loc val address_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] val region_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] val region_liveness_insensitive_regions (rs: Set.set HS.rid) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs))] val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) (* TODO: pattern *) val modifies_liveness_insensitive_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ B.live h x)) (ensures (B.live h' x)) (* TODO: pattern *) let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_mreference loc_none l h h' x let modifies_liveness_insensitive_buffer_weak (l : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h');]; [SMTPat (B.live h' x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_buffer loc_none l h h' x val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) (* TODO: pattern *) val modifies_liveness_insensitive_region_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) (* TODO: pattern *) val modifies_liveness_insensitive_region_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) (* TODO: pattern *) let modifies_liveness_insensitive_region_weak (l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)];
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_region_weak (l2: loc) (h h': HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)] ] ]
[]
FStar.Modifies.modifies_liveness_insensitive_region_weak
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l2: FStar.Modifies.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: FStar.Monotonic.HyperHeap.rid -> FStar.Pervasives.Lemma (requires FStar.Modifies.modifies l2 h h' /\ FStar.Modifies.loc_includes FStar.Modifies.region_liveness_insensitive_locs l2 /\ FStar.Monotonic.HyperStack.live_region h x) (ensures FStar.Monotonic.HyperStack.live_region h' x) [ SMTPatOr [ [ SMTPat (FStar.Modifies.modifies l2 h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h x) ]; [ SMTPat (FStar.Modifies.modifies l2 h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h' x) ] ] ]
{ "end_col": 57, "end_line": 538, "start_col": 2, "start_line": 538 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_region_buffer_weak (l2: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (B.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (B.frameOf x))] ] ]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_region_buffer_weak (l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (B.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (B.frameOf x))]; ]] = modifies_liveness_insensitive_region_buffer loc_none l2 h h' x
val modifies_liveness_insensitive_region_buffer_weak (l2: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (B.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (B.frameOf x))] ] ] let modifies_liveness_insensitive_region_buffer_weak (l2: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (B.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (B.frameOf x))] ] ] =
false
null
true
modifies_liveness_insensitive_region_buffer loc_none l2 h h' x
{ "checked_file": "FStar.Modifies.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Classical.fsti.checked", "FStar.Buffer.fst.checked" ], "interface_file": false, "source_file": "FStar.Modifies.fsti" }
[ "lemma" ]
[ "FStar.Modifies.loc", "FStar.Monotonic.HyperStack.mem", "FStar.Buffer.buffer", "FStar.Modifies.modifies_liveness_insensitive_region_buffer", "FStar.Modifies.loc_none", "Prims.unit", "Prims.l_and", "FStar.Modifies.modifies", "FStar.Modifies.loc_includes", "FStar.Modifies.region_liveness_insensitive_locs", "Prims.b2t", "FStar.Monotonic.HyperStack.live_region", "FStar.Buffer.frameOf", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.bool", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Modifies module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = FStar.Buffer (*** The modifies clause *) val loc : Type u#1 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc (** The following is useful to make Z3 cut matching loops with modifies_trans and modifies_refl *) val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] val loc_buffer (#t: Type) (b: B.buffer t) : GTot loc val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) (* Inclusion of memory locations *) val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) [SMTPat (loc_includes s (loc_union s1 s2))] val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] val loc_includes_buffer (#t: Type) (b1 b2: B.buffer t) : Lemma (requires (b1 `B.includes` b2)) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.includes b1 b2)]; [SMTPat (loc_includes(loc_buffer b1) (loc_buffer b2))] ]] val loc_includes_gsub_buffer_r (l: loc) (#t: Type) (b: B.buffer t) (i: UInt32.t) (len: UInt32.t) : Lemma (requires (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer b))) (ensures (UInt32.v i + UInt32.v len <= (B.length b) /\ loc_includes l (loc_buffer (B.sub b i len)))) [SMTPat (loc_includes l (loc_buffer (B.sub b i len)))] val loc_includes_gsub_buffer_l (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1)) (ensures (UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 /\ loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))) [SMTPat (loc_includes (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_includes_addresses_buffer (#t: Type) (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) (p: B.buffer t) : Lemma (requires (B.frameOf p == r /\ Set.mem (B.as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] val loc_includes_region_buffer (#t: Type) (preserve_liveness: bool) (s: Set.set HS.rid) (b: B.buffer t) : Lemma (requires (Set.mem (B.frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) (* Disjointness of two memory locations *) val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1 val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) [SMTPatOr [ [SMTPat (loc_disjoint p1 p2); SMTPat (loc_disjoint p1' p2')]; [SMTPat (loc_includes p1 p1'); SMTPat (loc_includes p2 p2')]; ]] val loc_disjoint_buffer (#t1 #t2: Type) (b1: B.buffer t1) (b2: B.buffer t2) : Lemma (requires (B.disjoint b1 b2)) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) [SMTPatOr [ [SMTPat (B.disjoint b1 b2)]; [SMTPat (loc_disjoint (loc_buffer b1) (loc_buffer b2))]; ]] val loc_disjoint_gsub_buffer (#t: Type) (b: B.buffer t) (i1: UInt32.t) (len1: UInt32.t) (i2: UInt32.t) (len2: UInt32.t) : Lemma (requires ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ ( UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 ))) (ensures ( UInt32.v i1 + UInt32.v len1 <= (B.length b) /\ UInt32.v i2 + UInt32.v len2 <= (B.length b) /\ loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)) )) [SMTPat (loc_disjoint (loc_buffer (B.sub b i1 len1)) (loc_buffer (B.sub b i2 len2)))] val loc_disjoint_addresses (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (n1 n2: Set.set nat) : Lemma (requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty)) (ensures (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))) [SMTPat (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))] val loc_disjoint_buffer_addresses (#t: Type) (p: B.buffer t) (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : Lemma (requires (r <> B.frameOf p \/ (~ (Set.mem (B.as_addr p) n)))) (ensures (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))) [SMTPat (loc_disjoint (loc_buffer p) (loc_addresses preserve_liveness r n))] val loc_disjoint_regions (preserve_liveness1 preserve_liveness2: bool) (rs1 rs2: Set.set HS.rid) : Lemma (requires (Set.subset (Set.intersect rs1 rs2) Set.empty)) (ensures (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))) [SMTPat (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))] (** The modifies clause proper *) val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] val modifies_buffer_elim (#t1: Type) (b: B.buffer t1) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_buffer b) p /\ B.live h b /\ modifies p h h' )) (ensures ( B.live h' b /\ ( B.as_seq h b == B.as_seq h' b ))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (B.as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h b) ]; [ SMTPat (modifies p h h'); SMTPat (B.as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (B.live h' b) ] ] ] val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPatOr [ [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]; [SMTPat (modifies s1 h h'); SMTPat (loc_includes s1 s2)]; [SMTPat (modifies s2 h h'); SMTPat (loc_includes s1 s2)]; ]] /// Some memory locations are tagged as liveness-insensitive: the /// liveness preservation of a memory location only depends on its /// disjointness from the liveness-sensitive memory locations of a /// modifies clause. val address_liveness_insensitive_locs: loc val region_liveness_insensitive_locs: loc val address_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] val region_liveness_insensitive_buffer (#t: Type) (b: B.buffer t) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] val region_liveness_insensitive_regions (rs: Set.set HS.rid) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs))] val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) (* TODO: pattern *) val modifies_liveness_insensitive_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ B.live h x)) (ensures (B.live h' x)) (* TODO: pattern *) let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_mreference loc_none l h h' x let modifies_liveness_insensitive_buffer_weak (l : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ B.live h x)) (ensures (B.live h' x)) [SMTPatOr [ [SMTPat (B.live h x); SMTPat (modifies l h h');]; [SMTPat (B.live h' x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_buffer loc_none l h h' x val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) (* TODO: pattern *) val modifies_liveness_insensitive_region_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) (* TODO: pattern *) val modifies_liveness_insensitive_region_buffer (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) (* TODO: pattern *) let modifies_liveness_insensitive_region_weak (l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)]; ]] = modifies_liveness_insensitive_region loc_none l2 h h' x let modifies_liveness_insensitive_region_mreference_weak (l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))]; ]] = modifies_liveness_insensitive_region_mreference loc_none l2 h h' x let modifies_liveness_insensitive_region_buffer_weak (l2 : loc) (h h' : HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (B.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (B.frameOf x))];
