effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Pervasives.Lemma | val serialize_nondep_then_upd_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\
serialize s1 y == seq_upd_seq s1' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s i' s'
)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_nondep_then_upd_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\
serialize s1 y == seq_upd_seq s1' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s i' s'
))
= serialize_nondep_then_upd_left s1 s2 x y;
let s = serialize (serialize_nondep_then s1 s2) x in
let s1' = serialize s1 (fst x) in
let l1 = Seq.length s1' in
Seq.lemma_split s l1;
Seq.lemma_append_inj (Seq.slice s 0 l1) (Seq.slice s l1 (Seq.length s)) s1' (serialize s2 (snd x));
seq_upd_seq_right_to_left s 0 s1' i' s';
seq_upd_seq_slice_idem s 0 (Seq.length s1') | val serialize_nondep_then_upd_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\
serialize s1 y == seq_upd_seq s1' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s i' s'
))
let serialize_nondep_then_upd_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i': nat)
(s': bytes)
: Lemma
(requires
(let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\ serialize s1 y == seq_upd_seq s1' i' s'))
(ensures
(let s = serialize (serialize_nondep_then s1 s2) x in
i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s i' s')) = | false | null | true | serialize_nondep_then_upd_left s1 s2 x y;
let s = serialize (serialize_nondep_then s1 s2) x in
let s1' = serialize s1 (fst x) in
let l1 = Seq.length s1' in
Seq.lemma_split s l1;
Seq.lemma_append_inj (Seq.slice s 0 l1) (Seq.slice s l1 (Seq.length s)) s1' (serialize s2 (snd x));
seq_upd_seq_right_to_left s 0 s1' i' s';
seq_upd_seq_slice_idem s 0 (Seq.length s1') | {
"checked_file": "LowParse.Spec.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.seq_upd_seq_slice_idem",
"LowParse.Bytes.byte",
"FStar.Seq.Base.length",
"Prims.unit",
"LowParse.Spec.Base.seq_upd_seq_right_to_left",
"FStar.Seq.Properties.lemma_append_inj",
"FStar.Seq.Base.slice",
"LowParse.Spec.Base.serialize",
"FStar.Pervasives.Native.snd",
"FStar.Seq.Properties.lemma_split",
"FStar.Pervasives.Native.fst",
"LowParse.Spec.Combinators.and_then_kind",
"LowParse.Spec.Combinators.nondep_then",
"LowParse.Spec.Combinators.serialize_nondep_then",
"LowParse.Spec.Combinators.serialize_nondep_then_upd_left",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.Seq.Base.seq",
"LowParse.Spec.Base.seq_upd_seq",
"Prims.squash",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Spec.Combinators
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module T = FStar.Tactics
#reset-options "--using_facts_from '* -FStar.Tactis -FStar.Reflection'"
let and_then #k #t p #k' #t' p' =
let f : bare_parser t' = and_then_bare p p' in
and_then_correct p p' ;
f
let and_then_eq
(#k: parser_kind)
(#t:Type)
(p:parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
= ()
let tot_and_then_bare (#t:Type) (#t':Type)
(p:tot_bare_parser t)
(p': (t -> Tot (tot_bare_parser t'))) :
Tot (tot_bare_parser t') =
fun (b: bytes) ->
match p b with
| Some (v, l) ->
begin
let p'v = p' v in
let s' : bytes = Seq.slice b l (Seq.length b) in
match p'v s' with
| Some (v', l') ->
let res : consumed_length b = l + l' in
Some (v', res)
| None -> None
end
| None -> None
let tot_and_then #k #t p #k' #t' p' =
let f : tot_bare_parser t' = tot_and_then_bare p p' in
and_then_correct #k p #k' p' ;
parser_kind_prop_ext (and_then_kind k k') (and_then_bare p p') f;
f
let parse_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
: Pure (parser k t2)
(requires (
synth_injective f2
))
(ensures (fun _ -> True))
= coerce (parser k t2) (and_then p1 (fun v1 -> parse_fret f2 v1))
let parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' p1 f2 b))
= ()
unfold
let tot_parse_fret' (#t #t':Type) (f: t -> Tot t') (v:t) : Tot (tot_bare_parser t') =
fun (b: bytes) -> Some (f v, (0 <: consumed_length b))
unfold
let tot_parse_fret (#t #t':Type) (f: t -> Tot t') (v:t) : Tot (tot_parser parse_ret_kind t') =
[@inline_let] let _ = parser_kind_prop_equiv parse_ret_kind (tot_parse_fret' f v) in
tot_parse_fret' f v
let tot_parse_synth
#k #t1 #t2 p1 f2
= coerce (tot_parser k t2) (tot_and_then p1 (fun v1 -> tot_parse_fret f2 v1))
let bare_serialize_synth_correct #k #t1 #t2 p1 f2 s1 g1 =
()
let serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (parse_synth p1 f2))
= bare_serialize_synth_correct p1 f2 s1 g1;
bare_serialize_synth p1 f2 s1 g1
let serialize_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
(x: t2)
: Lemma
(serialize (serialize_synth p1 f2 s1 g1 u) x == serialize s1 (g1 x))
= ()
let serialize_synth_upd_chain
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
(x1: t1)
(x2: t2)
(y1: t1)
(y2: t2)
(i': nat)
(s' : bytes)
: Lemma
(requires (
let s = serialize s1 x1 in
i' + Seq.length s' <= Seq.length s /\
serialize s1 y1 == seq_upd_seq s i' s' /\
x2 == f2 x1 /\
y2 == f2 y1
))
(ensures (
let s = serialize (serialize_synth p1 f2 s1 g1 u) x2 in
i' + Seq.length s' <= Seq.length s /\
Seq.length s == Seq.length (serialize s1 x1) /\
serialize (serialize_synth p1 f2 s1 g1 u) y2 == seq_upd_seq s i' s'
))
= (* I don't know which are THE terms to exhibit among x1, x2, y1, y2 to make the patterns trigger *)
assert (forall w w' . f2 w == f2 w' ==> w == w');
assert (forall w . f2 (g1 w) == w)
let serialize_synth_upd_bw_chain
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
(x1: t1)
(x2: t2)
(y1: t1)
(y2: t2)
(i': nat)
(s' : bytes)
: Lemma
(requires (
let s = serialize s1 x1 in
i' + Seq.length s' <= Seq.length s /\
serialize s1 y1 == seq_upd_bw_seq s i' s' /\
x2 == f2 x1 /\
y2 == f2 y1
))
(ensures (
let s = serialize (serialize_synth p1 f2 s1 g1 u) x2 in
i' + Seq.length s' <= Seq.length s /\
Seq.length s == Seq.length (serialize s1 x1) /\
serialize (serialize_synth p1 f2 s1 g1 u) y2 == seq_upd_bw_seq s i' s'
))
= (* I don't know which are THE terms to exhibit among x1, x2, y1, y2 to make the patterns trigger *)
assert (forall w w' . f2 w == f2 w' ==> w == w');
assert (forall w . f2 (g1 w) == w)
let parse_tagged_union #kt #tag_t pt #data_t tag_of_data #k p =
parse_tagged_union_payload_and_then_cases_injective tag_of_data p;
pt `and_then` parse_tagged_union_payload tag_of_data p
let parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data p;
and_then_eq pt (parse_tagged_union_payload tag_of_data p) input;
match parse pt input with
| None -> ()
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
parse_synth_eq #k #(refine_with_tag tag_of_data tg) (p tg) (synth_tagged_union_data tag_of_data tg) input_tg
let parse_tagged_union_eq_gen
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(#kt': parser_kind)
(pt': parser kt' tag_t)
(lem_pt: (
(input: bytes) ->
Lemma
(parse pt input == parse pt' input)
))
(k': (t: tag_t) -> Tot parser_kind)
(p': (t: tag_t) -> Tot (parser (k' t) (refine_with_tag tag_of_data t)))
(lem_p' : (
(k: tag_t) ->
(input: bytes) ->
Lemma
(parse (p k) input == parse (p' k) input)
))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == bare_parse_tagged_union pt' tag_of_data k' p' input)
= parse_tagged_union_payload_and_then_cases_injective tag_of_data p;
and_then_eq pt (parse_tagged_union_payload tag_of_data p) input;
lem_pt input;
match parse pt input with
| None -> ()
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
parse_synth_eq #k #(refine_with_tag tag_of_data tg) (p tg) (synth_tagged_union_data tag_of_data tg) input_tg;
lem_p' tg input_tg
let tot_parse_tagged_union #kt #tag_t pt #data_t tag_of_data #k p =
parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p;
pt `tot_and_then` tot_parse_tagged_union_payload tag_of_data p
let serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
= bare_serialize_tagged_union_correct st tag_of_data s;
bare_serialize_tagged_union st tag_of_data s
let serialize_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
(input: data_t)
: Lemma
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (serialize (serialize_tagged_union st tag_of_data s) input == bare_serialize_tagged_union st tag_of_data s input))
[SMTPat (serialize (serialize_tagged_union st tag_of_data s) input)]
= ()
let serialize_dtuple2
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#k2: parser_kind)
(#t2: (t1 -> Tot Type))
(#p2: (x: t1) -> parser k2 (t2 x))
(s2: (x: t1) -> serializer (p2 x))
: Tot (serializer (parse_dtuple2 p1 p2))
= serialize_tagged_union
s1
dfst
(fun (x: t1) -> serialize_synth (p2 x) (synth_dtuple2 x) (s2 x) (synth_dtuple2_recip x) ())
let parse_dtuple2_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: (t1 -> Tot Type))
(p2: (x: t1) -> parser k2 (t2 x))
(b: bytes)
: Lemma
(parse (parse_dtuple2 p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse (p2 x1) b' with
| Some (x2, consumed2) ->
Some ((| x1, x2 |), consumed1 + consumed2)
| _ -> None
end
| _ -> None
))
by (T.norm [delta_only [`%parse_dtuple2;]])
= ()
let serialize_dtuple2_eq
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#k2: parser_kind)
(#t2: (t1 -> Tot Type))
(#p2: (x: t1) -> parser k2 (t2 x))
(s2: (x: t1) -> serializer (p2 x))
(xy: dtuple2 t1 t2)
: Lemma
(serialize (serialize_dtuple2 s1 s2) xy == serialize s1 (dfst xy) `Seq.append` serialize (s2 (dfst xy)) (dsnd xy))
= ()
(* Special case for non-dependent parsing *)
let nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
= parse_tagged_union
p1
fst
(fun x -> parse_synth p2 (fun y -> (x, y) <: refine_with_tag fst x))
#set-options "--z3rlimit 16"
let nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
))
by (T.norm [delta_only [`%nondep_then;]])
= ()
let tot_nondep_then_bare
(#t1: Type)
(p1: tot_bare_parser t1)
(#t2: Type)
(p2: tot_bare_parser t2)
: Tot (tot_bare_parser (t1 & t2))
= fun b -> match p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
let tot_nondep_then #k1 #t1 p1 #k2 #t2 p2 =
Classical.forall_intro (nondep_then_eq #k1 p1 #k2 p2);
parser_kind_prop_ext (and_then_kind k1 k2) (nondep_then #k1 p1 #k2 p2) (tot_nondep_then_bare p1 p2);
tot_nondep_then_bare p1 p2
let serialize_nondep_then
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
: Tot (serializer (nondep_then p1 p2))
= serialize_tagged_union
s1
fst
(fun x -> serialize_synth p2 (fun y -> (x, y) <: refine_with_tag fst x) s2 (fun (xy: refine_with_tag fst x) -> snd xy) ())
let serialize_nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(input: t1 * t2)
: Lemma
(serialize (serialize_nondep_then s1 s2) input == bare_serialize_nondep_then p1 s1 p2 s2 input)
= ()
let length_serialize_nondep_then
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(input1: t1)
(input2: t2)
: Lemma
(Seq.length (serialize (serialize_nondep_then s1 s2) (input1, input2)) == Seq.length (serialize s1 input1) + Seq.length (serialize s2 input2))
= ()
let serialize_nondep_then_upd_left
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
: Lemma
(requires (Seq.length (serialize s1 y) == Seq.length (serialize s1 (fst x))))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
Seq.length (serialize s1 y) <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s 0 (serialize s1 y)
))
= let s = serialize (serialize_nondep_then s1 s2) x in
seq_upd_seq_left s (serialize s1 y);
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.lemma_split s l1;
Seq.lemma_append_inj (Seq.slice s 0 l1) (Seq.slice s l1 (Seq.length s)) (serialize s1 (fst x)) (serialize s2 (snd x))
let serialize_nondep_then_upd_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\
serialize s1 y == seq_upd_seq s1' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s i' s' | false | false | LowParse.Spec.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_nondep_then_upd_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\
serialize s1 y == seq_upd_seq s1' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s i' s'
)) | [] | LowParse.Spec.Combinators.serialize_nondep_then_upd_left_chain | {
"file_name": "src/lowparse/LowParse.Spec.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s1:
LowParse.Spec.Base.serializer p1
{ Mkparser_kind'?.parser_kind_subkind k1 ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
s2: LowParse.Spec.Base.serializer p2 ->
x: (t1 * t2) ->
y: t1 ->
i': Prims.nat ->
s': LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(requires
(let s1' = LowParse.Spec.Base.serialize s1 (FStar.Pervasives.Native.fst x) in
i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length s1' /\
LowParse.Spec.Base.serialize s1 y == LowParse.Spec.Base.seq_upd_seq s1' i' s'))
(ensures
(let s =
LowParse.Spec.Base.serialize (LowParse.Spec.Combinators.serialize_nondep_then s1 s2) x
in
i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length s /\
LowParse.Spec.Base.serialize (LowParse.Spec.Combinators.serialize_nondep_then s1 s2)
(y, FStar.Pervasives.Native.snd x) ==
LowParse.Spec.Base.seq_upd_seq s i' s')) | {
"end_col": 45,
"end_line": 518,
"start_col": 2,
"start_line": 511
} |
FStar.Pervasives.Lemma | val serialize_nondep_then_upd_right_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t2)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s2' = serialize s2 (snd x) in
i' + Seq.length s' <= Seq.length s2' /\
serialize s2 y == seq_upd_seq s2' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.length s == l1 + Seq.length (serialize s2 (snd x)) /\
l1 + i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (fst x, y) == seq_upd_seq s (l1 + i') s'
)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_nondep_then_upd_right_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t2)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s2' = serialize s2 (snd x) in