false
false
FStar.Modifies.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_region_buffer_weak (l2: loc) (h h': HS.mem) (#t: Type) (x: B.buffer t) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (B.frameOf x))) (ensures (HS.live_region h' (B.frameOf x))) [ SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (B.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (B.frameOf x))] ] ]
[]
FStar.Modifies.modifies_liveness_insensitive_region_buffer_weak
{ "file_name": "ulib/FStar.Modifies.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l2: FStar.Modifies.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: FStar.Buffer.buffer t -> FStar.Pervasives.Lemma (requires FStar.Modifies.modifies l2 h h' /\ FStar.Modifies.loc_includes FStar.Modifies.region_liveness_insensitive_locs l2 /\ FStar.Monotonic.HyperStack.live_region h (FStar.Buffer.frameOf x)) (ensures FStar.Monotonic.HyperStack.live_region h' (FStar.Buffer.frameOf x)) [ SMTPatOr [ [ SMTPat (FStar.Modifies.modifies l2 h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h (FStar.Buffer.frameOf x)) ]; [ SMTPat (FStar.Modifies.modifies l2 h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h' (FStar.Buffer.frameOf x)) ] ] ]
{ "end_col": 64, "end_line": 567, "start_col": 2, "start_line": 567 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime
let nat_mod_comm_monoid =
false
null
false
M.mk_nat_mod_comm_monoid S.prime
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "total" ]
[ "Lib.NatMod.mk_nat_mod_comm_monoid", "Spec.P256.PointOps.prime" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
true
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat_mod_comm_monoid : Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod Spec.P256.PointOps.prime)
[]
Hacl.Spec.P256.Finv.nat_mod_comm_monoid
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod Spec.P256.PointOps.prime)
{ "end_col": 58, "end_line": 12, "start_col": 26, "start_line": 12 }
Prims.Tot
val fsqrt: f:S.felem -> S.felem
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254
val fsqrt: f:S.felem -> S.felem let fsqrt f =
false
null
false
let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "total" ]
[ "Spec.P256.PointOps.felem", "Hacl.Spec.P256.Finv.fsquare_times", "Spec.P256.PointOps.fmul" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256
false
true
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqrt: f:S.felem -> S.felem
[]
Hacl.Spec.P256.Finv.fsqrt
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> Spec.P256.PointOps.felem
{ "end_col": 6, "end_line": 79, "start_col": 13, "start_line": 70 }
Prims.Tot
val fsquare_times (a: S.felem) (b: nat) : S.felem
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b
val fsquare_times (a: S.felem) (b: nat) : S.felem let fsquare_times (a: S.felem) (b: nat) : S.felem =
false
null
false
SE.exp_pow2 mk_nat_mod_concrete_ops a b
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "total" ]
[ "Spec.P256.PointOps.felem", "Prims.nat", "Spec.Exponentiation.exp_pow2", "Hacl.Spec.P256.Finv.mk_nat_mod_concrete_ops" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; }
false
true
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsquare_times (a: S.felem) (b: nat) : S.felem
[]
Hacl.Spec.P256.Finv.fsquare_times
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.P256.PointOps.felem -> b: Prims.nat -> Spec.P256.PointOps.felem
{ "end_col": 41, "end_line": 37, "start_col": 2, "start_line": 37 }
Prims.Tot
val finv: f:S.felem -> S.felem
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256
val finv: f:S.felem -> S.felem let finv f =
false
null
false
let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "total" ]
[ "Spec.P256.PointOps.felem", "Spec.P256.PointOps.fmul", "Hacl.Spec.P256.Finv.fsquare_times" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *)
false
true
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val finv: f:S.felem -> S.felem
[]
Hacl.Spec.P256.Finv.finv
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> Spec.P256.PointOps.felem
{ "end_col": 6, "end_line": 66, "start_col": 12, "start_line": 53 }
Prims.Tot
val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sqr_mod x = S.fmul x x
val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x =
false
null
false
S.fmul x x
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "total" ]
[ "Spec.P256.PointOps.felem", "Spec.P256.PointOps.fmul" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y
false
true
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid
[]
Hacl.Spec.P256.Finv.sqr_mod
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Exponentiation.sqr_st Spec.P256.PointOps.felem Hacl.Spec.P256.Finv.mk_to_nat_mod_comm_monoid
{ "end_col": 26, "end_line": 27, "start_col": 16, "start_line": 27 }
Prims.Tot
val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_mod x y = S.fmul x y
val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y =
false
null
false
S.fmul x y
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "total" ]
[ "Spec.P256.PointOps.felem", "Spec.P256.PointOps.fmul" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1
false
true
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid
[]
Hacl.Spec.P256.Finv.mul_mod
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Exponentiation.mul_st Spec.P256.PointOps.felem Hacl.Spec.P256.Finv.mk_to_nat_mod_comm_monoid
{ "end_col": 28, "end_line": 24, "start_col": 18, "start_line": 24 }
FStar.Pervasives.Lemma
val fsqrt_is_fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == S.fsqrt f)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqrt_is_fsqrt_lemma f = fsqrt_lemma f; assert (fsqrt f == M.pow f ((S.prime + 1) / 4) % S.prime); M.lemma_pow_mod #S.prime f ((S.prime + 1) / 4)
val fsqrt_is_fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == S.fsqrt f) let fsqrt_is_fsqrt_lemma f =
false
null
true
fsqrt_lemma f; assert (fsqrt f == M.pow f ((S.prime + 1) / 4) % S.prime); M.lemma_pow_mod #S.prime f ((S.prime + 1) / 4)
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "Lib.NatMod.lemma_pow_mod", "Spec.P256.PointOps.prime", "Prims.op_Division", "Prims.op_Addition", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.P256.Finv.fsqrt", "Prims.op_Modulus", "Lib.NatMod.pow", "Hacl.Spec.P256.Finv.fsqrt_lemma" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime) val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime) let lemma_pow_mod_mul f a b = calc (==) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); (==) { Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime } M.pow f a * M.pow f b % S.prime; (==) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; } val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime) let lemma_pow_pow_mod f a b = calc (==) { M.pow (M.pow f a % S.prime) b % S.prime; (==) { M.lemma_pow_mod_base (M.pow f a) b S.prime } M.pow (M.pow f a) b % S.prime; (==) { M.lemma_pow_mul f a b } M.pow f (a * b) % S.prime; } val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime) let lemma_pow_pow_mod_mul f a b c = calc (==) { S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_pow_mod f a b } S.fmul (M.pow f (a * b) % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_mod_mul f (a * b) c } M.pow f (a * b + c) % S.prime; } ////////////////////////////// // prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd val finv_lemma: f:S.felem -> Lemma (finv f == M.pow f (S.prime - 2) % S.prime) let finv_lemma f = let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x3 = S.fmul (fsquare_times x2 1) f in fsquare_times_lemma x2 1; lemma_pow_mod_1 f; lemma_pow_pow_mod_mul f 0x3 0x2 0x1; assert (x3 == M.pow f 0x7 % S.prime); let x6 = S.fmul (fsquare_times x3 3) x3 in fsquare_times_lemma x3 3; assert_norm (pow2 3 = 8); lemma_pow_pow_mod_mul f 0x7 0x8 0x7; assert (x6 == M.pow f 0x3f % S.prime); let x12 = S.fmul (fsquare_times x6 6) x6 in fsquare_times_lemma x6 6; assert_norm (pow2 6 = 64); lemma_pow_pow_mod_mul f 0x3f 0x40 0x3f; assert (x12 == M.pow f 0xfff % S.prime); let x15 = S.fmul (fsquare_times x12 3) x3 in fsquare_times_lemma x12 3; lemma_pow_pow_mod_mul f 0xfff 0x8 0x7; assert (x15 == M.pow f 0x7fff % S.prime); let x30 = S.fmul (fsquare_times x15 15) x15 in fsquare_times_lemma x15 15; assert_norm (pow2 15 = 0x8000); lemma_pow_pow_mod_mul f 0x7fff 0x8000 0x7fff; assert (x30 == M.pow f 0x3fffffff % S.prime); let x32 = S.fmul (fsquare_times x30 2) x2 in fsquare_times_lemma x30 2; assert_norm (pow2 2 = 4); lemma_pow_pow_mod_mul f 0x3fffffff 0x4 0x3; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x192 = S.fmul (fsquare_times x64 128) x32 in fsquare_times_lemma x64 128; assert_norm (pow2 128 = 0x100000000000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x100000000000000000000000000000000 0xffffffff; assert (x192 == M.pow f 0xffffffff00000001000000000000000000000000ffffffff % S.prime); let x224 = S.fmul (fsquare_times x192 32) x32 in fsquare_times_lemma x192 32; lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffff 0x100000000 0xffffffff; assert (x224 == M.pow f 0xffffffff00000001000000000000000000000000ffffffffffffffff % S.prime); let x254 = S.fmul (fsquare_times x224 30) x30 in fsquare_times_lemma x224 30; assert_norm (pow2 30 = 0x40000000); lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffffffffffff 0x40000000 0x3fffffff; assert (x254 == M.pow f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff % S.prime); let x256 = S.fmul (fsquare_times x254 2) f in fsquare_times_lemma x254 2; lemma_pow_pow_mod_mul f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff 0x4 0x1; assert (x256 == M.pow f 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd % S.prime); assert_norm (S.prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd) val finv_is_finv_lemma: f:S.felem -> Lemma (finv f == S.finv f) let finv_is_finv_lemma f = finv_lemma f; assert (finv f == M.pow f (S.prime - 2) % S.prime); M.lemma_pow_mod #S.prime f (S.prime - 2) // (prime + 1) / 4 = 0x3fffffffc0000000400000000000000000000000400000000000000000000000 val fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == M.pow f ((S.prime + 1) / 4) % S.prime) let fsqrt_lemma f = let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x4 = S.fmul (fsquare_times x2 2) x2 in fsquare_times_lemma x2 2; assert_norm (pow2 2 = 0x4); lemma_pow_pow_mod_mul f 0x3 0x4 0x3; assert (x4 == M.pow f 0xf % S.prime); let x8 = S.fmul (fsquare_times x4 4) x4 in fsquare_times_lemma x4 4; assert_norm (pow2 4 = 0x10); lemma_pow_pow_mod_mul f 0xf 0x10 0xf; assert (x8 == M.pow f 0xff % S.prime); let x16 = S.fmul (fsquare_times x8 8) x8 in fsquare_times_lemma x8 8; assert_norm (pow2 8 = 0x100); lemma_pow_pow_mod_mul f 0xff 0x100 0xff; assert (x16 == M.pow f 0xffff % S.prime); let x32 = S.fmul (fsquare_times x16 16) x16 in fsquare_times_lemma x16 16; assert_norm (pow2 16 = 0x10000); lemma_pow_pow_mod_mul f 0xffff 0x10000 0xffff; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x160 = S.fmul (fsquare_times x64 96) f in fsquare_times_lemma x64 96; assert_norm (pow2 96 = 0x1000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x1000000000000000000000000 0x1; assert (x160 == M.pow f 0xffffffff00000001000000000000000000000001 % S.prime); let x254 = fsquare_times x160 94 in fsquare_times_lemma x160 94; assert_norm (pow2 94 = 0x400000000000000000000000); lemma_pow_pow_mod f 0xffffffff00000001000000000000000000000001 0x400000000000000000000000; assert (x254 == M.pow f 0x3fffffffc0000000400000000000000000000000400000000000000000000000 % S.prime); assert_norm ((S.prime + 1) / 4 = 0x3fffffffc0000000400000000000000000000000400000000000000000000000) val fsqrt_is_fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == S.fsqrt f)
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqrt_is_fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == S.fsqrt f)
[]
Hacl.Spec.P256.Finv.fsqrt_is_fsqrt_lemma
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> FStar.Pervasives.Lemma (ensures Hacl.Spec.P256.Finv.fsqrt f == Spec.P256.PointOps.fsqrt f)
{ "end_col": 48, "end_line": 272, "start_col": 2, "start_line": 270 }
Prims.Tot
val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one_mod _ = 1
val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ =
false
null
false
1
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "total" ]
[ "Prims.unit", "Spec.P256.PointOps.felem" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); }
false
true
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid
[]
Hacl.Spec.P256.Finv.one_mod
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Exponentiation.one_st Spec.P256.PointOps.felem Hacl.Spec.P256.Finv.mk_to_nat_mod_comm_monoid
{ "end_col": 17, "end_line": 21, "start_col": 16, "start_line": 21 }
FStar.Pervasives.Lemma
val finv_is_finv_lemma: f:S.felem -> Lemma (finv f == S.finv f)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let finv_is_finv_lemma f = finv_lemma f; assert (finv f == M.pow f (S.prime - 2) % S.prime); M.lemma_pow_mod #S.prime f (S.prime - 2)
val finv_is_finv_lemma: f:S.felem -> Lemma (finv f == S.finv f) let finv_is_finv_lemma f =
false
null
true
finv_lemma f; assert (finv f == M.pow f (S.prime - 2) % S.prime); M.lemma_pow_mod #S.prime f (S.prime - 2)
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "Lib.NatMod.lemma_pow_mod", "Spec.P256.PointOps.prime", "Prims.op_Subtraction", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.P256.Finv.finv", "Prims.op_Modulus", "Lib.NatMod.pow", "Hacl.Spec.P256.Finv.finv_lemma" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime) val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime) let lemma_pow_mod_mul f a b = calc (==) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); (==) { Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime } M.pow f a * M.pow f b % S.prime; (==) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; } val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime) let lemma_pow_pow_mod f a b = calc (==) { M.pow (M.pow f a % S.prime) b % S.prime; (==) { M.lemma_pow_mod_base (M.pow f a) b S.prime } M.pow (M.pow f a) b % S.prime; (==) { M.lemma_pow_mul f a b } M.pow f (a * b) % S.prime; } val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime) let lemma_pow_pow_mod_mul f a b c = calc (==) { S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_pow_mod f a b } S.fmul (M.pow f (a * b) % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_mod_mul f (a * b) c } M.pow f (a * b + c) % S.prime; } ////////////////////////////// // prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd val finv_lemma: f:S.felem -> Lemma (finv f == M.pow f (S.prime - 2) % S.prime) let finv_lemma f = let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x3 = S.fmul (fsquare_times x2 1) f in fsquare_times_lemma x2 1; lemma_pow_mod_1 f; lemma_pow_pow_mod_mul f 0x3 0x2 0x1; assert (x3 == M.pow f 0x7 % S.prime); let x6 = S.fmul (fsquare_times x3 3) x3 in fsquare_times_lemma x3 3; assert_norm (pow2 3 = 8); lemma_pow_pow_mod_mul f 0x7 0x8 0x7; assert (x6 == M.pow f 0x3f % S.prime); let x12 = S.fmul (fsquare_times x6 6) x6 in fsquare_times_lemma x6 6; assert_norm (pow2 6 = 64); lemma_pow_pow_mod_mul f 0x3f 0x40 0x3f; assert (x12 == M.pow f 0xfff % S.prime); let x15 = S.fmul (fsquare_times x12 3) x3 in fsquare_times_lemma x12 3; lemma_pow_pow_mod_mul f 0xfff 0x8 0x7; assert (x15 == M.pow f 0x7fff % S.prime); let x30 = S.fmul (fsquare_times x15 15) x15 in fsquare_times_lemma x15 15; assert_norm (pow2 15 = 0x8000); lemma_pow_pow_mod_mul f 0x7fff 0x8000 0x7fff; assert (x30 == M.pow f 0x3fffffff % S.prime); let x32 = S.fmul (fsquare_times x30 2) x2 in fsquare_times_lemma x30 2; assert_norm (pow2 2 = 4); lemma_pow_pow_mod_mul f 0x3fffffff 0x4 0x3; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x192 = S.fmul (fsquare_times x64 128) x32 in fsquare_times_lemma x64 128; assert_norm (pow2 128 = 0x100000000000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x100000000000000000000000000000000 0xffffffff; assert (x192 == M.pow f 0xffffffff00000001000000000000000000000000ffffffff % S.prime); let x224 = S.fmul (fsquare_times x192 32) x32 in fsquare_times_lemma x192 32; lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffff 0x100000000 0xffffffff; assert (x224 == M.pow f 0xffffffff00000001000000000000000000000000ffffffffffffffff % S.prime); let x254 = S.fmul (fsquare_times x224 30) x30 in fsquare_times_lemma x224 30; assert_norm (pow2 30 = 0x40000000); lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffffffffffff 0x40000000 0x3fffffff; assert (x254 == M.pow f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff % S.prime); let x256 = S.fmul (fsquare_times x254 2) f in fsquare_times_lemma x254 2; lemma_pow_pow_mod_mul f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff 0x4 0x1; assert (x256 == M.pow f 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd % S.prime); assert_norm (S.prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd) val finv_is_finv_lemma: f:S.felem -> Lemma (finv f == S.finv f)
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val finv_is_finv_lemma: f:S.felem -> Lemma (finv f == S.finv f)
[]
Hacl.Spec.P256.Finv.finv_is_finv_lemma
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> FStar.Pervasives.Lemma (ensures Hacl.Spec.P256.Finv.finv f == Spec.P256.PointOps.finv f)
{ "end_col": 42, "end_line": 210, "start_col": 2, "start_line": 208 }
FStar.Pervasives.Lemma
val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime)
val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f =
false
null
true
M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime)
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Lib.NatMod.pow", "Spec.P256.PointOps.prime", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.pow2", "FStar.Math.Lemmas.small_mod", "Lib.NatMod.lemma_pow1" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime)
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime)
[]
Hacl.Spec.P256.Finv.lemma_pow_mod_1
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> FStar.Pervasives.Lemma (ensures f == Lib.NatMod.pow f 1 % Spec.P256.PointOps.prime)
{ "end_col": 35, "end_line": 88, "start_col": 2, "start_line": 85 }
FStar.Pervasives.Lemma
val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b)
val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b =
false
null
true
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b)
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "Prims.nat", "Lib.NatMod.lemma_pow_nat_mod_is_pow", "Spec.P256.PointOps.prime", "Prims.pow2", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.l_or", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.P256.Finv.fsquare_times", "Lib.Exponentiation.Definition.pow", "Lib.NatMod.nat_mod", "Hacl.Spec.P256.Finv.nat_mod_comm_monoid", "Lib.Exponentiation.exp_pow2_lemma", "Spec.Exponentiation.exp_pow2_lemma", "Hacl.Spec.P256.Finv.mk_nat_mod_concrete_ops" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime)
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime)
[]
Hacl.Spec.P256.Finv.fsquare_times_lemma
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.P256.PointOps.felem -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Hacl.Spec.P256.Finv.fsquare_times a b == Lib.NatMod.pow a (Prims.pow2 b) % Spec.P256.PointOps.prime)