i' + Seq.length s' <= Seq.length s2' /\
serialize s2 y == seq_upd_seq s2' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.length s == l1 + Seq.length (serialize s2 (snd x)) /\
l1 + i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (fst x, y) == seq_upd_seq s (l1 + i') s'
))
= serialize_nondep_then_upd_right s1 s2 x y;
let s = serialize (serialize_nondep_then s1 s2) x in
let s2' = serialize s2 (snd x) in
let l2 = Seq.length s - Seq.length s2' in
Seq.lemma_split s l2;
Seq.lemma_append_inj (Seq.slice s 0 l2) (Seq.slice s l2 (Seq.length s)) (serialize s1 (fst x)) s2';
seq_upd_seq_right_to_left s l2 s2' i' s';
seq_upd_seq_slice_idem s l2 (Seq.length s) | val serialize_nondep_then_upd_right_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t2)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s2' = serialize s2 (snd x) in
i' + Seq.length s' <= Seq.length s2' /\
serialize s2 y == seq_upd_seq s2' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.length s == l1 + Seq.length (serialize s2 (snd x)) /\
l1 + i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (fst x, y) == seq_upd_seq s (l1 + i') s'
))
let serialize_nondep_then_upd_right_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t2)
(i': nat)
(s': bytes)
: Lemma
(requires
(let s2' = serialize s2 (snd x) in
i' + Seq.length s' <= Seq.length s2' /\ serialize s2 y == seq_upd_seq s2' i' s'))
(ensures
(let s = serialize (serialize_nondep_then s1 s2) x in
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.length s == l1 + Seq.length (serialize s2 (snd x)) /\
l1 + i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (fst x, y) == seq_upd_seq s (l1 + i') s')) = | false | null | true | serialize_nondep_then_upd_right s1 s2 x y;
let s = serialize (serialize_nondep_then s1 s2) x in
let s2' = serialize s2 (snd x) in
let l2 = Seq.length s - Seq.length s2' in
Seq.lemma_split s l2;
Seq.lemma_append_inj (Seq.slice s 0 l2) (Seq.slice s l2 (Seq.length s)) (serialize s1 (fst x)) s2';
seq_upd_seq_right_to_left s l2 s2' i' s';
seq_upd_seq_slice_idem s l2 (Seq.length s) | {
"checked_file": "LowParse.Spec.Combinators.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.Combinators.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"FStar.Pervasives.Native.tuple2",
"Prims.nat",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.seq_upd_seq_slice_idem",
"LowParse.Bytes.byte",
"FStar.Seq.Base.length",
"Prims.unit",
"LowParse.Spec.Base.seq_upd_seq_right_to_left",
"FStar.Seq.Properties.lemma_append_inj",
"FStar.Seq.Base.slice",
"LowParse.Spec.Base.serialize",
"FStar.Pervasives.Native.fst",
"FStar.Seq.Properties.lemma_split",
"Prims.int",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.snd",
"LowParse.Spec.Combinators.and_then_kind",
"LowParse.Spec.Combinators.nondep_then",
"LowParse.Spec.Combinators.serialize_nondep_then",
"LowParse.Spec.Combinators.serialize_nondep_then_upd_right",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.Seq.Base.seq",
"LowParse.Spec.Base.seq_upd_seq",
"Prims.squash",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Spec.Combinators
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module T = FStar.Tactics
#reset-options "--using_facts_from '* -FStar.Tactis -FStar.Reflection'"
let and_then #k #t p #k' #t' p' =
let f : bare_parser t' = and_then_bare p p' in
and_then_correct p p' ;
f
let and_then_eq
(#k: parser_kind)
(#t:Type)
(p:parser k t)
(#k': parser_kind)
(#t':Type)
(p': (t -> Tot (parser k' t')))
(input: bytes)
: Lemma
(requires (and_then_cases_injective p'))
(ensures (parse (and_then p p') input == and_then_bare p p' input))
= ()
let tot_and_then_bare (#t:Type) (#t':Type)
(p:tot_bare_parser t)
(p': (t -> Tot (tot_bare_parser t'))) :
Tot (tot_bare_parser t') =
fun (b: bytes) ->
match p b with
| Some (v, l) ->
begin
let p'v = p' v in
let s' : bytes = Seq.slice b l (Seq.length b) in
match p'v s' with
| Some (v', l') ->
let res : consumed_length b = l + l' in
Some (v', res)
| None -> None
end
| None -> None
let tot_and_then #k #t p #k' #t' p' =
let f : tot_bare_parser t' = tot_and_then_bare p p' in
and_then_correct #k p #k' p' ;
parser_kind_prop_ext (and_then_kind k k') (and_then_bare p p') f;
f
let parse_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
: Pure (parser k t2)
(requires (
synth_injective f2
))
(ensures (fun _ -> True))
= coerce (parser k t2) (and_then p1 (fun v1 -> parse_fret f2 v1))
let parse_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(b: bytes)
: Lemma
(requires (synth_injective f2))
(ensures (parse (parse_synth p1 f2) b == parse_synth' p1 f2 b))
= ()
unfold
let tot_parse_fret' (#t #t':Type) (f: t -> Tot t') (v:t) : Tot (tot_bare_parser t') =
fun (b: bytes) -> Some (f v, (0 <: consumed_length b))
unfold
let tot_parse_fret (#t #t':Type) (f: t -> Tot t') (v:t) : Tot (tot_parser parse_ret_kind t') =
[@inline_let] let _ = parser_kind_prop_equiv parse_ret_kind (tot_parse_fret' f v) in
tot_parse_fret' f v
let tot_parse_synth
#k #t1 #t2 p1 f2
= coerce (tot_parser k t2) (tot_and_then p1 (fun v1 -> tot_parse_fret f2 v1))
let bare_serialize_synth_correct #k #t1 #t2 p1 f2 s1 g1 =
()
let serialize_synth
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
: Tot (serializer (parse_synth p1 f2))
= bare_serialize_synth_correct p1 f2 s1 g1;
bare_serialize_synth p1 f2 s1 g1
let serialize_synth_eq
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
(x: t2)
: Lemma
(serialize (serialize_synth p1 f2 s1 g1 u) x == serialize s1 (g1 x))
= ()
let serialize_synth_upd_chain
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
(x1: t1)
(x2: t2)
(y1: t1)
(y2: t2)
(i': nat)
(s' : bytes)
: Lemma
(requires (
let s = serialize s1 x1 in
i' + Seq.length s' <= Seq.length s /\
serialize s1 y1 == seq_upd_seq s i' s' /\
x2 == f2 x1 /\
y2 == f2 y1
))
(ensures (
let s = serialize (serialize_synth p1 f2 s1 g1 u) x2 in
i' + Seq.length s' <= Seq.length s /\
Seq.length s == Seq.length (serialize s1 x1) /\
serialize (serialize_synth p1 f2 s1 g1 u) y2 == seq_upd_seq s i' s'
))
= (* I don't know which are THE terms to exhibit among x1, x2, y1, y2 to make the patterns trigger *)
assert (forall w w' . f2 w == f2 w' ==> w == w');
assert (forall w . f2 (g1 w) == w)
let serialize_synth_upd_bw_chain
(#k: parser_kind)
(#t1: Type)
(#t2: Type)
(p1: parser k t1)
(f2: t1 -> GTot t2)
(s1: serializer p1)
(g1: t2 -> GTot t1)
(u: unit {
synth_inverse f2 g1 /\
synth_injective f2
})
(x1: t1)
(x2: t2)
(y1: t1)
(y2: t2)
(i': nat)
(s' : bytes)
: Lemma
(requires (
let s = serialize s1 x1 in
i' + Seq.length s' <= Seq.length s /\
serialize s1 y1 == seq_upd_bw_seq s i' s' /\
x2 == f2 x1 /\
y2 == f2 y1
))
(ensures (
let s = serialize (serialize_synth p1 f2 s1 g1 u) x2 in
i' + Seq.length s' <= Seq.length s /\
Seq.length s == Seq.length (serialize s1 x1) /\
serialize (serialize_synth p1 f2 s1 g1 u) y2 == seq_upd_bw_seq s i' s'
))
= (* I don't know which are THE terms to exhibit among x1, x2, y1, y2 to make the patterns trigger *)
assert (forall w w' . f2 w == f2 w' ==> w == w');
assert (forall w . f2 (g1 w) == w)
let parse_tagged_union #kt #tag_t pt #data_t tag_of_data #k p =
parse_tagged_union_payload_and_then_cases_injective tag_of_data p;
pt `and_then` parse_tagged_union_payload tag_of_data p
let parse_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == (match parse pt input with
| None -> None
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
begin match parse (p tg) input_tg with
| Some (x, consumed_x) -> Some ((x <: data_t), consumed_tg + consumed_x)
| None -> None
end
))
= parse_tagged_union_payload_and_then_cases_injective tag_of_data p;
and_then_eq pt (parse_tagged_union_payload tag_of_data p) input;
match parse pt input with
| None -> ()
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
parse_synth_eq #k #(refine_with_tag tag_of_data tg) (p tg) (synth_tagged_union_data tag_of_data tg) input_tg
let parse_tagged_union_eq_gen
(#kt: parser_kind)
(#tag_t: Type)
(pt: parser kt tag_t)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(#kt': parser_kind)
(pt': parser kt' tag_t)
(lem_pt: (
(input: bytes) ->
Lemma
(parse pt input == parse pt' input)
))
(k': (t: tag_t) -> Tot parser_kind)
(p': (t: tag_t) -> Tot (parser (k' t) (refine_with_tag tag_of_data t)))
(lem_p' : (
(k: tag_t) ->
(input: bytes) ->
Lemma
(parse (p k) input == parse (p' k) input)
))
(input: bytes)
: Lemma
(parse (parse_tagged_union pt tag_of_data p) input == bare_parse_tagged_union pt' tag_of_data k' p' input)
= parse_tagged_union_payload_and_then_cases_injective tag_of_data p;
and_then_eq pt (parse_tagged_union_payload tag_of_data p) input;
lem_pt input;
match parse pt input with
| None -> ()
| Some (tg, consumed_tg) ->
let input_tg = Seq.slice input consumed_tg (Seq.length input) in
parse_synth_eq #k #(refine_with_tag tag_of_data tg) (p tg) (synth_tagged_union_data tag_of_data tg) input_tg;
lem_p' tg input_tg
let tot_parse_tagged_union #kt #tag_t pt #data_t tag_of_data #k p =
parse_tagged_union_payload_and_then_cases_injective tag_of_data #k p;
pt `tot_and_then` tot_parse_tagged_union_payload tag_of_data p
let serialize_tagged_union
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
: Pure (serializer (parse_tagged_union pt tag_of_data p))
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (fun _ -> True))
= bare_serialize_tagged_union_correct st tag_of_data s;
bare_serialize_tagged_union st tag_of_data s
let serialize_tagged_union_eq
(#kt: parser_kind)
(#tag_t: Type)
(#pt: parser kt tag_t)
(st: serializer pt)
(#data_t: Type)
(tag_of_data: (data_t -> GTot tag_t))
(#k: parser_kind)
(#p: (t: tag_t) -> Tot (parser k (refine_with_tag tag_of_data t)))
(s: (t: tag_t) -> Tot (serializer (p t)))
(input: data_t)
: Lemma
(requires (kt.parser_kind_subkind == Some ParserStrong))
(ensures (serialize (serialize_tagged_union st tag_of_data s) input == bare_serialize_tagged_union st tag_of_data s input))
[SMTPat (serialize (serialize_tagged_union st tag_of_data s) input)]
= ()
let serialize_dtuple2
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#k2: parser_kind)
(#t2: (t1 -> Tot Type))
(#p2: (x: t1) -> parser k2 (t2 x))
(s2: (x: t1) -> serializer (p2 x))
: Tot (serializer (parse_dtuple2 p1 p2))
= serialize_tagged_union
s1
dfst
(fun (x: t1) -> serialize_synth (p2 x) (synth_dtuple2 x) (s2 x) (synth_dtuple2_recip x) ())
let parse_dtuple2_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: (t1 -> Tot Type))
(p2: (x: t1) -> parser k2 (t2 x))
(b: bytes)
: Lemma
(parse (parse_dtuple2 p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse (p2 x1) b' with
| Some (x2, consumed2) ->
Some ((| x1, x2 |), consumed1 + consumed2)
| _ -> None
end
| _ -> None
))
by (T.norm [delta_only [`%parse_dtuple2;]])
= ()
let serialize_dtuple2_eq
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#k2: parser_kind)
(#t2: (t1 -> Tot Type))
(#p2: (x: t1) -> parser k2 (t2 x))
(s2: (x: t1) -> serializer (p2 x))
(xy: dtuple2 t1 t2)
: Lemma
(serialize (serialize_dtuple2 s1 s2) xy == serialize s1 (dfst xy) `Seq.append` serialize (s2 (dfst xy)) (dsnd xy))
= ()
(* Special case for non-dependent parsing *)
let nondep_then
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
= parse_tagged_union
p1
fst
(fun x -> parse_synth p2 (fun y -> (x, y) <: refine_with_tag fst x))
#set-options "--z3rlimit 16"
let nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(p1: parser k1 t1)
(#k2: parser_kind)
(#t2: Type)
(p2: parser k2 t2)
(b: bytes)
: Lemma
(parse (nondep_then p1 p2) b == (match parse p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match parse p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
))
by (T.norm [delta_only [`%nondep_then;]])
= ()
let tot_nondep_then_bare
(#t1: Type)
(p1: tot_bare_parser t1)
(#t2: Type)
(p2: tot_bare_parser t2)
: Tot (tot_bare_parser (t1 & t2))
= fun b -> match p1 b with
| Some (x1, consumed1) ->
let b' = Seq.slice b consumed1 (Seq.length b) in
begin match p2 b' with
| Some (x2, consumed2) ->
Some ((x1, x2), consumed1 + consumed2)
| _ -> None
end
| _ -> None
let tot_nondep_then #k1 #t1 p1 #k2 #t2 p2 =
Classical.forall_intro (nondep_then_eq #k1 p1 #k2 p2);
parser_kind_prop_ext (and_then_kind k1 k2) (nondep_then #k1 p1 #k2 p2) (tot_nondep_then_bare p1 p2);
tot_nondep_then_bare p1 p2
let serialize_nondep_then
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
: Tot (serializer (nondep_then p1 p2))
= serialize_tagged_union
s1
fst
(fun x -> serialize_synth p2 (fun y -> (x, y) <: refine_with_tag fst x) s2 (fun (xy: refine_with_tag fst x) -> snd xy) ())
let serialize_nondep_then_eq
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(input: t1 * t2)
: Lemma
(serialize (serialize_nondep_then s1 s2) input == bare_serialize_nondep_then p1 s1 p2 s2 input)
= ()
let length_serialize_nondep_then
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(input1: t1)
(input2: t2)
: Lemma
(Seq.length (serialize (serialize_nondep_then s1 s2) (input1, input2)) == Seq.length (serialize s1 input1) + Seq.length (serialize s2 input2))
= ()
let serialize_nondep_then_upd_left
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
: Lemma
(requires (Seq.length (serialize s1 y) == Seq.length (serialize s1 (fst x))))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
Seq.length (serialize s1 y) <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s 0 (serialize s1 y)
))
= let s = serialize (serialize_nondep_then s1 s2) x in
seq_upd_seq_left s (serialize s1 y);
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.lemma_split s l1;
Seq.lemma_append_inj (Seq.slice s 0 l1) (Seq.slice s l1 (Seq.length s)) (serialize s1 (fst x)) (serialize s2 (snd x))
let serialize_nondep_then_upd_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\