{ "end_col": 48, "end_line": 45, "start_col": 2, "start_line": 42 }
FStar.Pervasives.Lemma
val fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == M.pow f ((S.prime + 1) / 4) % S.prime)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqrt_lemma f = let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x4 = S.fmul (fsquare_times x2 2) x2 in fsquare_times_lemma x2 2; assert_norm (pow2 2 = 0x4); lemma_pow_pow_mod_mul f 0x3 0x4 0x3; assert (x4 == M.pow f 0xf % S.prime); let x8 = S.fmul (fsquare_times x4 4) x4 in fsquare_times_lemma x4 4; assert_norm (pow2 4 = 0x10); lemma_pow_pow_mod_mul f 0xf 0x10 0xf; assert (x8 == M.pow f 0xff % S.prime); let x16 = S.fmul (fsquare_times x8 8) x8 in fsquare_times_lemma x8 8; assert_norm (pow2 8 = 0x100); lemma_pow_pow_mod_mul f 0xff 0x100 0xff; assert (x16 == M.pow f 0xffff % S.prime); let x32 = S.fmul (fsquare_times x16 16) x16 in fsquare_times_lemma x16 16; assert_norm (pow2 16 = 0x10000); lemma_pow_pow_mod_mul f 0xffff 0x10000 0xffff; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x160 = S.fmul (fsquare_times x64 96) f in fsquare_times_lemma x64 96; assert_norm (pow2 96 = 0x1000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x1000000000000000000000000 0x1; assert (x160 == M.pow f 0xffffffff00000001000000000000000000000001 % S.prime); let x254 = fsquare_times x160 94 in fsquare_times_lemma x160 94; assert_norm (pow2 94 = 0x400000000000000000000000); lemma_pow_pow_mod f 0xffffffff00000001000000000000000000000001 0x400000000000000000000000; assert (x254 == M.pow f 0x3fffffffc0000000400000000000000000000000400000000000000000000000 % S.prime); assert_norm ((S.prime + 1) / 4 = 0x3fffffffc0000000400000000000000000000000400000000000000000000000)
val fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == M.pow f ((S.prime + 1) / 4) % S.prime) let fsqrt_lemma f =
false
null
true
let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x4 = S.fmul (fsquare_times x2 2) x2 in fsquare_times_lemma x2 2; assert_norm (pow2 2 = 0x4); lemma_pow_pow_mod_mul f 0x3 0x4 0x3; assert (x4 == M.pow f 0xf % S.prime); let x8 = S.fmul (fsquare_times x4 4) x4 in fsquare_times_lemma x4 4; assert_norm (pow2 4 = 0x10); lemma_pow_pow_mod_mul f 0xf 0x10 0xf; assert (x8 == M.pow f 0xff % S.prime); let x16 = S.fmul (fsquare_times x8 8) x8 in fsquare_times_lemma x8 8; assert_norm (pow2 8 = 0x100); lemma_pow_pow_mod_mul f 0xff 0x100 0xff; assert (x16 == M.pow f 0xffff % S.prime); let x32 = S.fmul (fsquare_times x16 16) x16 in fsquare_times_lemma x16 16; assert_norm (pow2 16 = 0x10000); lemma_pow_pow_mod_mul f 0xffff 0x10000 0xffff; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x160 = S.fmul (fsquare_times x64 96) f in fsquare_times_lemma x64 96; assert_norm (pow2 96 = 0x1000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x1000000000000000000000000 0x1; assert (x160 == M.pow f 0xffffffff00000001000000000000000000000001 % S.prime); let x254 = fsquare_times x160 94 in fsquare_times_lemma x160 94; assert_norm (pow2 94 = 0x400000000000000000000000); lemma_pow_pow_mod f 0xffffffff00000001000000000000000000000001 0x400000000000000000000000; assert (x254 == M.pow f 0x3fffffffc0000000400000000000000000000000400000000000000000000000 % S.prime ); assert_norm ((S.prime + 1) / 4 = 0x3fffffffc0000000400000000000000000000000400000000000000000000000)
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims.op_Addition", "Spec.P256.PointOps.prime", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "Lib.NatMod.pow", "Hacl.Spec.P256.Finv.lemma_pow_pow_mod", "Prims.pow2", "Hacl.Spec.P256.Finv.fsquare_times_lemma", "Hacl.Spec.P256.Finv.fsquare_times", "Hacl.Spec.P256.Finv.lemma_pow_pow_mod_mul", "Spec.P256.PointOps.fmul", "Hacl.Spec.P256.Finv.lemma_pow_mod_mul", "Hacl.Spec.P256.Finv.lemma_pow_mod_1" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime) val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime) let lemma_pow_mod_mul f a b = calc (==) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); (==) { Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime } M.pow f a * M.pow f b % S.prime; (==) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; } val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime) let lemma_pow_pow_mod f a b = calc (==) { M.pow (M.pow f a % S.prime) b % S.prime; (==) { M.lemma_pow_mod_base (M.pow f a) b S.prime } M.pow (M.pow f a) b % S.prime; (==) { M.lemma_pow_mul f a b } M.pow f (a * b) % S.prime; } val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime) let lemma_pow_pow_mod_mul f a b c = calc (==) { S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_pow_mod f a b } S.fmul (M.pow f (a * b) % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_mod_mul f (a * b) c } M.pow f (a * b + c) % S.prime; } ////////////////////////////// // prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd val finv_lemma: f:S.felem -> Lemma (finv f == M.pow f (S.prime - 2) % S.prime) let finv_lemma f = let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x3 = S.fmul (fsquare_times x2 1) f in fsquare_times_lemma x2 1; lemma_pow_mod_1 f; lemma_pow_pow_mod_mul f 0x3 0x2 0x1; assert (x3 == M.pow f 0x7 % S.prime); let x6 = S.fmul (fsquare_times x3 3) x3 in fsquare_times_lemma x3 3; assert_norm (pow2 3 = 8); lemma_pow_pow_mod_mul f 0x7 0x8 0x7; assert (x6 == M.pow f 0x3f % S.prime); let x12 = S.fmul (fsquare_times x6 6) x6 in fsquare_times_lemma x6 6; assert_norm (pow2 6 = 64); lemma_pow_pow_mod_mul f 0x3f 0x40 0x3f; assert (x12 == M.pow f 0xfff % S.prime); let x15 = S.fmul (fsquare_times x12 3) x3 in fsquare_times_lemma x12 3; lemma_pow_pow_mod_mul f 0xfff 0x8 0x7; assert (x15 == M.pow f 0x7fff % S.prime); let x30 = S.fmul (fsquare_times x15 15) x15 in fsquare_times_lemma x15 15; assert_norm (pow2 15 = 0x8000); lemma_pow_pow_mod_mul f 0x7fff 0x8000 0x7fff; assert (x30 == M.pow f 0x3fffffff % S.prime); let x32 = S.fmul (fsquare_times x30 2) x2 in fsquare_times_lemma x30 2; assert_norm (pow2 2 = 4); lemma_pow_pow_mod_mul f 0x3fffffff 0x4 0x3; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x192 = S.fmul (fsquare_times x64 128) x32 in fsquare_times_lemma x64 128; assert_norm (pow2 128 = 0x100000000000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x100000000000000000000000000000000 0xffffffff; assert (x192 == M.pow f 0xffffffff00000001000000000000000000000000ffffffff % S.prime); let x224 = S.fmul (fsquare_times x192 32) x32 in fsquare_times_lemma x192 32; lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffff 0x100000000 0xffffffff; assert (x224 == M.pow f 0xffffffff00000001000000000000000000000000ffffffffffffffff % S.prime); let x254 = S.fmul (fsquare_times x224 30) x30 in fsquare_times_lemma x224 30; assert_norm (pow2 30 = 0x40000000); lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffffffffffff 0x40000000 0x3fffffff; assert (x254 == M.pow f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff % S.prime); let x256 = S.fmul (fsquare_times x254 2) f in fsquare_times_lemma x254 2; lemma_pow_pow_mod_mul f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff 0x4 0x1; assert (x256 == M.pow f 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd % S.prime); assert_norm (S.prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd) val finv_is_finv_lemma: f:S.felem -> Lemma (finv f == S.finv f) let finv_is_finv_lemma f = finv_lemma f; assert (finv f == M.pow f (S.prime - 2) % S.prime); M.lemma_pow_mod #S.prime f (S.prime - 2) // (prime + 1) / 4 = 0x3fffffffc0000000400000000000000000000000400000000000000000000000
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqrt_lemma: f:S.felem -> Lemma (fsqrt f == M.pow f ((S.prime + 1) / 4) % S.prime)
[]
Hacl.Spec.P256.Finv.fsqrt_lemma
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> FStar.Pervasives.Lemma (ensures Hacl.Spec.P256.Finv.fsqrt f == Lib.NatMod.pow f ((Spec.P256.PointOps.prime + 1) / 4) % Spec.P256.PointOps.prime)
{ "end_col": 102, "end_line": 265, "start_col": 19, "start_line": 215 }
FStar.Pervasives.Lemma
val finv_lemma: f:S.felem -> Lemma (finv f == M.pow f (S.prime - 2) % S.prime)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let finv_lemma f = let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x3 = S.fmul (fsquare_times x2 1) f in fsquare_times_lemma x2 1; lemma_pow_mod_1 f; lemma_pow_pow_mod_mul f 0x3 0x2 0x1; assert (x3 == M.pow f 0x7 % S.prime); let x6 = S.fmul (fsquare_times x3 3) x3 in fsquare_times_lemma x3 3; assert_norm (pow2 3 = 8); lemma_pow_pow_mod_mul f 0x7 0x8 0x7; assert (x6 == M.pow f 0x3f % S.prime); let x12 = S.fmul (fsquare_times x6 6) x6 in fsquare_times_lemma x6 6; assert_norm (pow2 6 = 64); lemma_pow_pow_mod_mul f 0x3f 0x40 0x3f; assert (x12 == M.pow f 0xfff % S.prime); let x15 = S.fmul (fsquare_times x12 3) x3 in fsquare_times_lemma x12 3; lemma_pow_pow_mod_mul f 0xfff 0x8 0x7; assert (x15 == M.pow f 0x7fff % S.prime); let x30 = S.fmul (fsquare_times x15 15) x15 in fsquare_times_lemma x15 15; assert_norm (pow2 15 = 0x8000); lemma_pow_pow_mod_mul f 0x7fff 0x8000 0x7fff; assert (x30 == M.pow f 0x3fffffff % S.prime); let x32 = S.fmul (fsquare_times x30 2) x2 in fsquare_times_lemma x30 2; assert_norm (pow2 2 = 4); lemma_pow_pow_mod_mul f 0x3fffffff 0x4 0x3; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x192 = S.fmul (fsquare_times x64 128) x32 in fsquare_times_lemma x64 128; assert_norm (pow2 128 = 0x100000000000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x100000000000000000000000000000000 0xffffffff; assert (x192 == M.pow f 0xffffffff00000001000000000000000000000000ffffffff % S.prime); let x224 = S.fmul (fsquare_times x192 32) x32 in fsquare_times_lemma x192 32; lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffff 0x100000000 0xffffffff; assert (x224 == M.pow f 0xffffffff00000001000000000000000000000000ffffffffffffffff % S.prime); let x254 = S.fmul (fsquare_times x224 30) x30 in fsquare_times_lemma x224 30; assert_norm (pow2 30 = 0x40000000); lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffffffffffff 0x40000000 0x3fffffff; assert (x254 == M.pow f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff % S.prime); let x256 = S.fmul (fsquare_times x254 2) f in fsquare_times_lemma x254 2; lemma_pow_pow_mod_mul f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff 0x4 0x1; assert (x256 == M.pow f 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd % S.prime); assert_norm (S.prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd)
val finv_lemma: f:S.felem -> Lemma (finv f == M.pow f (S.prime - 2) % S.prime) let finv_lemma f =
false
null
true
let x2 = S.fmul (fsquare_times f 1) f in fsquare_times_lemma f 1; assert_norm (pow2 1 = 0x2); lemma_pow_mod_1 f; lemma_pow_mod_mul f 0x2 0x1; assert (x2 == M.pow f 0x3 % S.prime); let x3 = S.fmul (fsquare_times x2 1) f in fsquare_times_lemma x2 1; lemma_pow_mod_1 f; lemma_pow_pow_mod_mul f 0x3 0x2 0x1; assert (x3 == M.pow f 0x7 % S.prime); let x6 = S.fmul (fsquare_times x3 3) x3 in fsquare_times_lemma x3 3; assert_norm (pow2 3 = 8); lemma_pow_pow_mod_mul f 0x7 0x8 0x7; assert (x6 == M.pow f 0x3f % S.prime); let x12 = S.fmul (fsquare_times x6 6) x6 in fsquare_times_lemma x6 6; assert_norm (pow2 6 = 64); lemma_pow_pow_mod_mul f 0x3f 0x40 0x3f; assert (x12 == M.pow f 0xfff % S.prime); let x15 = S.fmul (fsquare_times x12 3) x3 in fsquare_times_lemma x12 3; lemma_pow_pow_mod_mul f 0xfff 0x8 0x7; assert (x15 == M.pow f 0x7fff % S.prime); let x30 = S.fmul (fsquare_times x15 15) x15 in fsquare_times_lemma x15 15; assert_norm (pow2 15 = 0x8000); lemma_pow_pow_mod_mul f 0x7fff 0x8000 0x7fff; assert (x30 == M.pow f 0x3fffffff % S.prime); let x32 = S.fmul (fsquare_times x30 2) x2 in fsquare_times_lemma x30 2; assert_norm (pow2 2 = 4); lemma_pow_pow_mod_mul f 0x3fffffff 0x4 0x3; assert (x32 == M.pow f 0xffffffff % S.prime); let x64 = S.fmul (fsquare_times x32 32) f in fsquare_times_lemma x32 32; assert_norm (pow2 32 = 0x100000000); lemma_pow_pow_mod_mul f 0xffffffff 0x100000000 0x1; assert (x64 == M.pow f 0xffffffff00000001 % S.prime); let x192 = S.fmul (fsquare_times x64 128) x32 in fsquare_times_lemma x64 128; assert_norm (pow2 128 = 0x100000000000000000000000000000000); lemma_pow_pow_mod_mul f 0xffffffff00000001 0x100000000000000000000000000000000 0xffffffff; assert (x192 == M.pow f 0xffffffff00000001000000000000000000000000ffffffff % S.prime); let x224 = S.fmul (fsquare_times x192 32) x32 in fsquare_times_lemma x192 32; lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffff 0x100000000 0xffffffff; assert (x224 == M.pow f 0xffffffff00000001000000000000000000000000ffffffffffffffff % S.prime); let x254 = S.fmul (fsquare_times x224 30) x30 in fsquare_times_lemma x224 30; assert_norm (pow2 30 = 0x40000000); lemma_pow_pow_mod_mul f 0xffffffff00000001000000000000000000000000ffffffffffffffff 0x40000000 0x3fffffff; assert (x254 == M.pow f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff % S.prime ); let x256 = S.fmul (fsquare_times x254 2) f in fsquare_times_lemma x254 2; lemma_pow_pow_mod_mul f 0x3fffffffc00000004000000000000000000000003fffffffffffffffffffffff 0x4 0x1; assert (x256 == M.pow f 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd % S.prime ); assert_norm (S.prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd)
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Spec.P256.PointOps.prime", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "Lib.NatMod.pow", "Hacl.Spec.P256.Finv.lemma_pow_pow_mod_mul", "Hacl.Spec.P256.Finv.fsquare_times_lemma", "Spec.P256.PointOps.fmul", "Hacl.Spec.P256.Finv.fsquare_times", "Prims.pow2", "Hacl.Spec.P256.Finv.lemma_pow_mod_1", "Hacl.Spec.P256.Finv.lemma_pow_mod_mul" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime) val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime) let lemma_pow_mod_mul f a b = calc (==) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); (==) { Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime } M.pow f a * M.pow f b % S.prime; (==) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; } val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime) let lemma_pow_pow_mod f a b = calc (==) { M.pow (M.pow f a % S.prime) b % S.prime; (==) { M.lemma_pow_mod_base (M.pow f a) b S.prime } M.pow (M.pow f a) b % S.prime; (==) { M.lemma_pow_mul f a b } M.pow f (a * b) % S.prime; } val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime) let lemma_pow_pow_mod_mul f a b c = calc (==) { S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_pow_mod f a b } S.fmul (M.pow f (a * b) % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_mod_mul f (a * b) c } M.pow f (a * b + c) % S.prime; } ////////////////////////////// // prime - 2 = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val finv_lemma: f:S.felem -> Lemma (finv f == M.pow f (S.prime - 2) % S.prime)
[]
Hacl.Spec.P256.Finv.finv_lemma
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> FStar.Pervasives.Lemma (ensures Hacl.Spec.P256.Finv.finv f == Lib.NatMod.pow f (Spec.P256.PointOps.prime - 2) % Spec.P256.PointOps.prime)
{ "end_col": 96, "end_line": 203, "start_col": 18, "start_line": 132 }
FStar.Pervasives.Lemma
val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_pow_mod f a b = calc (==) { M.pow (M.pow f a % S.prime) b % S.prime; (==) { M.lemma_pow_mod_base (M.pow f a) b S.prime } M.pow (M.pow f a) b % S.prime; (==) { M.lemma_pow_mul f a b } M.pow f (a * b) % S.prime; }
val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime) let lemma_pow_pow_mod f a b =
false
null
true
calc ( == ) { M.pow (M.pow f a % S.prime) b % S.prime; ( == ) { M.lemma_pow_mod_base (M.pow f a) b S.prime } M.pow (M.pow f a) b % S.prime; ( == ) { M.lemma_pow_mul f a b } M.pow f (a * b) % S.prime; }
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Lib.NatMod.pow", "Spec.P256.PointOps.prime", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_pow_mod_base", "Prims.squash", "Lib.NatMod.lemma_pow_mul" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime) val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime) let lemma_pow_mod_mul f a b = calc (==) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); (==) { Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime } M.pow f a * M.pow f b % S.prime; (==) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; } val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime)
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime)
[]
Hacl.Spec.P256.Finv.lemma_pow_pow_mod
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> a: Prims.nat -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow (Lib.NatMod.pow f a % Spec.P256.PointOps.prime) b % Spec.P256.PointOps.prime == Lib.NatMod.pow f (a * b) % Spec.P256.PointOps.prime)
{ "end_col": 5, "end_line": 114, "start_col": 2, "start_line": 108 }
FStar.Pervasives.Lemma
val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_mod_mul f a b = calc (==) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); (==) { Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime } M.pow f a * M.pow f b % S.prime; (==) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; }
val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime) let lemma_pow_mod_mul f a b =
false
null
true
calc ( == ) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); ( == ) { (Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime) } M.pow f a * M.pow f b % S.prime; ( == ) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; }
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "Spec.P256.PointOps.fmul", "Prims.op_Modulus", "Lib.NatMod.pow", "Spec.P256.PointOps.prime", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.squash", "Lib.NatMod.lemma_pow_add" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime) val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime)
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime)
[]
Hacl.Spec.P256.Finv.lemma_pow_mod_mul
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> a: Prims.nat -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Spec.P256.PointOps.fmul (Lib.NatMod.pow f a % Spec.P256.PointOps.prime) (Lib.NatMod.pow f b % Spec.P256.PointOps.prime) == Lib.NatMod.pow f (a + b) % Spec.P256.PointOps.prime)
{ "end_col": 3, "end_line": 102, "start_col": 2, "start_line": 94 }
FStar.Pervasives.Lemma
val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime)
[ { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_pow_mod_mul f a b c = calc (==) { S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_pow_mod f a b } S.fmul (M.pow f (a * b) % S.prime) (M.pow f c % S.prime); (==) { lemma_pow_mod_mul f (a * b) c } M.pow f (a * b + c) % S.prime; }
val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime) let lemma_pow_pow_mod_mul f a b c =
false
null
true
calc ( == ) { S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime); ( == ) { lemma_pow_pow_mod f a b } S.fmul (M.pow f (a * b) % S.prime) (M.pow f c % S.prime); ( == ) { lemma_pow_mod_mul f (a * b) c } M.pow f (a * b + c) % S.prime; }
{ "checked_file": "Hacl.Spec.P256.Finv.fst.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.NatMod.fsti.checked", "Lib.Exponentiation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.Finv.fst" }
[ "lemma" ]
[ "Spec.P256.PointOps.felem", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "Spec.P256.PointOps.fmul", "Prims.op_Modulus", "Lib.NatMod.pow", "Spec.P256.PointOps.prime", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.P256.Finv.lemma_pow_pow_mod", "Prims.squash", "Hacl.Spec.P256.Finv.lemma_pow_mod_mul" ]
[]