serialize s1 y == seq_upd_seq s1' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_seq s i' s'
))
= serialize_nondep_then_upd_left s1 s2 x y;
let s = serialize (serialize_nondep_then s1 s2) x in
let s1' = serialize s1 (fst x) in
let l1 = Seq.length s1' in
Seq.lemma_split s l1;
Seq.lemma_append_inj (Seq.slice s 0 l1) (Seq.slice s l1 (Seq.length s)) s1' (serialize s2 (snd x));
seq_upd_seq_right_to_left s 0 s1' i' s';
seq_upd_seq_slice_idem s 0 (Seq.length s1')
let serialize_nondep_then_upd_bw_left
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
: Lemma
(requires (Seq.length (serialize s1 y) == Seq.length (serialize s1 (fst x))))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
let len2 = Seq.length (serialize s2 (snd x)) in
len2 + Seq.length (serialize s1 y) <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_bw_seq s len2 (serialize s1 y)
))
= serialize_nondep_then_upd_left s1 s2 x y
#reset-options "--z3refresh --z3rlimit 64 --z3cliopt smt.arith.nl=false --using_facts_from '* -FStar.Tactis -FStar.Reflection'"
let serialize_nondep_then_upd_bw_left_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t1)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s1' = serialize s1 (fst x) in
i' + Seq.length s' <= Seq.length s1' /\
serialize s1 y == seq_upd_bw_seq s1' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
let len2 = Seq.length (serialize s2 (snd x)) in
len2 + i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (y, snd x) == seq_upd_bw_seq s (len2 + i') s'
))
= let j' = Seq.length (serialize s1 (fst x)) - i' - Seq.length s' in
serialize_nondep_then_upd_left_chain s1 s2 x y j' s';
assert (j' == Seq.length (serialize (serialize_nondep_then s1 s2) x) - (Seq.length (serialize s2 (snd x)) + i') - Seq.length s')
let serialize_nondep_then_upd_right
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t2)
: Lemma
(requires (Seq.length (serialize s2 y) == Seq.length (serialize s2 (snd x))))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
Seq.length (serialize s2 y) <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (fst x, y) == seq_upd_seq s (Seq.length s - Seq.length (serialize s2 y)) (serialize s2 y)
))
= let s = serialize (serialize_nondep_then s1 s2) x in
seq_upd_seq_right s (serialize s2 y);
let l2 = Seq.length s - Seq.length (serialize s2 (snd x)) in
Seq.lemma_split s l2;
Seq.lemma_append_inj (Seq.slice s 0 l2) (Seq.slice s l2 (Seq.length s)) (serialize s1 (fst x)) (serialize s2 (snd x))
let serialize_nondep_then_upd_right_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t2)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s2' = serialize s2 (snd x) in
i' + Seq.length s' <= Seq.length s2' /\
serialize s2 y == seq_upd_seq s2' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.length s == l1 + Seq.length (serialize s2 (snd x)) /\
l1 + i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (fst x, y) == seq_upd_seq s (l1 + i') s' | false | false | LowParse.Spec.Combinators.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": true,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_nondep_then_upd_right_chain
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong } )
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(s2: serializer p2)
(x: t1 * t2)
(y: t2)
(i' : nat)
(s' : bytes)
: Lemma
(requires (
let s2' = serialize s2 (snd x) in
i' + Seq.length s' <= Seq.length s2' /\
serialize s2 y == seq_upd_seq s2' i' s'
))
(ensures (
let s = serialize (serialize_nondep_then s1 s2) x in
let l1 = Seq.length (serialize s1 (fst x)) in
Seq.length s == l1 + Seq.length (serialize s2 (snd x)) /\
l1 + i' + Seq.length s' <= Seq.length s /\
serialize (serialize_nondep_then s1 s2) (fst x, y) == seq_upd_seq s (l1 + i') s'
)) | [] | LowParse.Spec.Combinators.serialize_nondep_then_upd_right_chain | {
"file_name": "src/lowparse/LowParse.Spec.Combinators.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s1:
LowParse.Spec.Base.serializer p1
{ Mkparser_kind'?.parser_kind_subkind k1 ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
s2: LowParse.Spec.Base.serializer p2 ->
x: (t1 * t2) ->
y: t2 ->
i': Prims.nat ->
s': LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(requires
(let s2' = LowParse.Spec.Base.serialize s2 (FStar.Pervasives.Native.snd x) in
i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length s2' /\
LowParse.Spec.Base.serialize s2 y == LowParse.Spec.Base.seq_upd_seq s2' i' s'))
(ensures
(let s =
LowParse.Spec.Base.serialize (LowParse.Spec.Combinators.serialize_nondep_then s1 s2) x
in
let l1 =
FStar.Seq.Base.length (LowParse.Spec.Base.serialize s1 (FStar.Pervasives.Native.fst x))
in
FStar.Seq.Base.length s ==
l1 +
FStar.Seq.Base.length (LowParse.Spec.Base.serialize s2 (FStar.Pervasives.Native.snd x)) /\
l1 + i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length s /\
LowParse.Spec.Base.serialize (LowParse.Spec.Combinators.serialize_nondep_then s1 s2)
(FStar.Pervasives.Native.fst x, y) ==
LowParse.Spec.Base.seq_upd_seq s (l1 + i') s')) | {
"end_col": 44,
"end_line": 629,
"start_col": 2,
"start_line": 622
} |
Prims.Tot | val matrix_add (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb) | val matrix_add (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
let matrix_add #c #eq (#m: pos) (#n: pos) (add: CE.cm c eq) (ma: matrix c m n) (mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb) = | false | null | false | init (matrix_add_generator add ma mb) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"Prims.pos",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Matrix.matrix",
"FStar.Matrix.init",
"FStar.Matrix.matrix_add_generator",
"FStar.Matrix.matrix_of"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val matrix_add (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb) | [] | FStar.Matrix.matrix_add | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
add: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
ma: FStar.Matrix.matrix c m n ->
mb: FStar.Matrix.matrix c m n
-> FStar.Matrix.matrix_of (FStar.Matrix.matrix_add_generator add ma mb) | {
"end_col": 41,
"end_line": 209,
"start_col": 4,
"start_line": 209
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_right_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult (add.mult x y) z `eq.eq` add.mult (mul.mult x z) (mul.mult y z) | let is_right_distributive #c #eq (mul: CE.cm c eq) (add: CE.cm c eq) = | false | null | false | forall (x: c) (y: c) (z: c).
(mul.mult (add.mult x y) z) `eq.eq` (add.mult (mul.mult x z) (mul.mult y z)) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"Prims.l_Forall",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"Prims.logical"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *)
let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i))
(* We can get a sequence of products (or sums) from two sequences of equal length *)
let seq_of_products #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i)
(* As trivial as it seems to be, sometimes this lemma proves to be useful, mostly because
lemma_eq_elim invocation is surprisingly costly resources-wise. *)
val seq_of_products_lemma (#c:_) (#eq:_) (mul: CE.cm c eq)
(s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
(r: SB.seq c { SB.equal r (SB.init (SB.length s)
(fun (i: under (SB.length s)) ->
SB.index s i `mul.mult` SB.index t i))})
: Lemma (seq_of_products mul s t == r)
(* The usual dot product of two sequences of equal lengths *)
let dot #c #eq (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
= SP.foldm_snoc add (seq_of_products mul s t)
val dot_lemma (#c:_) (#eq:_) (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
: Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t))
(* Of course, it would be best to define the matrix product as a convolution,
but we don't have all the necessary framework for that level of generality yet. *)
val matrix_mul (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p)
: matrix c m p
(* Both distributivity laws hold for matrices as shown below *)
let is_left_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult x (add.mult y z) `eq.eq` add.mult (mul.mult x y) (mul.mult x z) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_right_distributive : mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq
-> Prims.logical | [] | FStar.Matrix.is_right_distributive | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq
-> Prims.logical | {
"end_col": 93,
"end_line": 273,
"start_col": 2,
"start_line": 273
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let dot #c #eq (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
= SP.foldm_snoc add (seq_of_products mul s t) | let dot
#c
#eq
(add: CE.cm c eq)
(mul: CE.cm c eq)
(s: SB.seq c)
(t: SB.seq c {SB.length t == SB.length s})
= | false | null | false | SP.foldm_snoc add (seq_of_products mul s t) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"FStar.Seq.Permutation.foldm_snoc",
"FStar.Matrix.seq_of_products"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *)
let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i))
(* We can get a sequence of products (or sums) from two sequences of equal length *)
let seq_of_products #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i)
(* As trivial as it seems to be, sometimes this lemma proves to be useful, mostly because
lemma_eq_elim invocation is surprisingly costly resources-wise. *)
val seq_of_products_lemma (#c:_) (#eq:_) (mul: CE.cm c eq)
(s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
(r: SB.seq c { SB.equal r (SB.init (SB.length s)
(fun (i: under (SB.length s)) ->
SB.index s i `mul.mult` SB.index t i))})
: Lemma (seq_of_products mul s t == r)
(* The usual dot product of two sequences of equal lengths *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val dot : add: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
s: FStar.Seq.Base.seq c ->
t: FStar.Seq.Base.seq c {FStar.Seq.Base.length t == FStar.Seq.Base.length s}
-> c | [] | FStar.Matrix.dot | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
add: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
s: FStar.Seq.Base.seq c ->
t: FStar.Seq.Base.seq c {FStar.Seq.Base.length t == FStar.Seq.Base.length s}
-> c | {
"end_col": 47,
"end_line": 258,
"start_col": 4,
"start_line": 258
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_absorber #c #eq (z:c) (op: CE.cm c eq) =
forall (x:c). op.mult z x `eq.eq` z /\ op.mult x z `eq.eq` z | let is_absorber #c #eq (z: c) (op: CE.cm c eq) = | false | null | false | forall (x: c). (op.mult z x) `eq.eq` z /\ (op.mult x z) `eq.eq` z | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"Prims.l_Forall",
"Prims.l_and",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"Prims.logical"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *)
let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i))
(* We can get a sequence of products (or sums) from two sequences of equal length *)
let seq_of_products #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i)
(* As trivial as it seems to be, sometimes this lemma proves to be useful, mostly because
lemma_eq_elim invocation is surprisingly costly resources-wise. *)
val seq_of_products_lemma (#c:_) (#eq:_) (mul: CE.cm c eq)
(s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
(r: SB.seq c { SB.equal r (SB.init (SB.length s)
(fun (i: under (SB.length s)) ->
SB.index s i `mul.mult` SB.index t i))})
: Lemma (seq_of_products mul s t == r)
(* The usual dot product of two sequences of equal lengths *)
let dot #c #eq (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
= SP.foldm_snoc add (seq_of_products mul s t)
val dot_lemma (#c:_) (#eq:_) (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
: Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t))
(* Of course, it would be best to define the matrix product as a convolution,
but we don't have all the necessary framework for that level of generality yet. *)
val matrix_mul (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p)
: matrix c m p
(* Both distributivity laws hold for matrices as shown below *)
let is_left_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult x (add.mult y z) `eq.eq` add.mult (mul.mult x y) (mul.mult x z)
let is_right_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult (add.mult x y) z `eq.eq` add.mult (mul.mult x z) (mul.mult y z)
let is_fully_distributive #c #eq (mul add: CE.cm c eq) = is_left_distributive mul add /\ is_right_distributive mul add
(*
This definition is of course far more general than matrices, and should rather
be a part of algebra core, as it is relevant to any magma.
In the process of development of F* abstract algebra framework, this definition
will probably take its rightful place near the most basic of grouplike structures.
Also note that this property is defined via forall. We would probably want
to make such properties opaque to SMT in the future, to avoid verification performance
issues.
*) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_absorber : z: c -> op: FStar.Algebra.CommMonoid.Equiv.cm c eq -> Prims.logical | [] | FStar.Matrix.is_absorber | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | z: c -> op: FStar.Algebra.CommMonoid.Equiv.cm c eq -> Prims.logical | {
"end_col": 62,
"end_line": 289,
"start_col": 2,
"start_line": 289
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_left_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult x (add.mult y z) `eq.eq` add.mult (mul.mult x y) (mul.mult x z) | let is_left_distributive #c #eq (mul: CE.cm c eq) (add: CE.cm c eq) = | false | null | false | forall (x: c) (y: c) (z: c).