module Hacl.Spec.P256.Finv open FStar.Mul module SE = Spec.Exponentiation module LE = Lib.Exponentiation module M = Lib.NatMod module S = Spec.P256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.prime let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.felem = { SE.a_spec = S.felem; SE.comm_monoid = nat_mod_comm_monoid; SE.refl = (fun (x:S.felem) -> x); } val one_mod : SE.one_st S.felem mk_to_nat_mod_comm_monoid let one_mod _ = 1 val mul_mod : SE.mul_st S.felem mk_to_nat_mod_comm_monoid let mul_mod x y = S.fmul x y val sqr_mod : SE.sqr_st S.felem mk_to_nat_mod_comm_monoid let sqr_mod x = S.fmul x x let mk_nat_mod_concrete_ops : SE.concrete_ops S.felem = { SE.to = mk_to_nat_mod_comm_monoid; SE.one = one_mod; SE.mul = mul_mod; SE.sqr = sqr_mod; } let fsquare_times (a:S.felem) (b:nat) : S.felem = SE.exp_pow2 mk_nat_mod_concrete_ops a b val fsquare_times_lemma: a:S.felem -> b:nat -> Lemma (fsquare_times a b == M.pow a (pow2 b) % S.prime) let fsquare_times_lemma a b = SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b; LE.exp_pow2_lemma nat_mod_comm_monoid a b; assert (fsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b)); M.lemma_pow_nat_mod_is_pow #S.prime a (pow2 b) (** The algorithm is taken from https://briansmith.org/ecc-inversion-addition-chains-01 *) val finv: f:S.felem -> S.felem let finv f = let x2 = S.fmul (fsquare_times f 1) f in let x3 = S.fmul (fsquare_times x2 1) f in let x6 = S.fmul (fsquare_times x3 3) x3 in let x12 = S.fmul (fsquare_times x6 6) x6 in let x15 = S.fmul (fsquare_times x12 3) x3 in let x30 = S.fmul (fsquare_times x15 15) x15 in let x32 = S.fmul (fsquare_times x30 2) x2 in let x64 = S.fmul (fsquare_times x32 32) f in let x192 = S.fmul (fsquare_times x64 128) x32 in let x224 = S.fmul (fsquare_times x192 32) x32 in let x254 = S.fmul (fsquare_times x224 30) x30 in let x256 = S.fmul (fsquare_times x254 2) f in x256 val fsqrt: f:S.felem -> S.felem let fsqrt f = let x2 = S.fmul (fsquare_times f 1) f in let x4 = S.fmul (fsquare_times x2 2) x2 in let x8 = S.fmul (fsquare_times x4 4) x4 in let x16 = S.fmul (fsquare_times x8 8) x8 in let x32 = S.fmul (fsquare_times x16 16) x16 in let x64 = S.fmul (fsquare_times x32 32) f in let x160 = S.fmul (fsquare_times x64 96) f in let x254 = fsquare_times x160 94 in x254 // TODO: mv to lib/ val lemma_pow_mod_1: f:S.felem -> Lemma (f == M.pow f 1 % S.prime) let lemma_pow_mod_1 f = M.lemma_pow1 f; Math.Lemmas.small_mod f S.prime; assert_norm (pow2 0 = 1); assert (f == M.pow f 1 % S.prime) val lemma_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> Lemma (S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime) == M.pow f (a + b) % S.prime) let lemma_pow_mod_mul f a b = calc (==) { S.fmul (M.pow f a % S.prime) (M.pow f b % S.prime); (==) { Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.prime) S.prime; Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.prime } M.pow f a * M.pow f b % S.prime; (==) { M.lemma_pow_add f a b } M.pow f (a + b) % S.prime; } val lemma_pow_pow_mod: f:S.felem -> a:nat -> b:nat -> Lemma (M.pow (M.pow f a % S.prime) b % S.prime == M.pow f (a * b) % S.prime) let lemma_pow_pow_mod f a b = calc (==) { M.pow (M.pow f a % S.prime) b % S.prime; (==) { M.lemma_pow_mod_base (M.pow f a) b S.prime } M.pow (M.pow f a) b % S.prime; (==) { M.lemma_pow_mul f a b } M.pow f (a * b) % S.prime; } val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime)
false
false
Hacl.Spec.P256.Finv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_pow_mod_mul: f:S.felem -> a:nat -> b:nat -> c:nat -> Lemma (S.fmul (M.pow (M.pow f a % S.prime) b % S.prime) (M.pow f c % S.prime) == M.pow f (a * b + c) % S.prime)
[]
Hacl.Spec.P256.Finv.lemma_pow_pow_mod_mul
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.Finv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Spec.P256.PointOps.felem -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> FStar.Pervasives.Lemma (ensures Spec.P256.PointOps.fmul (Lib.NatMod.pow (Lib.NatMod.pow f a % Spec.P256.PointOps.prime) b % Spec.P256.PointOps.prime) (Lib.NatMod.pow f c % Spec.P256.PointOps.prime) == Lib.NatMod.pow f (a * b + c) % Spec.P256.PointOps.prime)
{ "end_col": 3, "end_line": 126, "start_col": 2, "start_line": 120 }
Prims.Tot
val s_lock (p:vprop) (pred:normal (t_of p) -> prop) : Type u#0
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let s_lock p pred = lock (p `vrefine` pred)
val s_lock (p:vprop) (pred:normal (t_of p) -> prop) : Type u#0 let s_lock p pred =
false
null
false
lock (p `vrefine` pred)
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[ "total" ]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.SpinLock.lock", "Steel.Effect.Common.vrefine" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res let rec acquire #p l = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then ( rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop () ) else ( rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l ) val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p)) let release_core #p #u r i = let v = witness_exists () in let res = cas_pt_bool r v locked available in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal v) then emp else p) (if res then emp else p) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide available) else pts_to r full_perm v) (pts_to r full_perm available) (fun _ -> ()); intro_lockinv_available p r; return res let release (#p:vprop) (l:lock p) = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> release_core r i) in drop (if b then emp else p)
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val s_lock (p:vprop) (pred:normal (t_of p) -> prop) : Type u#0
[]
Steel.SpinLock.s_lock
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Effect.Common.vprop -> pred: (_: Steel.Effect.Common.normal (Steel.Effect.Common.t_of p) -> Prims.prop) -> Type0
{ "end_col": 43, "end_line": 115, "start_col": 20, "start_line": 115 }
Prims.Tot
val lockinv (p: vprop) (r: ref bool) : vprop
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p))
val lockinv (p: vprop) (r: ref bool) : vprop let lockinv (p: vprop) (r: ref bool) : vprop =
false
null
false
h_exists (fun b -> (pts_to r full_perm b) `star` (if b then emp else p))
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[ "total" ]
[ "Steel.Effect.Common.vprop", "Steel.Reference.ref", "Prims.bool", "Steel.Effect.Atomic.h_exists", "Steel.Effect.Common.star", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.emp" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true
false
true
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lockinv (p: vprop) (r: ref bool) : vprop
[]
Steel.SpinLock.lockinv
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Effect.Common.vprop -> r: Steel.Reference.ref Prims.bool -> Steel.Effect.Common.vprop
{ "end_col": 72, "end_line": 31, "start_col": 2, "start_line": 31 }
Prims.Tot
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let locked = true
let locked =
false
null
false
true
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[ "total" ]
[]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0"
false
true
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val locked : Prims.bool
[]
Steel.SpinLock.locked
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
Prims.bool
{ "end_col": 17, "end_line": 28, "start_col": 13, "start_line": 28 }
Prims.Tot
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let available = false
let available =
false
null
false
false
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[ "total" ]
[]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0"
false
true
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val available : Prims.bool
[]
Steel.SpinLock.available
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
Prims.bool
{ "end_col": 21, "end_line": 27, "start_col": 16, "start_line": 27 }
Steel.Effect.Atomic.SteelGhostT
val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p))
val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_locked #uses p r =
true
null
false
intro_exists true (fun b -> (pts_to r full_perm b) `star` (if b then emp else p))
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Reference.ref", "Prims.bool", "Steel.Effect.Atomic.intro_exists", "Steel.Effect.Common.star", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.emp", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) )
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r)
[]
Steel.SpinLock.intro_lockinv_locked
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Effect.Common.vprop -> r: Steel.Reference.ref Prims.bool -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 33, "end_line": 52, "start_col": 2, "start_line": 50 }
Steel.Effect.Atomic.SteelGhostT
val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) )
val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r =
true
null
false
intro_exists false (fun (b: bool) -> (pts_to r full_perm b) `star` (if b then emp else p))
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Reference.ref", "Prims.bool", "Steel.Effect.Atomic.intro_exists", "Steel.Effect.Common.star", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.emp", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r)
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r)
[]
Steel.SpinLock.intro_lockinv_available
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Effect.Common.vprop -> r: Steel.Reference.ref Prims.bool -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 5, "end_line": 47, "start_col": 2, "start_line": 43 }
Steel.Effect.Steel
val s_release (#p:vprop) (#pred:normal (t_of p) -> prop) (l:s_lock p pred) : Steel unit p (fun _ -> emp) (requires fun h -> pred (h p)) (ensures fun _ _ _ -> True)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let s_release #p #pred l = intro_vrefine p pred; release l
val s_release (#p:vprop) (#pred:normal (t_of p) -> prop) (l:s_lock p pred) : Steel unit p (fun _ -> emp) (requires fun h -> pred (h p)) (ensures fun _ _ _ -> True) let s_release #p #pred l =
true
null
false
intro_vrefine p pred; release l