(mul.mult x (add.mult y z)) `eq.eq` (add.mult (mul.mult x y) (mul.mult x z)) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"Prims.l_Forall",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"Prims.logical"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *)
let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i))
(* We can get a sequence of products (or sums) from two sequences of equal length *)
let seq_of_products #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i)
(* As trivial as it seems to be, sometimes this lemma proves to be useful, mostly because
lemma_eq_elim invocation is surprisingly costly resources-wise. *)
val seq_of_products_lemma (#c:_) (#eq:_) (mul: CE.cm c eq)
(s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
(r: SB.seq c { SB.equal r (SB.init (SB.length s)
(fun (i: under (SB.length s)) ->
SB.index s i `mul.mult` SB.index t i))})
: Lemma (seq_of_products mul s t == r)
(* The usual dot product of two sequences of equal lengths *)
let dot #c #eq (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
= SP.foldm_snoc add (seq_of_products mul s t)
val dot_lemma (#c:_) (#eq:_) (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
: Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t))
(* Of course, it would be best to define the matrix product as a convolution,
but we don't have all the necessary framework for that level of generality yet. *)
val matrix_mul (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p)
: matrix c m p
(* Both distributivity laws hold for matrices as shown below *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_left_distributive : mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq
-> Prims.logical | [] | FStar.Matrix.is_left_distributive | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq
-> Prims.logical | {
"end_col": 93,
"end_line": 270,
"start_col": 2,
"start_line": 270
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_fully_distributive #c #eq (mul add: CE.cm c eq) = is_left_distributive mul add /\ is_right_distributive mul add | let is_fully_distributive #c #eq (mul: CE.cm c eq) (add: CE.cm c eq) = | false | null | false | is_left_distributive mul add /\ is_right_distributive mul add | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"Prims.l_and",
"FStar.Matrix.is_left_distributive",
"FStar.Matrix.is_right_distributive",
"Prims.logical"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *)
let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i))
(* We can get a sequence of products (or sums) from two sequences of equal length *)
let seq_of_products #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i)
(* As trivial as it seems to be, sometimes this lemma proves to be useful, mostly because
lemma_eq_elim invocation is surprisingly costly resources-wise. *)
val seq_of_products_lemma (#c:_) (#eq:_) (mul: CE.cm c eq)
(s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
(r: SB.seq c { SB.equal r (SB.init (SB.length s)
(fun (i: under (SB.length s)) ->
SB.index s i `mul.mult` SB.index t i))})
: Lemma (seq_of_products mul s t == r)
(* The usual dot product of two sequences of equal lengths *)
let dot #c #eq (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
= SP.foldm_snoc add (seq_of_products mul s t)
val dot_lemma (#c:_) (#eq:_) (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
: Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t))
(* Of course, it would be best to define the matrix product as a convolution,
but we don't have all the necessary framework for that level of generality yet. *)
val matrix_mul (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p)
: matrix c m p
(* Both distributivity laws hold for matrices as shown below *)
let is_left_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult x (add.mult y z) `eq.eq` add.mult (mul.mult x y) (mul.mult x z)
let is_right_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult (add.mult x y) z `eq.eq` add.mult (mul.mult x z) (mul.mult y z) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_fully_distributive : mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq
-> Prims.logical | [] | FStar.Matrix.is_fully_distributive | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq
-> Prims.logical | {
"end_col": 118,
"end_line": 275,
"start_col": 57,
"start_line": 275
} |
|
Prims.Tot | val matrix_add_generator (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j) | val matrix_add_generator (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n
let matrix_add_generator
#c
#eq
(#m: pos)
(#n: pos)
(add: CE.cm c eq)
(ma: matrix c m n)
(mb: matrix c m n)
: matrix_generator c m n = | false | null | false | fun i j -> add.mult (ijth ma i j) (ijth mb i j) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"Prims.pos",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Matrix.matrix",
"FStar.IntegerIntervals.under",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Matrix.ijth",
"FStar.Matrix.matrix_generator"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val matrix_add_generator (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n | [] | FStar.Matrix.matrix_add_generator | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
add: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
ma: FStar.Matrix.matrix c m n ->
mb: FStar.Matrix.matrix c m n
-> FStar.Matrix.matrix_generator c m n | {
"end_col": 76,
"end_line": 204,
"start_col": 29,
"start_line": 204
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const) | let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c) = | false | null | false | SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.init",
"FStar.Seq.Base.length",
"FStar.IntegerIntervals.under",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Seq.Base.index"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_op_const : cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> s: FStar.Seq.Base.seq c -> const: c
-> FStar.Seq.Base.seq c | [] | FStar.Matrix.seq_op_const | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> s: FStar.Seq.Base.seq c -> const: c
-> FStar.Seq.Base.seq c | {
"end_col": 88,
"end_line": 234,
"start_col": 4,
"start_line": 234
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j) | let col #c #m #n (mx: matrix c m n) (j: under n) = | false | null | false | SB.init m (fun (i: under m) -> ijth mx i j) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"Prims.pos",
"FStar.Matrix.matrix",
"FStar.IntegerIntervals.under",
"FStar.Seq.Base.init",
"FStar.Matrix.ijth",
"FStar.Seq.Base.seq"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val col : mx: FStar.Matrix.matrix c m n -> j: FStar.IntegerIntervals.under n -> FStar.Seq.Base.seq c | [] | FStar.Matrix.col | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | mx: FStar.Matrix.matrix c m n -> j: FStar.IntegerIntervals.under n -> FStar.Seq.Base.seq c | {
"end_col": 94,
"end_line": 224,
"start_col": 51,
"start_line": 224
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j) | let row #c #m #n (mx: matrix c m n) (i: under m) = | false | null | false | SB.init n (fun (j: under n) -> ijth mx i j) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"Prims.pos",
"FStar.Matrix.matrix",
"FStar.IntegerIntervals.under",
"FStar.Seq.Base.init",
"FStar.Matrix.ijth",
"FStar.Seq.Base.seq"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val row : mx: FStar.Matrix.matrix c m n -> i: FStar.IntegerIntervals.under m -> FStar.Seq.Base.seq c | [] | FStar.Matrix.row | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | mx: FStar.Matrix.matrix c m n -> i: FStar.IntegerIntervals.under m -> FStar.Seq.Base.seq c | {
"end_col": 94,
"end_line": 226,
"start_col": 51,
"start_line": 226
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i)) | let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c) = | false | null | false | SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i)) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.init",
"FStar.Seq.Base.length",
"FStar.IntegerIntervals.under",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Seq.Base.index"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val const_op_seq : cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> const: c -> s: FStar.Seq.Base.seq c
-> FStar.Seq.Base.seq c | [] | FStar.Matrix.const_op_seq | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> const: c -> s: FStar.Seq.Base.seq c
-> FStar.Seq.Base.seq c | {
"end_col": 88,
"end_line": 240,
"start_col": 4,
"start_line": 240
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_of_products #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i) | let seq_of_products
#c
#eq
(mul: CE.cm c eq)
(s: SB.seq c)
(t: SB.seq c {SB.length t == SB.length s})
= | false | null | false | SB.init (SB.length s) (fun (i: under (SB.length s)) -> (SB.index s i) `mul.mult` (SB.index t i)) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"FStar.Seq.Base.init",
"FStar.IntegerIntervals.under",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Seq.Base.index"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *)
let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i))
(* We can get a sequence of products (or sums) from two sequences of equal length *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_of_products : mul: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
s: FStar.Seq.Base.seq c ->
t: FStar.Seq.Base.seq c {FStar.Seq.Base.length t == FStar.Seq.Base.length s}
-> FStar.Seq.Base.seq c | [] | FStar.Matrix.seq_of_products | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
s: FStar.Seq.Base.seq c ->
t: FStar.Seq.Base.seq c {FStar.Seq.Base.length t == FStar.Seq.Base.length s}
-> FStar.Seq.Base.seq c | {
"end_col": 96,
"end_line": 245,
"start_col": 4,
"start_line": 245
} |
|
Prims.Tot | val matrix_mul_unit (#c #eq: _) (add mul: CE.cm c eq) (m: _) : matrix c m m | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let matrix_mul_unit #c #eq (add mul: CE.cm c eq) m
: matrix c m m = init (fun i j -> if i=j then mul.unit else add.unit) | val matrix_mul_unit (#c #eq: _) (add mul: CE.cm c eq) (m: _) : matrix c m m
let matrix_mul_unit #c #eq (add: CE.cm c eq) (mul: CE.cm c eq) m : matrix c m m = | false | null | false | init (fun i j -> if i = j then mul.unit else add.unit) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"Prims.pos",
"FStar.Matrix.init",
"FStar.IntegerIntervals.under",
"Prims.op_Equality",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit",
"Prims.bool",
"FStar.Matrix.matrix"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb
(* This one is the generator function for sum of matrices *)
let matrix_add_generator #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_generator c m n = fun i j -> add.mult (ijth ma i j) (ijth mb i j)
(* This is the matrix sum operation given the addition CommMonoid *)
let matrix_add #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n)
: matrix_of (matrix_add_generator add ma mb)
= init (matrix_add_generator add ma mb)
(* Sum of matrices ijth element lemma *)
let matrix_add_ijth #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth (matrix_add add ma mb) i j == add.mult (ijth ma i j) (ijth mb i j)) = ()
(* m*n-sized matrix addition CommMonoid *)
val matrix_add_comm_monoid : (#c:Type) ->
(#eq:CE.equiv c) ->
(add: CE.cm c eq) ->
(m:pos) -> (n: pos) ->
CE.cm (matrix c m n) (matrix_equiv eq m n)
(* Sometimes we want matrix rows and columns to be accessed as sequences *)
let col #c #m #n (mx: matrix c m n) (j: under n) = SB.init m (fun (i: under m) -> ijth mx i j)
let row #c #m #n (mx: matrix c m n) (i: under m) = SB.init n (fun (j: under n) -> ijth mx i j)
(* ijth-based and row/col-based element access methods are equivalent *)
val matrix_row_col_lemma (#c:_) (#m #n:pos) (mx: matrix c m n) (i: under m) (j: under n)
: Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i)
(* This transforms a seq X={Xi} into a seq X={Xi `op` c} *)
let seq_op_const #c #eq (cm: CE.cm c eq) (s: SB.seq c) (const: c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult (SB.index s i) const)
(* Well, technically it is the same thing as above, given cm is commutative.
We will still use prefix and postfix applications separately since
sometimes provable equality (==) rather than `eq.eq` comes in handy *)
let const_op_seq #c #eq (cm: CE.cm c eq) (const: c) (s: SB.seq c)
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> cm.mult const (SB.index s i))
(* We can get a sequence of products (or sums) from two sequences of equal length *)
let seq_of_products #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
= SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i)
(* As trivial as it seems to be, sometimes this lemma proves to be useful, mostly because
lemma_eq_elim invocation is surprisingly costly resources-wise. *)
val seq_of_products_lemma (#c:_) (#eq:_) (mul: CE.cm c eq)
(s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s})
(r: SB.seq c { SB.equal r (SB.init (SB.length s)
(fun (i: under (SB.length s)) ->
SB.index s i `mul.mult` SB.index t i))})
: Lemma (seq_of_products mul s t == r)
(* The usual dot product of two sequences of equal lengths *)
let dot #c #eq (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
= SP.foldm_snoc add (seq_of_products mul s t)
val dot_lemma (#c:_) (#eq:_) (add mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c{SB.length t == SB.length s})
: Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t))
(* Of course, it would be best to define the matrix product as a convolution,
but we don't have all the necessary framework for that level of generality yet. *)
val matrix_mul (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p)
: matrix c m p
(* Both distributivity laws hold for matrices as shown below *)
let is_left_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult x (add.mult y z) `eq.eq` add.mult (mul.mult x y) (mul.mult x z)
let is_right_distributive #c #eq (mul add: CE.cm c eq) =
forall (x y z: c). mul.mult (add.mult x y) z `eq.eq` add.mult (mul.mult x z) (mul.mult y z)
let is_fully_distributive #c #eq (mul add: CE.cm c eq) = is_left_distributive mul add /\ is_right_distributive mul add
(*
This definition is of course far more general than matrices, and should rather
be a part of algebra core, as it is relevant to any magma.
In the process of development of F* abstract algebra framework, this definition
will probably take its rightful place near the most basic of grouplike structures.
Also note that this property is defined via forall. We would probably want
to make such properties opaque to SMT in the future, to avoid verification performance
issues.
*)
let is_absorber #c #eq (z:c) (op: CE.cm c eq) =
forall (x:c). op.mult z x `eq.eq` z /\ op.mult x z `eq.eq` z
(*
Similar lemmas to reason about matrix product elements
We're going to refactor these a bit, as some are clearly redundant.
Might want to keep internal usages to one variant of the lemma and
remove the rest.
*)
val matrix_mul_ijth (#c:_) (#eq:_) (#m #n #k:pos) (add mul: CE.cm c eq)
(mx: matrix c m n) (my: matrix c n k) (i: under m) (h: under k)
: Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h))
val matrix_mul_ijth_as_sum (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq)
(mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p)
: Lemma (ijth (matrix_mul add mul mx my) i k ==
SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k))))
val matrix_mul_ijth_eq_sum_of_seq (#c:_) (#eq:_) (#m #n #p:pos) (add: CE.cm c eq)
(mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul})
(mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p)
(r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)})
: Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r)
val matrix_mul_ijth_eq_sum_of_seq_for_init (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq)
(mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p)
(f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)})
: Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f))
(* Basically, we prove that (XY)Z = X(YZ) for any matrices of compatible sizes *)
val matrix_mul_is_associative (#c:_) (#eq:_) (#m #n #p #q: pos) (add: CE.cm c eq)
(mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul})
(mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q)
: Lemma ((matrix_equiv eq m q).eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz)
(matrix_mul add mul mx (matrix_mul add mul my mz)))
(* Square identity matrix of size m*m *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val matrix_mul_unit (#c #eq: _) (add mul: CE.cm c eq) (m: _) : matrix c m m | [] | FStar.Matrix.matrix_mul_unit | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
add: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq ->
m: Prims.pos
-> FStar.Matrix.matrix c m m | {
"end_col": 71,
"end_line": 327,
"start_col": 19,
"start_line": 327
} |
Prims.Tot | val get_ij (m n: pos) (i: under m) (j: under n) : under (m * n) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j | val get_ij (m n: pos) (i: under m) (j: under n) : under (m * n)
let get_ij (m n: pos) (i: under m) (j: under n) : under (m * n) = | false | null | false | flattened_index_is_under_flattened_size m n i j;
i * n + j | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.Matrix.flattened_index_is_under_flattened_size"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_ij (m n: pos) (i: under m) (j: under n) : under (m * n) | [] | FStar.Matrix.get_ij | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
m: Prims.pos ->
n: Prims.pos ->
i: FStar.IntegerIntervals.under m ->
j: FStar.IntegerIntervals.under n
-> FStar.IntegerIntervals.under (m * n) | {
"end_col": 60,
"end_line": 51,
"start_col": 4,
"start_line": 51
} |
FStar.Pervasives.Lemma | val flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i * n) + j)) < m * n) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n) | val flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i * n) + j)) < m * n)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i * n) + j)) < m * n) = | false | null | true | assert (i * n <= (m - 1) * n) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.op_LessThan",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i * n) + j)) < m * n) | [] | FStar.Matrix.flattened_index_is_under_flattened_size | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
m: Prims.pos ->
n: Prims.pos ->
i: FStar.IntegerIntervals.under m ->
j: FStar.IntegerIntervals.under n
-> FStar.Pervasives.Lemma (ensures i * n + j < m * n) | {
"end_col": 55,
"end_line": 46,
"start_col": 32,
"start_line": 46
} |
Prims.Tot | val get_i (m n: pos) (ij: under (m * n)) : under m | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n | val get_i (m n: pos) (ij: under (m * n)) : under m
let get_i (m n: pos) (ij: under (m * n)) : under m = | false | null | false | ij / n | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"FStar.Mul.op_Star",
"Prims.op_Division"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_i (m n: pos) (ij: under (m * n)) : under m | [] | FStar.Matrix.get_i | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: Prims.pos -> n: Prims.pos -> ij: FStar.IntegerIntervals.under (m * n)
-> FStar.IntegerIntervals.under m | {
"end_col": 57,
"end_line": 55,
"start_col": 51,
"start_line": 55
} |
FStar.Pervasives.Lemma | val ji_is_transpose_of_ij (m n: pos) (ij: under (m * n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij) | val ji_is_transpose_of_ij (m n: pos) (ij: under (m * n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m * n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) = | false | null | true | indices_transpose_lemma m (get_i m n ij) (get_j m n ij) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"FStar.Mul.op_Star",
"FStar.Matrix.indices_transpose_lemma",
"FStar.Matrix.get_i",
"FStar.Matrix.get_j",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Matrix.transpose_ji",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n)) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ji_is_transpose_of_ij (m n: pos) (ij: under (m * n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) | [] | FStar.Matrix.ji_is_transpose_of_ij | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: Prims.pos -> n: Prims.pos -> ij: FStar.IntegerIntervals.under (m * n)
-> FStar.Pervasives.Lemma
(ensures FStar.Matrix.transpose_ji n m (FStar.Matrix.transpose_ji m n ij) = ij) | {
"end_col": 57,
"end_line": 83,
"start_col": 2,
"start_line": 83
} |
FStar.Pervasives.Lemma | val dual_indices (m n: pos) (ij: under (m * n))
: Lemma
((get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij)) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij) | val dual_indices (m n: pos) (ij: under (m * n))
: Lemma
((get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
let dual_indices (m n: pos) (ij: under (m * n))
: Lemma
((get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij)) = | false | null | true | consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"FStar.Mul.op_Star",
"FStar.Matrix.indices_transpose_lemma",
"FStar.Matrix.get_i",
"FStar.Matrix.get_j",
"Prims.unit",
"FStar.Matrix.consistency_of_ij",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Matrix.transpose_ji",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\ | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val dual_indices (m n: pos) (ij: under (m * n))
: Lemma
((get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij)) | [] | FStar.Matrix.dual_indices | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: Prims.pos -> n: Prims.pos -> ij: FStar.IntegerIntervals.under (m * n)
-> FStar.Pervasives.Lemma
(ensures
FStar.Matrix.get_j n m (FStar.Matrix.transpose_ji m n ij) = FStar.Matrix.get_i m n ij /\
FStar.Matrix.get_i n m (FStar.Matrix.transpose_ji m n ij) = FStar.Matrix.get_j m n ij) | {
"end_col": 59,
"end_line": 90,
"start_col": 4,
"start_line": 89
} |
Prims.Tot | val transpose_ji (m n: pos) (ij: under (m * n)) : under (n * m) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij) | val transpose_ji (m n: pos) (ij: under (m * n)) : under (n * m)
let transpose_ji (m n: pos) (ij: under (m * n)) : under (n * m) = | false | null | false | flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij) * m + (get_i m n ij) | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Matrix.get_j",
"FStar.Matrix.get_i",
"Prims.unit",
"FStar.Matrix.flattened_index_is_under_flattened_size"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose_ji (m n: pos) (ij: under (m * n)) : under (n * m) | [] | FStar.Matrix.transpose_ji | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: Prims.pos -> n: Prims.pos -> ij: FStar.IntegerIntervals.under (m * n)
-> FStar.IntegerIntervals.under (n * m) | {
"end_col": 35,
"end_line": 74,
"start_col": 2,
"start_line": 73
} |
Prims.Tot | val get_j (m n: pos) (ij: under (m * n)) : under n | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n | val get_j (m n: pos) (ij: under (m * n)) : under n
let get_j (m n: pos) (ij: under (m * n)) : under n = | false | null | false | ij % n | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"total"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"FStar.Mul.op_Star",
"Prims.op_Modulus"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_j (m n: pos) (ij: under (m * n)) : under n | [] | FStar.Matrix.get_j | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: Prims.pos -> n: Prims.pos -> ij: FStar.IntegerIntervals.under (m * n)
-> FStar.IntegerIntervals.under n | {
"end_col": 57,
"end_line": 56,
"start_col": 51,
"start_line": 56
} |
FStar.Pervasives.Lemma | val matrix_equiv_from_proof
(#c: _)
(#m #n: pos)
(eq: CE.equiv c)
(ma mb: matrix c m n)
(proof: (i: under m -> j: under n -> Lemma (eq.eq (ijth ma i j) (ijth mb i j))))
: Lemma ((matrix_equiv eq m n).eq ma mb) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j)))
: Lemma ((matrix_equiv eq m n).eq ma mb)
= Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb | val matrix_equiv_from_proof
(#c: _)
(#m #n: pos)
(eq: CE.equiv c)
(ma mb: matrix c m n)
(proof: (i: under m -> j: under n -> Lemma (eq.eq (ijth ma i j) (ijth mb i j))))
: Lemma ((matrix_equiv eq m n).eq ma mb)
let matrix_equiv_from_proof
#c
(#m: pos)
(#n: pos)
(eq: CE.equiv c)
(ma: matrix c m n)
(mb: matrix c m n)
(proof: (i: under m -> j: under n -> Lemma (eq.eq (ijth ma i j) (ijth mb i j))))
: Lemma ((matrix_equiv eq m n).eq ma mb) = | false | null | true | Classical.forall_intro_2 proof;
matrix_equiv_from_element_eq eq ma mb | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Matrix.matrix",
"FStar.IntegerIntervals.under",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Matrix.ijth",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Matrix.matrix_equiv_from_element_eq",
"FStar.Classical.forall_intro_2",
"FStar.Matrix.matrix_equiv"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *)
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m
(* A proof of trasnspotition transform bijectivity *)
let ji_is_transpose_of_ij (m n: pos) (ij: under (m*n))
: Lemma (transpose_ji n m (transpose_ji m n ij) = ij) =
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A proof that 2D indices are swapped with the transpotition transform *)
let dual_indices (m n: pos) (ij: under (m*n)) : Lemma (
(get_j n m (transpose_ji m n ij) = get_i m n ij) /\
(get_i n m (transpose_ji m n ij) = get_j m n ij))
= consistency_of_ij m n ij;
indices_transpose_lemma m (get_i m n ij) (get_j m n ij)
(* A matrix can always be treated as a flattened seq *)
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) ->
(s:SB.seq c {
SB.length s=m*n /\
(forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij)))
})
(* Indexer for a matrix *)
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
(t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
(* Indexer for a matrix returns the correct value *)
val ijth_lemma : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) ->
Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j))
(* A matrix can always be constructed from an m*n-sized seq *)
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
(* A type for matrices constructed via concrete generator *)
type matrix_of #c (#m #n: pos) (gen: matrix_generator c m n) = z:matrix c m n {
(forall (i: under m) (j: under n). ijth z i j == gen i j) /\
(forall (ij: under (m*n)). (SB.index (seq_of_matrix z) ij) == (gen (get_i m n ij) (get_j m n ij)))
}
(* Monoid-based fold of a matrix treated as a flat seq *)
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
(* foldm_snoc of the corresponding seq is equal to foldm of the matrix *)
val matrix_fold_equals_fold_of_seq :
(#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n)
-> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
(* A matrix constructed from given generator *)
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n)
-> matrix_of generator
(* A matrix fold is equal to double foldm_snoc over init-generated seq of seqs *)
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (ensures foldm cm (init generator) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
/\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq`
SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))
)
(* This auxiliary lemma shows that the fold of the last line of a matrix
is equal to the corresponding fold of the generator function *)
(* This lemma establishes that the fold of a matrix is equal to
nested Algebra.CommMonoid.Fold.fold over the matrix generator *)
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) ->
(#m: pos) -> (#n: pos) ->
(cm: CE.cm c eq) ->
(generator: matrix_generator c m n) ->
Lemma (foldm cm (init generator) `eq.eq`
CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n)
: (f: matrix_generator c n m { forall i j. f j i == generator i j })
val matrix_transpose_is_permutation (#c:_) (#m #n: pos)
(generator: matrix_generator c m n)
: Lemma (SP.is_permutation (seq_of_matrix (init generator))
(seq_of_matrix (init (transposed_matrix_gen generator)))
(transpose_ji m n))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_)
(#m #n: pos)
(cm: CE.cm c eq)
(gen: matrix_generator c m n)
: Lemma (foldm cm (init gen) `eq.eq`
foldm cm (init (transposed_matrix_gen gen)))
(* The equivalence relation defined for matrices of given dimensions *)
val matrix_equiv : (#c: Type) ->
(eq: CE.equiv c) ->
(m: pos) -> (n: pos) ->
CE.equiv (matrix c m n)
(* element-wise matrix equivalence lemma *)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c)
(ma mb: matrix c m n) (i: under m) (j: under n)
: Lemma (requires (matrix_equiv eq m n).eq ma mb)
(ensures ijth ma i j `eq.eq` ijth mb i j)
(* We can always establish matrix equivalence from element-wise equivalence *)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
: Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j))
(ensures (matrix_equiv eq m n).eq ma mb)
(*
Notice that even though we can (and will) construct CommMonoid for matrix addition,
we still publish the operations as well since as soon as we get to multiplication,
results usually have different dimensions, so it would be convenient to have both
the CommMonoid for matrix addition and the explicit addition function.
This becomes the only way with non-square matrix multiplication, since these
would not constitute a monoid to begin with.
*)
(* This version of the lemma is useful if we don't want to invoke
Classical.forall_intro_2 in a big proof to conserve resources *)
let matrix_equiv_from_proof #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n)
(proof: (i:under m) -> (j:under n) -> Lemma (eq.eq (ijth ma i j) (ijth mb i j))) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val matrix_equiv_from_proof
(#c: _)
(#m #n: pos)
(eq: CE.equiv c)
(ma mb: matrix c m n)
(proof: (i: under m -> j: under n -> Lemma (eq.eq (ijth ma i j) (ijth mb i j))))
: Lemma ((matrix_equiv eq m n).eq ma mb) | [] | FStar.Matrix.matrix_equiv_from_proof | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv c ->
ma: FStar.Matrix.matrix c m n ->
mb: FStar.Matrix.matrix c m n ->
proof:
(i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under n
-> FStar.Pervasives.Lemma
(ensures EQ?.eq eq (FStar.Matrix.ijth ma i j) (FStar.Matrix.ijth mb i j)))
-> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m n) ma mb) | {
"end_col": 41,
"end_line": 200,
"start_col": 4,
"start_line": 199
} |
FStar.Pervasives.Lemma | val indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j * m + i) % m = i) && ((j * m + i) / m = j)) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j*m+i)%m=i) && ((j*m+i)/m=j)) = ML.lemma_mod_plus i j m | val indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j * m + i) % m = i) && ((j * m + i) / m = j))
let indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j * m + i) % m = i) && ((j * m + i) / m = j)) = | false | null | true | ML.lemma_mod_plus i j m | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"Prims.nat",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Prims.op_AmpAmp",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n
(* A proof that getting the flattened index from 2D
indices works correctly *)
let consistency_of_ij (m n: pos) (ij: under (m*n))
: Lemma (get_ij m n (get_i m n ij) (get_j m n ij) == ij) = ()
(* The transposition transform for the flattened index *)
let transpose_ji (m n: pos) (ij: under (m*n)) : under (n*m) =
flattened_index_is_under_flattened_size n m (get_j m n ij) (get_i m n ij);
(get_j m n ij)*m + (get_i m n ij)
(* Auxiliary arithmetic lemma *) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val indices_transpose_lemma (m: pos) (i: under m) (j: nat)
: Lemma (((j * m + i) % m = i) && ((j * m + i) / m = j)) | [] | FStar.Matrix.indices_transpose_lemma | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: Prims.pos -> i: FStar.IntegerIntervals.under m -> j: Prims.nat
-> FStar.Pervasives.Lemma (ensures (j * m + i) % m = i && (j * m + i) / m = j) | {
"end_col": 68,
"end_line": 78,
"start_col": 45,
"start_line": 78
} |
FStar.Pervasives.Lemma | val consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) | [
{
"abbrev": false,
"full_module": "FStar.Seq.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Properties",
"short_module": "SProp"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IntegerIntervals",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "ML"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Base",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "FStar.Seq.Permutation",
"short_module": "SP"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Fold",
"short_module": "CF"
},
{
"abbrev": true,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": "CE"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) =
flattened_index_is_under_flattened_size m n i j; //speeds up the proof
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n | val consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) = | false | null | true | flattened_index_is_under_flattened_size m n i j;
ML.lemma_mod_plus j i n;
ML.lemma_div_plus j i n | {
"checked_file": "FStar.Matrix.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Permutation.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.IntegerIntervals.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Fold.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Matrix.fsti"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.IntegerIntervals.under",
"FStar.Math.Lemmas.lemma_div_plus",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_plus",
"FStar.Matrix.flattened_index_is_under_flattened_size",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Matrix.get_i",
"FStar.Matrix.get_ij",
"FStar.Matrix.get_j",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
(*
In this module we provide basic definitions to work with matrices via
seqs, and define transpose transform together with theorems that assert
matrix fold equality of original and transposed matrices.