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.SpinLock.s_lock", "Steel.SpinLock.release", "Steel.Effect.Common.vrefine", "Prims.unit", "Steel.Effect.Atomic.intro_vrefine", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res let rec acquire #p l = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then ( rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop () ) else ( rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l ) val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p)) let release_core #p #u r i = let v = witness_exists () in let res = cas_pt_bool r v locked available in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal v) then emp else p) (if res then emp else p) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide available) else pts_to r full_perm v) (pts_to r full_perm available) (fun _ -> ()); intro_lockinv_available p r; return res let release (#p:vprop) (l:lock p) = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> release_core r i) in drop (if b then emp else p) let s_lock p pred = lock (p `vrefine` pred) let new_s_lock p pred = intro_vrefine p pred; new_lock (p `vrefine` pred) let s_acquire #p #pred l = acquire l; elim_vrefine p pred
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val s_release (#p:vprop) (#pred:normal (t_of p) -> prop) (l:s_lock p pred) : Steel unit p (fun _ -> emp) (requires fun h -> pred (h p)) (ensures fun _ _ _ -> True)
[]
Steel.SpinLock.s_release
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
l: Steel.SpinLock.s_lock p pred -> Steel.Effect.Steel Prims.unit
{ "end_col": 11, "end_line": 127, "start_col": 2, "start_line": 126 }
Steel.Effect.Steel
val new_s_lock (p:vprop) (pred:normal (t_of p) -> prop) : Steel (s_lock p pred) p (fun _ -> emp) (requires fun h -> pred (h p)) (ensures fun _ _ _ -> True)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let new_s_lock p pred = intro_vrefine p pred; new_lock (p `vrefine` pred)
val new_s_lock (p:vprop) (pred:normal (t_of p) -> prop) : Steel (s_lock p pred) p (fun _ -> emp) (requires fun h -> pred (h p)) (ensures fun _ _ _ -> True) let new_s_lock p pred =
true
null
false
intro_vrefine p pred; new_lock (p `vrefine` pred)
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.SpinLock.new_lock", "Steel.Effect.Common.vrefine", "Steel.SpinLock.lock", "Prims.unit", "Steel.Effect.Atomic.intro_vrefine", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.SpinLock.s_lock" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res let rec acquire #p l = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then ( rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop () ) else ( rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l ) val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p)) let release_core #p #u r i = let v = witness_exists () in let res = cas_pt_bool r v locked available in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal v) then emp else p) (if res then emp else p) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide available) else pts_to r full_perm v) (pts_to r full_perm available) (fun _ -> ()); intro_lockinv_available p r; return res let release (#p:vprop) (l:lock p) = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> release_core r i) in drop (if b then emp else p) let s_lock p pred = lock (p `vrefine` pred)
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val new_s_lock (p:vprop) (pred:normal (t_of p) -> prop) : Steel (s_lock p pred) p (fun _ -> emp) (requires fun h -> pred (h p)) (ensures fun _ _ _ -> True)
[]
Steel.SpinLock.new_s_lock
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Effect.Common.vprop -> pred: (_: Steel.Effect.Common.normal (Steel.Effect.Common.t_of p) -> Prims.prop) -> Steel.Effect.Steel (Steel.SpinLock.s_lock p pred)
{ "end_col": 29, "end_line": 119, "start_col": 2, "start_line": 118 }
Steel.Effect.Steel
val s_acquire (#p:vprop) (#pred:normal (t_of p) -> prop) (l:s_lock p pred) : Steel unit emp (fun _ -> p) (requires fun _ -> True) (ensures fun _ _ h1 -> pred (h1 p))
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let s_acquire #p #pred l = acquire l; elim_vrefine p pred
val s_acquire (#p:vprop) (#pred:normal (t_of p) -> prop) (l:s_lock p pred) : Steel unit emp (fun _ -> p) (requires fun _ -> True) (ensures fun _ _ h1 -> pred (h1 p)) let s_acquire #p #pred l =
true
null
false
acquire l; elim_vrefine p pred
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.SpinLock.s_lock", "Steel.Effect.Atomic.elim_vrefine", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Prims.unit", "Steel.SpinLock.acquire", "Steel.Effect.Common.vrefine" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res let rec acquire #p l = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then ( rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop () ) else ( rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l ) val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p)) let release_core #p #u r i = let v = witness_exists () in let res = cas_pt_bool r v locked available in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal v) then emp else p) (if res then emp else p) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide available) else pts_to r full_perm v) (pts_to r full_perm available) (fun _ -> ()); intro_lockinv_available p r; return res let release (#p:vprop) (l:lock p) = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> release_core r i) in drop (if b then emp else p) let s_lock p pred = lock (p `vrefine` pred) let new_s_lock p pred = intro_vrefine p pred; new_lock (p `vrefine` pred)
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val s_acquire (#p:vprop) (#pred:normal (t_of p) -> prop) (l:s_lock p pred) : Steel unit emp (fun _ -> p) (requires fun _ -> True) (ensures fun _ _ h1 -> pred (h1 p))
[]
Steel.SpinLock.s_acquire
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
l: Steel.SpinLock.s_lock p pred -> Steel.Effect.Steel Prims.unit
{ "end_col": 21, "end_line": 123, "start_col": 2, "start_line": 122 }
Steel.Effect.SteelT
val release (#p:vprop) (l:lock p) : SteelT unit p (fun _ -> emp)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let release (#p:vprop) (l:lock p) = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> release_core r i) in drop (if b then emp else p)
val release (#p:vprop) (l:lock p) : SteelT unit p (fun _ -> emp) let release (#p: vprop) (l: lock p) =
true
null
false
let r:ref bool = l.r in let i:inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> release_core r i) in drop (if b then emp else p)
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.SpinLock.lock", "Steel.Effect.Atomic.drop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.emp", "Prims.bool", "Prims.unit", "Steel.Effect.Atomic.with_invariant", "Steel.Effect.Common.Observable", "Steel.SpinLock.lockinv", "Steel.SpinLock.release_core", "Steel.Effect.Common.add_inv", "Steel.Effect.Common.inv", "Steel.SpinLock.__proj__Lock__item__i", "Steel.Reference.ref", "Steel.SpinLock.__proj__Lock__item__r" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res let rec acquire #p l = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then ( rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop () ) else ( rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l ) val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p)) let release_core #p #u r i = let v = witness_exists () in let res = cas_pt_bool r v locked available in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal v) then emp else p) (if res then emp else p) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide available) else pts_to r full_perm v) (pts_to r full_perm available) (fun _ -> ()); intro_lockinv_available p r; return res
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val release (#p:vprop) (l:lock p) : SteelT unit p (fun _ -> emp)
[]
Steel.SpinLock.release
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
l: Steel.SpinLock.lock p -> Steel.Effect.SteelT Prims.unit
{ "end_col": 29, "end_line": 113, "start_col": 35, "start_line": 109 }
Steel.Effect.SteelT
val new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i)
val new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) let new_lock (p: vprop) : SteelT (lock p) p (fun _ -> emp) =
true
null
false
let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i)
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Atomic.return", "Steel.SpinLock.lock", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Steel.Effect.Common.req", "Steel.Effect.Common.rm", "Steel.SpinLock.Lock", "Steel.Effect.Common.inv", "Steel.SpinLock.lockinv", "Steel.Effect.Atomic.new_invariant", "Prims.unit", "Steel.SpinLock.intro_lockinv_available", "Steel.Reference.ref", "Prims.bool", "Steel.Reference.alloc_pt", "Steel.SpinLock.available", "Steel.Effect.Common.emp" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p))
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp)
[]
Steel.SpinLock.new_lock
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Effect.Common.vprop -> Steel.Effect.SteelT (Steel.SpinLock.lock p)
{ "end_col": 19, "end_line": 59, "start_col": 38, "start_line": 55 }
Steel.Effect.SteelT
val acquire (#p:vprop) (l:lock p) : SteelT unit emp (fun _ -> p)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec acquire #p l = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then ( rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop () ) else ( rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l )
val acquire (#p:vprop) (l:lock p) : SteelT unit emp (fun _ -> p) let rec acquire #p l =
true
null
false
let r:ref bool = l.r in let i:inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then (rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop ()) else (rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l)
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.SpinLock.lock", "Steel.Effect.Atomic.noop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Prims.bool", "Steel.Effect.Common.emp", "Steel.Memory.mem", "Steel.SpinLock.acquire", "Steel.Effect.Atomic.with_invariant", "Steel.Effect.Common.Observable", "Steel.SpinLock.lockinv", "Steel.SpinLock.acquire_core", "Steel.Effect.Common.add_inv", "Steel.Effect.Common.inv", "Steel.SpinLock.__proj__Lock__item__i", "Steel.Reference.ref", "Steel.SpinLock.__proj__Lock__item__r" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val acquire (#p:vprop) (l:lock p) : SteelT unit emp (fun _ -> p)