*)
module FStar.Matrix
module CE = FStar.Algebra.CommMonoid.Equiv
module CF = FStar.Algebra.CommMonoid.Fold
module SP = FStar.Seq.Permutation
module SB = FStar.Seq.Base
module ML = FStar.Math.Lemmas
open FStar.IntegerIntervals
open FStar.Mul
(* This is similar to lambdas passed to FStar.Seq.Base.init *)
type matrix_generator c (m n: pos) = under m -> under n -> c
(* We hide the implementation details of a matrix. *)
val matrix (c:Type u#a) (m n : pos) : Type u#a
(* This lemma asserts the flattened index to be valid
for the flattened matrix seq *)
let flattened_index_is_under_flattened_size (m n: pos) (i: under m) (j: under n)
: Lemma ((((i*n)+j)) < m*n) = assert (i*n <= (m-1)*n)
(* Returns the flattened index from 2D indices pair
and the two array dimensions. *)
let get_ij (m n: pos) (i:under m) (j: under n) : under (m*n)
= flattened_index_is_under_flattened_size m n i j; i*n + j
(* The following two functions return the matrix indices from the
flattened index and the two dimensions *)
let get_i (m n: pos) (ij: under (m*n)) : under m = ij / n
let get_j (m n: pos) (ij: under (m*n)) : under n = ij % n
(* A proof that getting a 2D index back from the flattened
index works correctly *)
let consistency_of_i_j (m n: pos) (i: under m) (j: under n) | false | false | FStar.Matrix.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val consistency_of_i_j (m n: pos) (i: under m) (j: under n)
: Lemma (get_i m n (get_ij m n i j) = i /\ get_j m n (get_ij m n i j) = j) | [] | FStar.Matrix.consistency_of_i_j | {
"file_name": "ulib/FStar.Matrix.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
m: Prims.pos ->
n: Prims.pos ->
i: FStar.IntegerIntervals.under m ->
j: FStar.IntegerIntervals.under n
-> FStar.Pervasives.Lemma
(ensures
FStar.Matrix.get_i m n (FStar.Matrix.get_ij m n i j) = i /\
FStar.Matrix.get_j m n (FStar.Matrix.get_ij m n i j) = j) | {
"end_col": 25,
"end_line": 64,
"start_col": 2,
"start_line": 62
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid1 = true | let valid1 = | false | null | false | true | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul | false | true | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid1 : Prims.bool | [] | Test.Vectors.Curve25519.valid1 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.bool | {
"end_col": 39,
"end_line": 57,
"start_col": 35,
"start_line": 57
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid0 = true | let valid0 = | false | null | false | true | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul | false | true | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid0 : Prims.bool | [] | Test.Vectors.Curve25519.valid0 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.bool | {
"end_col": 39,
"end_line": 31,
"start_col": 35,
"start_line": 31
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid2 = true | let valid2 = | false | null | false | true | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul | false | true | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid2 : Prims.bool | [] | Test.Vectors.Curve25519.valid2 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.bool | {
"end_col": 39,
"end_line": 83,
"start_col": 35,
"start_line": 83
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid3 = true | let valid3 = | false | null | false | true | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul | false | true | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid3 : Prims.bool | [] | Test.Vectors.Curve25519.valid3 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.bool | {
"end_col": 39,
"end_line": 109,
"start_col": 35,
"start_line": 109
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid4 = true | let valid4 = | false | null | false | true | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul | false | true | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid4 : Prims.bool | [] | Test.Vectors.Curve25519.valid4 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.bool | {
"end_col": 39,
"end_line": 135,
"start_col": 35,
"start_line": 135
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid6 = false | let valid6 = | false | null | false | false | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul
let public6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy; 0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy; 0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public6_len: (x:UInt32.t { UInt32.v x = B.length public6 }) =
32ul
let result6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result6_len: (x:UInt32.t { UInt32.v x = B.length result6 }) =
32ul | false | true | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid6 : Prims.bool | [] | Test.Vectors.Curve25519.valid6 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.bool | {
"end_col": 40,
"end_line": 187,
"start_col": 35,
"start_line": 187
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid5 = false | let valid5 = | false | null | false | false | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul | false | true | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid5 : Prims.bool | [] | Test.Vectors.Curve25519.valid5 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.bool | {
"end_col": 40,
"end_line": 161,
"start_col": 35,
"start_line": 161
} |
|
Prims.Tot | val private_2_len:(x: UInt32.t{UInt32.v x = B.length private_2}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul | val private_2_len:(x: UInt32.t{UInt32.v x = B.length private_2})
let private_2_len:(x: UInt32.t{UInt32.v x = B.length private_2}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_2_len:(x: UInt32.t{UInt32.v x = B.length private_2}) | [] | Test.Vectors.Curve25519.private_2_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.private_2} | {
"end_col": 6,
"end_line": 65,
"start_col": 2,
"start_line": 65
} |
Prims.Tot | val public1_len:(x: UInt32.t{UInt32.v x = B.length public1}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul | val public1_len:(x: UInt32.t{UInt32.v x = B.length public1})
let public1_len:(x: UInt32.t{UInt32.v x = B.length public1}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public1_len:(x: UInt32.t{UInt32.v x = B.length public1}) | [] | Test.Vectors.Curve25519.public1_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.public1} | {
"end_col": 6,
"end_line": 47,
"start_col": 2,
"start_line": 47
} |
Prims.Tot | val result1_len:(x: UInt32.t{UInt32.v x = B.length result1}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul | val result1_len:(x: UInt32.t{UInt32.v x = B.length result1})
let result1_len:(x: UInt32.t{UInt32.v x = B.length result1}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result1_len:(x: UInt32.t{UInt32.v x = B.length result1}) | [] | Test.Vectors.Curve25519.result1_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.result1} | {
"end_col": 6,
"end_line": 55,
"start_col": 2,
"start_line": 55
} |
Prims.Tot | val private_3_len:(x: UInt32.t{UInt32.v x = B.length private_3}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul | val private_3_len:(x: UInt32.t{UInt32.v x = B.length private_3})
let private_3_len:(x: UInt32.t{UInt32.v x = B.length private_3}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_3_len:(x: UInt32.t{UInt32.v x = B.length private_3}) | [] | Test.Vectors.Curve25519.private_3_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.private_3} | {
"end_col": 6,
"end_line": 91,
"start_col": 2,
"start_line": 91
} |
Prims.Tot | val public2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val public2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let public2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.public2 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 70,
"start_col": 2,
"start_line": 68
} |
Prims.Tot | val public4_len:(x: UInt32.t{UInt32.v x = B.length public4}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul | val public4_len:(x: UInt32.t{UInt32.v x = B.length public4})
let public4_len:(x: UInt32.t{UInt32.v x = B.length public4}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public4_len:(x: UInt32.t{UInt32.v x = B.length public4}) | [] | Test.Vectors.Curve25519.public4_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.public4} | {
"end_col": 6,
"end_line": 125,
"start_col": 2,
"start_line": 125
} |
Prims.Tot | val private_6_len:(x: UInt32.t{UInt32.v x = B.length private_6}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul | val private_6_len:(x: UInt32.t{UInt32.v x = B.length private_6})
let private_6_len:(x: UInt32.t{UInt32.v x = B.length private_6}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_6_len:(x: UInt32.t{UInt32.v x = B.length private_6}) | [] | Test.Vectors.Curve25519.private_6_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.private_6} | {
"end_col": 6,
"end_line": 169,
"start_col": 2,
"start_line": 169
} |
Prims.Tot | val result2_len:(x: UInt32.t{UInt32.v x = B.length result2}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul | val result2_len:(x: UInt32.t{UInt32.v x = B.length result2})
let result2_len:(x: UInt32.t{UInt32.v x = B.length result2}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result2_len:(x: UInt32.t{UInt32.v x = B.length result2}) | [] | Test.Vectors.Curve25519.result2_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.result2} | {
"end_col": 6,
"end_line": 81,
"start_col": 2,
"start_line": 81
} |
Prims.Tot | val public0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val public0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let public0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy;
0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy;
0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.public0 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 18,
"start_col": 2,
"start_line": 16
} |
Prims.Tot | val private_2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val private_2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let private_2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.private_2 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 62,
"start_col": 2,
"start_line": 60
} |
Prims.Tot | val result0_len:(x: UInt32.t{UInt32.v x = B.length result0}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul | val result0_len:(x: UInt32.t{UInt32.v x = B.length result0})
let result0_len:(x: UInt32.t{UInt32.v x = B.length result0}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result0_len:(x: UInt32.t{UInt32.v x = B.length result0}) | [] | Test.Vectors.Curve25519.result0_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.result0} | {
"end_col": 6,
"end_line": 29,
"start_col": 2,
"start_line": 29
} |
Prims.Tot | val public3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val public3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let public3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy;
0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy;
0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.public3 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 96,
"start_col": 2,
"start_line": 94
} |
Prims.Tot | val private_0_len:(x: UInt32.t{UInt32.v x = B.length private_0}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul | val private_0_len:(x: UInt32.t{UInt32.v x = B.length private_0})
let private_0_len:(x: UInt32.t{UInt32.v x = B.length private_0}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_0_len:(x: UInt32.t{UInt32.v x = B.length private_0}) | [] | Test.Vectors.Curve25519.private_0_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.private_0} | {
"end_col": 6,
"end_line": 13,
"start_col": 2,
"start_line": 13
} |
Prims.Tot | val private_1_len:(x: UInt32.t{UInt32.v x = B.length private_1}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul | val private_1_len:(x: UInt32.t{UInt32.v x = B.length private_1})
let private_1_len:(x: UInt32.t{UInt32.v x = B.length private_1}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_1_len:(x: UInt32.t{UInt32.v x = B.length private_1}) | [] | Test.Vectors.Curve25519.private_1_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.private_1} | {
"end_col": 6,
"end_line": 39,
"start_col": 2,
"start_line": 39
} |
Prims.Tot | val private_1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val private_1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let private_1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy;
0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy;
0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.private_1 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 36,
"start_col": 2,
"start_line": 34
} |
Prims.Tot | val public0_len:(x: UInt32.t{UInt32.v x = B.length public0}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul | val public0_len:(x: UInt32.t{UInt32.v x = B.length public0})
let public0_len:(x: UInt32.t{UInt32.v x = B.length public0}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public0_len:(x: UInt32.t{UInt32.v x = B.length public0}) | [] | Test.Vectors.Curve25519.public0_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.public0} | {
"end_col": 6,
"end_line": 21,
"start_col": 2,
"start_line": 21
} |
Prims.Tot | val result4_len:(x: UInt32.t{UInt32.v x = B.length result4}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul | val result4_len:(x: UInt32.t{UInt32.v x = B.length result4})
let result4_len:(x: UInt32.t{UInt32.v x = B.length result4}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result4_len:(x: UInt32.t{UInt32.v x = B.length result4}) | [] | Test.Vectors.Curve25519.result4_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.result4} | {
"end_col": 6,
"end_line": 133,
"start_col": 2,
"start_line": 133
} |
Prims.Tot | val public3_len:(x: UInt32.t{UInt32.v x = B.length public3}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul | val public3_len:(x: UInt32.t{UInt32.v x = B.length public3})
let public3_len:(x: UInt32.t{UInt32.v x = B.length public3}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public3_len:(x: UInt32.t{UInt32.v x = B.length public3}) | [] | Test.Vectors.Curve25519.public3_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.public3} | {
"end_col": 6,
"end_line": 99,
"start_col": 2,
"start_line": 99
} |
Prims.Tot | val private_3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val private_3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let private_3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.private_3 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 88,
"start_col": 2,
"start_line": 86
} |
Prims.Tot | val result6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val result6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let result6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul
let public6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy; 0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy; 0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public6_len: (x:UInt32.t { UInt32.v x = B.length public6 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.result6 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 182,
"start_col": 2,
"start_line": 180
} |
Prims.Tot | val result3_len:(x: UInt32.t{UInt32.v x = B.length result3}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul | val result3_len:(x: UInt32.t{UInt32.v x = B.length result3})
let result3_len:(x: UInt32.t{UInt32.v x = B.length result3}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result3_len:(x: UInt32.t{UInt32.v x = B.length result3}) | [] | Test.Vectors.Curve25519.result3_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.result3} | {
"end_col": 6,
"end_line": 107,
"start_col": 2,
"start_line": 107
} |
Prims.Tot | val public6_len:(x: UInt32.t{UInt32.v x = B.length public6}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public6_len: (x:UInt32.t { UInt32.v x = B.length public6 }) =
32ul | val public6_len:(x: UInt32.t{UInt32.v x = B.length public6})
let public6_len:(x: UInt32.t{UInt32.v x = B.length public6}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul
let public6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy; 0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy; 0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public6_len:(x: UInt32.t{UInt32.v x = B.length public6}) | [] | Test.Vectors.Curve25519.public6_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.public6} | {
"end_col": 6,
"end_line": 177,
"start_col": 2,
"start_line": 177
} |
Prims.Tot | val result1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val result1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let result1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy;
0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy;
0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.result1 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 52,
"start_col": 2,
"start_line": 50
} |
Prims.Tot | val private_6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val private_6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let private_6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.private_6 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 166,
"start_col": 2,
"start_line": 164
} |
Prims.Tot | val public4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val public4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let public4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy;
0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy;
0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.public4 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 122,
"start_col": 2,
"start_line": 120
} |
Prims.Tot | val result0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val result0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let result0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy;
0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy;
0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.result0 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 26,
"start_col": 2,
"start_line": 24
} |
Prims.Tot | val public2_len:(x: UInt32.t{UInt32.v x = B.length public2}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul | val public2_len:(x: UInt32.t{UInt32.v x = B.length public2})
let public2_len:(x: UInt32.t{UInt32.v x = B.length public2}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public2_len:(x: UInt32.t{UInt32.v x = B.length public2}) | [] | Test.Vectors.Curve25519.public2_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.public2} | {
"end_col": 6,
"end_line": 73,
"start_col": 2,
"start_line": 73
} |
Prims.Tot | val public1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val public1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let public1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy;
0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy;
0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public1:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.public1 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 44,
"start_col": 2,
"start_line": 42
} |
Prims.Tot | val private_4_len:(x: UInt32.t{UInt32.v x = B.length private_4}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul | val private_4_len:(x: UInt32.t{UInt32.v x = B.length private_4})
let private_4_len:(x: UInt32.t{UInt32.v x = B.length private_4}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_4_len:(x: UInt32.t{UInt32.v x = B.length private_4}) | [] | Test.Vectors.Curve25519.private_4_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.private_4} | {
"end_col": 6,
"end_line": 117,
"start_col": 2,
"start_line": 117
} |
Prims.Tot | val vectors_len:(x: UInt32.t{UInt32.v x = B.length vectors}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vectors_len: (x:UInt32.t { UInt32.v x = B.length vectors }) =
7ul | val vectors_len:(x: UInt32.t{UInt32.v x = B.length vectors})
let vectors_len:(x: UInt32.t{UInt32.v x = B.length vectors}) = | false | null | false | 7ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul
let public6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy; 0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy; 0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public6_len: (x:UInt32.t { UInt32.v x = B.length public6 }) =
32ul
let result6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result6_len: (x:UInt32.t { UInt32.v x = B.length result6 }) =
32ul
inline_for_extraction let valid6 = false
noeq
type vector = | Vector:
result: B.buffer UInt8.t { B.recallable result } ->
result_len: UInt32.t { B.length result = UInt32.v result_len } ->
public: B.buffer UInt8.t { B.recallable public } ->
public_len: UInt32.t { B.length public = UInt32.v public_len } ->
private_: B.buffer UInt8.t { B.recallable private_ } ->
private__len: UInt32.t { B.length private_ = UInt32.v private__len } ->
valid: bool ->
vector
let vectors: (b: B.buffer vector { B.length b = 7 /\ B.recallable b }) =
[@inline_let] let l = [
Vector result0 result0_len public0 public0_len private_0 private_0_len valid0;
Vector result1 result1_len public1 public1_len private_1 private_1_len valid1;
Vector result2 result2_len public2 public2_len private_2 private_2_len valid2;
Vector result3 result3_len public3 public3_len private_3 private_3_len valid3;
Vector result4 result4_len public4 public4_len private_4 private_4_len valid4;
Vector result5 result5_len public5 public5_len private_5 private_5_len valid5;
Vector result6 result6_len public6 public6_len private_6 private_6_len valid6;
] in
assert_norm (List.Tot.length l = 7);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vectors_len:(x: UInt32.t{UInt32.v x = B.length vectors}) | [] | Test.Vectors.Curve25519.vectors_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.vectors} | {
"end_col": 5,
"end_line": 214,
"start_col": 2,
"start_line": 214
} |
Prims.Tot | val private_5_len:(x: UInt32.t{UInt32.v x = B.length private_5}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul | val private_5_len:(x: UInt32.t{UInt32.v x = B.length private_5})
let private_5_len:(x: UInt32.t{UInt32.v x = B.length private_5}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_5_len:(x: UInt32.t{UInt32.v x = B.length private_5}) | [] | Test.Vectors.Curve25519.private_5_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.private_5} | {
"end_col": 6,
"end_line": 143,
"start_col": 2,
"start_line": 143
} |
Prims.Tot | val private_4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val private_4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let private_4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy;
0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy;
0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.private_4 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 114,
"start_col": 2,
"start_line": 112
} |
Prims.Tot | val result5_len:(x: UInt32.t{UInt32.v x = B.length result5}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul | val result5_len:(x: UInt32.t{UInt32.v x = B.length result5})
let result5_len:(x: UInt32.t{UInt32.v x = B.length result5}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result5_len:(x: UInt32.t{UInt32.v x = B.length result5}) | [] | Test.Vectors.Curve25519.result5_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.result5} | {
"end_col": 6,
"end_line": 159,
"start_col": 2,
"start_line": 159
} |
Prims.Tot | val result3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val result3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let result3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy;
0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy;
0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result3:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.result3 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 104,
"start_col": 2,
"start_line": 102
} |
Prims.Tot | val result6_len:(x: UInt32.t{UInt32.v x = B.length result6}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result6_len: (x:UInt32.t { UInt32.v x = B.length result6 }) =
32ul | val result6_len:(x: UInt32.t{UInt32.v x = B.length result6})
let result6_len:(x: UInt32.t{UInt32.v x = B.length result6}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul
let public6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy; 0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy; 0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public6_len: (x:UInt32.t { UInt32.v x = B.length public6 }) =
32ul
let result6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result6_len:(x: UInt32.t{UInt32.v x = B.length result6}) | [] | Test.Vectors.Curve25519.result6_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.result6} | {
"end_col": 6,
"end_line": 185,
"start_col": 2,
"start_line": 185
} |
Prims.Tot | val result2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val result2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let result2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy;
0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy;
0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result2:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.result2 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 78,
"start_col": 2,
"start_line": 76
} |
Prims.Tot | val public5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val public5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let public5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.public5 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 148,
"start_col": 2,
"start_line": 146
} |
Prims.Tot | val public5_len:(x: UInt32.t{UInt32.v x = B.length public5}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul | val public5_len:(x: UInt32.t{UInt32.v x = B.length public5})
let public5_len:(x: UInt32.t{UInt32.v x = B.length public5}) = | false | null | false | 32ul | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public5_len:(x: UInt32.t{UInt32.v x = B.length public5}) | [] | Test.Vectors.Curve25519.public5_len | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x:
FStar.UInt32.t{FStar.UInt32.v x = LowStar.Monotonic.Buffer.length Test.Vectors.Curve25519.public5} | {
"end_col": 6,
"end_line": 151,
"start_col": 2,
"start_line": 151
} |
Prims.Tot | val private_0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val private_0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let private_0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy;
0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy;
0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0" | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_0:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.private_0 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 10,
"start_col": 2,
"start_line": 8
} |
Prims.Tot | val private_5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val private_5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let private_5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val private_5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.private_5 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 140,
"start_col": 2,
"start_line": 138
} |
Prims.Tot | val result5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val result5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let result5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy;
0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result5:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.result5 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 156,
"start_col": 2,
"start_line": 154
} |
Prims.Tot | val vectors:(b: B.buffer vector {B.length b = 7 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vectors: (b: B.buffer vector { B.length b = 7 /\ B.recallable b }) =
[@inline_let] let l = [
Vector result0 result0_len public0 public0_len private_0 private_0_len valid0;
Vector result1 result1_len public1 public1_len private_1 private_1_len valid1;
Vector result2 result2_len public2 public2_len private_2 private_2_len valid2;
Vector result3 result3_len public3 public3_len private_3 private_3_len valid3;
Vector result4 result4_len public4 public4_len private_4 private_4_len valid4;
Vector result5 result5_len public5 public5_len private_5 private_5_len valid5;
Vector result6 result6_len public6 public6_len private_6 private_6_len valid6;
] in
assert_norm (List.Tot.length l = 7);
B.gcmalloc_of_list HyperStack.root l | val vectors:(b: B.buffer vector {B.length b = 7 /\ B.recallable b})
let vectors:(b: B.buffer vector {B.length b = 7 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
Vector result0 result0_len public0 public0_len private_0 private_0_len valid0;
Vector result1 result1_len public1 public1_len private_1 private_1_len valid1;
Vector result2 result2_len public2 public2_len private_2 private_2_len valid2;
Vector result3 result3_len public3 public3_len private_3 private_3_len valid3;
Vector result4 result4_len public4 public4_len private_4 private_4_len valid4;
Vector result5 result5_len public5 public5_len private_5 private_5_len valid5;
Vector result6 result6_len public6 public6_len private_6 private_6_len valid6
]
in
assert_norm (List.Tot.length l = 7);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"Test.Vectors.Curve25519.vector",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"Test.Vectors.Curve25519.Vector",
"Test.Vectors.Curve25519.result0",
"Test.Vectors.Curve25519.result0_len",
"Test.Vectors.Curve25519.public0",
"Test.Vectors.Curve25519.public0_len",
"Test.Vectors.Curve25519.private_0",
"Test.Vectors.Curve25519.private_0_len",
"Test.Vectors.Curve25519.valid0",
"Test.Vectors.Curve25519.result1",
"Test.Vectors.Curve25519.result1_len",
"Test.Vectors.Curve25519.public1",
"Test.Vectors.Curve25519.public1_len",
"Test.Vectors.Curve25519.private_1",
"Test.Vectors.Curve25519.private_1_len",
"Test.Vectors.Curve25519.valid1",
"Test.Vectors.Curve25519.result2",
"Test.Vectors.Curve25519.result2_len",
"Test.Vectors.Curve25519.public2",
"Test.Vectors.Curve25519.public2_len",
"Test.Vectors.Curve25519.private_2",
"Test.Vectors.Curve25519.private_2_len",
"Test.Vectors.Curve25519.valid2",
"Test.Vectors.Curve25519.result3",
"Test.Vectors.Curve25519.result3_len",
"Test.Vectors.Curve25519.public3",
"Test.Vectors.Curve25519.public3_len",
"Test.Vectors.Curve25519.private_3",
"Test.Vectors.Curve25519.private_3_len",
"Test.Vectors.Curve25519.valid3",
"Test.Vectors.Curve25519.result4",
"Test.Vectors.Curve25519.result4_len",
"Test.Vectors.Curve25519.public4",
"Test.Vectors.Curve25519.public4_len",
"Test.Vectors.Curve25519.private_4",
"Test.Vectors.Curve25519.private_4_len",
"Test.Vectors.Curve25519.valid4",
"Test.Vectors.Curve25519.result5",
"Test.Vectors.Curve25519.result5_len",
"Test.Vectors.Curve25519.public5",
"Test.Vectors.Curve25519.public5_len",
"Test.Vectors.Curve25519.private_5",
"Test.Vectors.Curve25519.private_5_len",
"Test.Vectors.Curve25519.valid5",
"Test.Vectors.Curve25519.result6",
"Test.Vectors.Curve25519.result6_len",
"Test.Vectors.Curve25519.public6",
"Test.Vectors.Curve25519.public6_len",
"Test.Vectors.Curve25519.private_6",
"Test.Vectors.Curve25519.private_6_len",
"Test.Vectors.Curve25519.valid6",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul
let public6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy; 0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy; 0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public6_len: (x:UInt32.t { UInt32.v x = B.length public6 }) =