[ "recursion" ]
Steel.SpinLock.acquire
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
l: Steel.SpinLock.lock p -> Steel.Effect.SteelT Prims.unit
{ "end_col": 3, "end_line": 89, "start_col": 22, "start_line": 79 }
Steel.Effect.Atomic.SteelAtomicT
val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p))
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let release_core #p #u r i = let v = witness_exists () in let res = cas_pt_bool r v locked available in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal v) then emp else p) (if res then emp else p) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide available) else pts_to r full_perm v) (pts_to r full_perm available) (fun _ -> ()); intro_lockinv_available p r; return res
val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p)) let release_core #p #u r i =
true
null
false
let v = witness_exists () in let res = cas_pt_bool r v locked available in rewrite_slprop (if (Ghost.reveal v) then emp else p) (if res then emp else p) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide available) else pts_to r full_perm v) (pts_to r full_perm available) (fun _ -> ()); intro_lockinv_available p r; return res
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.inames", "Steel.Reference.ref", "Prims.bool", "Steel.Effect.Common.inv", "Steel.SpinLock.lockinv", "Steel.Effect.Atomic.return", "Steel.Effect.Common.VStar", "Steel.Effect.Common.emp", "Prims.unit", "Steel.SpinLock.intro_lockinv_available", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.SpinLock.available", "FStar.Ghost.reveal", "Steel.Memory.mem", "Prims.l_iff", "Prims.b2t", "Prims.eq2", "Steel.SpinLock.locked", "Steel.Reference.cas_pt_bool", "FStar.Ghost.erased", "Steel.Effect.Atomic.witness_exists", "Steel.Effect.Common.star" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res let rec acquire #p l = let r:ref bool = l.r in let i: inv (lockinv p r) = l.i in let b = with_invariant i (fun _ -> acquire_core r i) in if b then ( rewrite_slprop (if b then p else emp) p (fun _ -> ()); noop () ) else ( rewrite_slprop (if b then p else emp) emp (fun _ -> ()); acquire l ) val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p))
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val release_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` p) (fun b -> lockinv p r `star` (if b then emp else p))
[]
Steel.SpinLock.release_core
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref Prims.bool -> i: Steel.Effect.Common.inv (Steel.SpinLock.lockinv p r) -> Steel.Effect.Atomic.SteelAtomicT Prims.bool
{ "end_col": 12, "end_line": 107, "start_col": 28, "start_line": 96 }
Steel.Effect.Atomic.SteelAtomicT
val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp))
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let acquire_core #p #u r i = let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in (* Not sure we can avoid calling an SMT here. Better force the manual call? *) rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res
val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp)) let acquire_core #p #u r i =
true
null
false
let ghost = witness_exists () in let res = cas_pt_bool r ghost available locked in rewrite_slprop (if (Ghost.reveal ghost) then emp else p) (if res then p else emp) (fun _ -> ()); rewrite_slprop (if res then pts_to r full_perm (Ghost.hide locked) else pts_to r full_perm ghost) (pts_to r full_perm locked) (fun _ -> ()); intro_lockinv_locked p r; return res
{ "checked_file": "Steel.SpinLock.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.SpinLock.fst" }
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.inames", "Steel.Reference.ref", "Prims.bool", "Steel.Effect.Common.inv", "Steel.SpinLock.lockinv", "Steel.Effect.Atomic.return", "Steel.Effect.Common.VStar", "Steel.Effect.Common.emp", "Prims.unit", "Steel.SpinLock.intro_lockinv_locked", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.SpinLock.locked", "FStar.Ghost.reveal", "Steel.Memory.mem", "Prims.l_iff", "Prims.b2t", "Prims.eq2", "Steel.SpinLock.available", "Steel.Reference.cas_pt_bool", "FStar.Ghost.erased", "Steel.Effect.Atomic.witness_exists", "Steel.Effect.Common.star" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.SpinLock open FStar.Ghost open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission #set-options "--ide_id_info_off --fuel 0 --ifuel 0" let available = false let locked = true let lockinv (p:vprop) (r:ref bool) : vprop = h_exists (fun b -> pts_to r full_perm b `star` (if b then emp else p)) noeq type lock (p:vprop) = | Lock: r: ref bool -> i: inv (lockinv p r) -> lock p val intro_lockinv_available (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm available `star` p) (fun _ -> lockinv p r) val intro_lockinv_locked (#uses:inames) (p:vprop) (r:ref bool) : SteelGhostT unit uses (pts_to r full_perm locked) (fun _ -> lockinv p r) let intro_lockinv_available #uses p r = intro_exists false (fun (b: bool) -> pts_to r full_perm b `star` (if b then emp else p) ) let intro_lockinv_locked #uses p r = intro_exists true (fun b -> pts_to r full_perm b `star` (if b then emp else p)) let new_lock (p:vprop) : SteelT (lock p) p (fun _ -> emp) = let r = alloc_pt available in intro_lockinv_available p r; let i:inv (lockinv p r) = new_invariant (lockinv p r) in return (Lock r i) val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp))
false
false
Steel.SpinLock.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val acquire_core (#p:vprop) (#u:inames) (r:ref bool) (i:inv (lockinv p r)) : SteelAtomicT bool u (lockinv p r `star` emp) (fun b -> lockinv p r `star` (if b then p else emp))
[]
Steel.SpinLock.acquire_core
{ "file_name": "lib/steel/Steel.SpinLock.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref Prims.bool -> i: Steel.Effect.Common.inv (Steel.SpinLock.lockinv p r) -> Steel.Effect.Atomic.SteelAtomicT Prims.bool
{ "end_col": 12, "end_line": 77, "start_col": 28, "start_line": 66 }
FStar.All.ML
val last: list 'a -> ML 'a
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec last = function | [hd] -> hd | _::tl -> last tl | _ -> failwith "last of empty list"
val last: list 'a -> ML 'a let rec last =
true
null
false
function | [hd] -> hd | _ :: tl -> last tl | _ -> failwith "last of empty list"
{ "checked_file": "FStar.List.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.List.fst" }
[ "ml" ]
[ "Prims.list", "FStar.List.last", "FStar.All.failwith" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** F* standard library List module. @summary F* stdlib List module. *) module FStar.List open FStar.All include FStar.List.Tot (** Base operations **) (** [hd l] returns the first element of [l]. Raises an exception if [l] is empty (thus, [hd] hides [List.Tot.hd] which requires [l] to be nonempty at type-checking time.) Named as in: OCaml, F#, Coq *) val hd: list 'a -> ML 'a let hd = function | hd::tl -> hd | _ -> failwith "head of empty list" (** [tail l] returns [l] without its first element. Raises an exception if [l] is empty (thus, [tail] hides [List.Tot.tail] which requires [l] to be nonempty at type-checking time). Similar to: tl in OCaml, F#, Coq *) val tail: list 'a -> ML (list 'a) let tail = function | hd::tl -> tl | _ -> failwith "tail of empty list" (** [tl l] returns [l] without its first element. Raises an exception if [l] is empty (thus, [tl] hides [List.Tot.tl] which requires [l] to be nonempty at type-checking time). Named as in: tl in OCaml, F#, Coq *) val tl : list 'a -> ML (list 'a) let tl l = tail l (** [last l] returns the last element of [l]. Requires, at type-checking time, that [l] be nonempty. Named as in: Haskell *)
false
false
FStar.List.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val last: list 'a -> ML 'a
[ "recursion" ]
FStar.List.last
{ "file_name": "ulib/FStar.List.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.list 'a -> FStar.All.ML 'a
{ "end_col": 38, "end_line": 59, "start_col": 15, "start_line": 56 }
FStar.All.ML
val tl : list 'a -> ML (list 'a)
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tl l = tail l
val tl : list 'a -> ML (list 'a) let tl l =
true
null
false
tail l
{ "checked_file": "FStar.List.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.List.fst" }
[ "ml" ]
[ "Prims.list", "FStar.List.tail" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** F* standard library List module. @summary F* stdlib List module. *) module FStar.List open FStar.All include FStar.List.Tot (** Base operations **) (** [hd l] returns the first element of [l]. Raises an exception if [l] is empty (thus, [hd] hides [List.Tot.hd] which requires [l] to be nonempty at type-checking time.) Named as in: OCaml, F#, Coq *) val hd: list 'a -> ML 'a let hd = function | hd::tl -> hd | _ -> failwith "head of empty list" (** [tail l] returns [l] without its first element. Raises an exception if [l] is empty (thus, [tail] hides [List.Tot.tail] which requires [l] to be nonempty at type-checking time). Similar to: tl in OCaml, F#, Coq *) val tail: list 'a -> ML (list 'a) let tail = function | hd::tl -> tl | _ -> failwith "tail of empty list" (** [tl l] returns [l] without its first element. Raises an exception if [l] is empty (thus, [tl] hides [List.Tot.tl] which requires [l] to be nonempty at type-checking time). Named as in: tl in OCaml, F#, Coq *)
false
false
FStar.List.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tl : list 'a -> ML (list 'a)
[]
FStar.List.tl
{ "file_name": "ulib/FStar.List.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list 'a -> FStar.All.ML (Prims.list 'a)
{ "end_col": 17, "end_line": 50, "start_col": 11, "start_line": 50 }