32ul
let result6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result6_len: (x:UInt32.t { UInt32.v x = B.length result6 }) =
32ul
inline_for_extraction let valid6 = false
noeq
type vector = | Vector:
result: B.buffer UInt8.t { B.recallable result } ->
result_len: UInt32.t { B.length result = UInt32.v result_len } ->
public: B.buffer UInt8.t { B.recallable public } ->
public_len: UInt32.t { B.length public = UInt32.v public_len } ->
private_: B.buffer UInt8.t { B.recallable private_ } ->
private__len: UInt32.t { B.length private_ = UInt32.v private__len } ->
valid: bool ->
vector | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vectors:(b: B.buffer vector {B.length b = 7 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.vectors | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer Test.Vectors.Curve25519.vector
{LowStar.Monotonic.Buffer.length b = 7 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 211,
"start_col": 2,
"start_line": 201
} |
Prims.Tot | val public6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let public6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy; 0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy; 0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val public6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let public6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0xe0uy; 0xebuy; 0x7auy; 0x7cuy; 0x3buy; 0x41uy; 0xb8uy; 0xaeuy; 0x16uy; 0x56uy; 0xe3uy; 0xfauy;
0xf1uy; 0x9fuy; 0xc4uy; 0x6auy; 0xdauy; 0x09uy; 0x8duy; 0xebuy; 0x9cuy; 0x32uy; 0xb1uy; 0xfduy;
0x86uy; 0x62uy; 0x05uy; 0x16uy; 0x5fuy; 0x49uy; 0xb8uy; 0x00uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul
let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result4_len: (x:UInt32.t { UInt32.v x = B.length result4 }) =
32ul
inline_for_extraction let valid4 = true
let private_5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_5_len: (x:UInt32.t { UInt32.v x = B.length private_5 }) =
32ul
let public5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public5_len: (x:UInt32.t { UInt32.v x = B.length public5 }) =
32ul
let result5: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result5_len: (x:UInt32.t { UInt32.v x = B.length result5 }) =
32ul
inline_for_extraction let valid5 = false
let private_6: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x02uy; 0x04uy; 0x06uy; 0x08uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_6_len: (x:UInt32.t { UInt32.v x = B.length private_6 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val public6:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.public6 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 174,
"start_col": 2,
"start_line": 172
} |
Prims.Tot | val result4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let result4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy; 0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy; 0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | val result4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b})
let result4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) = | false | null | false | [@@ inline_let ]let l =
[
0xc3uy; 0xdauy; 0x55uy; 0x37uy; 0x9duy; 0xe9uy; 0xc6uy; 0x90uy; 0x8euy; 0x94uy; 0xeauy; 0x4duy;
0xf2uy; 0x8duy; 0x08uy; 0x4fuy; 0x32uy; 0xecuy; 0xcfuy; 0x03uy; 0x49uy; 0x1cuy; 0x71uy; 0xf7uy;
0x54uy; 0xb4uy; 0x07uy; 0x55uy; 0x77uy; 0xa2uy; 0x85uy; 0x52uy
]
in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l | {
"checked_file": "Test.Vectors.Curve25519.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Test.Vectors.Curve25519.fst"
} | [
"total"
] | [
"LowStar.Buffer.gcmalloc_of_list",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.buffer",
"Prims.list",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | module Test.Vectors.Curve25519
module B = LowStar.Buffer
#set-options "--max_fuel 0 --max_ifuel 0"
let private_0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x77uy; 0x07uy; 0x6duy; 0x0auy; 0x73uy; 0x18uy; 0xa5uy; 0x7duy; 0x3cuy; 0x16uy; 0xc1uy; 0x72uy; 0x51uy; 0xb2uy; 0x66uy; 0x45uy; 0xdfuy; 0x4cuy; 0x2fuy; 0x87uy; 0xebuy; 0xc0uy; 0x99uy; 0x2auy; 0xb1uy; 0x77uy; 0xfbuy; 0xa5uy; 0x1duy; 0xb9uy; 0x2cuy; 0x2auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_0_len: (x:UInt32.t { UInt32.v x = B.length private_0 }) =
32ul
let public0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xdeuy; 0x9euy; 0xdbuy; 0x7duy; 0x7buy; 0x7duy; 0xc1uy; 0xb4uy; 0xd3uy; 0x5buy; 0x61uy; 0xc2uy; 0xecuy; 0xe4uy; 0x35uy; 0x37uy; 0x3fuy; 0x83uy; 0x43uy; 0xc8uy; 0x5buy; 0x78uy; 0x67uy; 0x4duy; 0xaduy; 0xfcuy; 0x7euy; 0x14uy; 0x6fuy; 0x88uy; 0x2buy; 0x4fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public0_len: (x:UInt32.t { UInt32.v x = B.length public0 }) =
32ul
let result0: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result0_len: (x:UInt32.t { UInt32.v x = B.length result0 }) =
32ul
inline_for_extraction let valid0 = true
let private_1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x5duy; 0xabuy; 0x08uy; 0x7euy; 0x62uy; 0x4auy; 0x8auy; 0x4buy; 0x79uy; 0xe1uy; 0x7fuy; 0x8buy; 0x83uy; 0x80uy; 0x0euy; 0xe6uy; 0x6fuy; 0x3buy; 0xb1uy; 0x29uy; 0x26uy; 0x18uy; 0xb6uy; 0xfduy; 0x1cuy; 0x2fuy; 0x8buy; 0x27uy; 0xffuy; 0x88uy; 0xe0uy; 0xebuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_1_len: (x:UInt32.t { UInt32.v x = B.length private_1 }) =
32ul
let public1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x85uy; 0x20uy; 0xf0uy; 0x09uy; 0x89uy; 0x30uy; 0xa7uy; 0x54uy; 0x74uy; 0x8buy; 0x7duy; 0xdcuy; 0xb4uy; 0x3euy; 0xf7uy; 0x5auy; 0x0duy; 0xbfuy; 0x3auy; 0x0duy; 0x26uy; 0x38uy; 0x1auy; 0xf4uy; 0xebuy; 0xa4uy; 0xa9uy; 0x8euy; 0xaauy; 0x9buy; 0x4euy; 0x6auy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public1_len: (x:UInt32.t { UInt32.v x = B.length public1 }) =
32ul
let result1: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x4auy; 0x5duy; 0x9duy; 0x5buy; 0xa4uy; 0xceuy; 0x2duy; 0xe1uy; 0x72uy; 0x8euy; 0x3buy; 0xf4uy; 0x80uy; 0x35uy; 0x0fuy; 0x25uy; 0xe0uy; 0x7euy; 0x21uy; 0xc9uy; 0x47uy; 0xd1uy; 0x9euy; 0x33uy; 0x76uy; 0xf0uy; 0x9buy; 0x3cuy; 0x1euy; 0x16uy; 0x17uy; 0x42uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result1_len: (x:UInt32.t { UInt32.v x = B.length result1 }) =
32ul
inline_for_extraction let valid1 = true
let private_2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_2_len: (x:UInt32.t { UInt32.v x = B.length private_2 }) =
32ul
let public2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x25uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public2_len: (x:UInt32.t { UInt32.v x = B.length public2 }) =
32ul
let result2: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x3cuy; 0x77uy; 0x77uy; 0xcauy; 0xf9uy; 0x97uy; 0xb2uy; 0x64uy; 0x41uy; 0x60uy; 0x77uy; 0x66uy; 0x5buy; 0x4euy; 0x22uy; 0x9duy; 0x0buy; 0x95uy; 0x48uy; 0xdcuy; 0x0cuy; 0xd8uy; 0x19uy; 0x98uy; 0xdduy; 0xcduy; 0xc5uy; 0xc8uy; 0x53uy; 0x3cuy; 0x79uy; 0x7fuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result2_len: (x:UInt32.t { UInt32.v x = B.length result2 }) =
32ul
inline_for_extraction let valid2 = true
let private_3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0x01uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; 0x00uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_3_len: (x:UInt32.t { UInt32.v x = B.length private_3 }) =
32ul
let public3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; 0xffuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public3_len: (x:UInt32.t { UInt32.v x = B.length public3 }) =
32ul
let result3: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xb3uy; 0x2duy; 0x13uy; 0x62uy; 0xc2uy; 0x48uy; 0xd6uy; 0x2fuy; 0xe6uy; 0x26uy; 0x19uy; 0xcfuy; 0xf0uy; 0x4duy; 0xd4uy; 0x3duy; 0xb7uy; 0x3fuy; 0xfcuy; 0x1buy; 0x63uy; 0x08uy; 0xeduy; 0xe3uy; 0x0buy; 0x78uy; 0xd8uy; 0x73uy; 0x80uy; 0xf1uy; 0xe8uy; 0x34uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let result3_len: (x:UInt32.t { UInt32.v x = B.length result3 }) =
32ul
inline_for_extraction let valid3 = true
let private_4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xa5uy; 0x46uy; 0xe3uy; 0x6buy; 0xf0uy; 0x52uy; 0x7cuy; 0x9duy; 0x3buy; 0x16uy; 0x15uy; 0x4buy; 0x82uy; 0x46uy; 0x5euy; 0xdduy; 0x62uy; 0x14uy; 0x4cuy; 0x0auy; 0xc1uy; 0xfcuy; 0x5auy; 0x18uy; 0x50uy; 0x6auy; 0x22uy; 0x44uy; 0xbauy; 0x44uy; 0x9auy; 0xc4uy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let private_4_len: (x:UInt32.t { UInt32.v x = B.length private_4 }) =
32ul
let public4: (b: B.buffer UInt8.t { B.length b = 32 /\ B.recallable b }) =
[@inline_let] let l = [ 0xe6uy; 0xdbuy; 0x68uy; 0x67uy; 0x58uy; 0x30uy; 0x30uy; 0xdbuy; 0x35uy; 0x94uy; 0xc1uy; 0xa4uy; 0x24uy; 0xb1uy; 0x5fuy; 0x7cuy; 0x72uy; 0x66uy; 0x24uy; 0xecuy; 0x26uy; 0xb3uy; 0x35uy; 0x3buy; 0x10uy; 0xa9uy; 0x03uy; 0xa6uy; 0xd0uy; 0xabuy; 0x1cuy; 0x4cuy; ] in
assert_norm (List.Tot.length l = 32);
B.gcmalloc_of_list HyperStack.root l
inline_for_extraction let public4_len: (x:UInt32.t { UInt32.v x = B.length public4 }) =
32ul | false | false | Test.Vectors.Curve25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val result4:(b: B.buffer UInt8.t {B.length b = 32 /\ B.recallable b}) | [] | Test.Vectors.Curve25519.result4 | {
"file_name": "providers/test/vectors/Test.Vectors.Curve25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b:
LowStar.Buffer.buffer FStar.UInt8.t
{LowStar.Monotonic.Buffer.length b = 32 /\ LowStar.Monotonic.Buffer.recallable b} | {
"end_col": 38,
"end_line": 130,
"start_col": 2,
"start_line": 128
} |
Prims.GTot | val copy_buffer_contents_precond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h: HS.mem)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let copy_buffer_contents_precond
(#t: typ)
(a: buffer t) (* source *)
(idx_a: UInt32.t)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: GTot Type0
= UInt32.v idx_a + UInt32.v len <= UInt32.v (buffer_length a) /\
UInt32.v idx_b + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_live h (gsub_buffer b idx_b len) /\
buffer_readable h (gsub_buffer a idx_a len) /\
loc_disjoint (loc_buffer (gsub_buffer a idx_a len)) (loc_buffer (gsub_buffer b idx_b len)) | val copy_buffer_contents_precond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h: HS.mem)
: GTot Type0
let copy_buffer_contents_precond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h: HS.mem)
: GTot Type0 = | false | null | false | UInt32.v idx_a + UInt32.v len <= UInt32.v (buffer_length a) /\
UInt32.v idx_b + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_live h (gsub_buffer b idx_b len) /\ buffer_readable h (gsub_buffer a idx_a len) /\
loc_disjoint (loc_buffer (gsub_buffer a idx_a len)) (loc_buffer (gsub_buffer b idx_b len)) | {
"checked_file": "FStar.Pointer.Derived2.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pointer.Derived1.fsti.checked",
"FStar.Pointer.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Derived2.fsti"
} | [
"sometrivial"
] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.UInt32.v",
"FStar.Pointer.Base.buffer_length",
"FStar.Pointer.Base.buffer_live",
"FStar.Pointer.Base.gsub_buffer",
"FStar.Pointer.Base.buffer_readable",
"FStar.Pointer.Base.loc_disjoint",
"FStar.Pointer.Base.loc_buffer"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived2
include FStar.Pointer.Base
include FStar.Pointer.Derived1
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
let copy_buffer_contents_precond
(#t: typ)
(a: buffer t) (* source *)
(idx_a: UInt32.t)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(h: HS.mem) | false | false | FStar.Pointer.Derived2.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val copy_buffer_contents_precond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h: HS.mem)
: GTot Type0 | [] | FStar.Pointer.Derived2.copy_buffer_contents_precond | {
"file_name": "ulib/legacy/FStar.Pointer.Derived2.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
a: FStar.Pointer.Base.buffer t ->
idx_a: FStar.UInt32.t ->
b: FStar.Pointer.Base.buffer t ->
idx_b: FStar.UInt32.t ->
len: FStar.UInt32.t ->
h: FStar.Monotonic.HyperStack.mem
-> Prims.GTot Type0 | {
"end_col": 92,
"end_line": 37,
"start_col": 2,
"start_line": 33
} |
Prims.GTot | val copy_buffer_contents_postcond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h h': HS.mem)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Derived1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pointer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let copy_buffer_contents_postcond
(#t: typ)
(a: buffer t) (* source *)
(idx_a: UInt32.t)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
(h' : HS.mem)
: GTot Type0
= copy_buffer_contents_precond a idx_a b idx_b len h /\
modifies (loc_buffer (gsub_buffer b idx_b len)) h h' /\
buffer_readable h' (gsub_buffer b idx_b len) /\
buffer_as_seq h' (gsub_buffer b idx_b len) == buffer_as_seq h (gsub_buffer a idx_a len) | val copy_buffer_contents_postcond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h h': HS.mem)
: GTot Type0
let copy_buffer_contents_postcond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h h': HS.mem)
: GTot Type0 = | false | null | false | copy_buffer_contents_precond a idx_a b idx_b len h /\
modifies (loc_buffer (gsub_buffer b idx_b len)) h h' /\ buffer_readable h' (gsub_buffer b idx_b len) /\
buffer_as_seq h' (gsub_buffer b idx_b len) == buffer_as_seq h (gsub_buffer a idx_a len) | {
"checked_file": "FStar.Pointer.Derived2.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pointer.Derived1.fsti.checked",
"FStar.Pointer.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Pointer.Derived2.fsti"
} | [
"sometrivial"
] | [
"FStar.Pointer.Base.typ",
"FStar.Pointer.Base.buffer",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"FStar.Pointer.Derived2.copy_buffer_contents_precond",
"FStar.Pointer.Base.modifies",
"FStar.Pointer.Base.loc_buffer",
"FStar.Pointer.Base.gsub_buffer",
"FStar.Pointer.Base.buffer_readable",
"Prims.eq2",
"FStar.Seq.Base.seq",
"FStar.Pointer.Base.type_of_typ",
"FStar.Pointer.Base.buffer_as_seq"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Pointer.Derived2
include FStar.Pointer.Base
include FStar.Pointer.Derived1
module HH = FStar.HyperStack
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
let copy_buffer_contents_precond
(#t: typ)
(a: buffer t) (* source *)
(idx_a: UInt32.t)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
: GTot Type0
= UInt32.v idx_a + UInt32.v len <= UInt32.v (buffer_length a) /\
UInt32.v idx_b + UInt32.v len <= UInt32.v (buffer_length b) /\
buffer_live h (gsub_buffer b idx_b len) /\
buffer_readable h (gsub_buffer a idx_a len) /\
loc_disjoint (loc_buffer (gsub_buffer a idx_a len)) (loc_buffer (gsub_buffer b idx_b len))
let copy_buffer_contents_postcond
(#t: typ)
(a: buffer t) (* source *)
(idx_a: UInt32.t)
(b: buffer t) (* destination *)
(idx_b: UInt32.t)
(len: UInt32.t)
(h: HS.mem)
(h' : HS.mem) | false | false | FStar.Pointer.Derived2.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val copy_buffer_contents_postcond
(#t: typ)
(a: buffer t)
(idx_a: UInt32.t)
(b: buffer t)
(idx_b len: UInt32.t)
(h h': HS.mem)
: GTot Type0 | [] | FStar.Pointer.Derived2.copy_buffer_contents_postcond | {
"file_name": "ulib/legacy/FStar.Pointer.Derived2.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
a: FStar.Pointer.Base.buffer t ->
idx_a: FStar.UInt32.t ->
b: FStar.Pointer.Base.buffer t ->
idx_b: FStar.UInt32.t ->
len: FStar.UInt32.t ->
h: FStar.Monotonic.HyperStack.mem ->
h': FStar.Monotonic.HyperStack.mem
-> Prims.GTot Type0 | {
"end_col": 89,
"end_line": 52,
"start_col": 2,
"start_line": 49
} |
Prims.Tot | val byte_of_hex: a:hex_digit -> b:hex_digit -> int | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let byte_of_hex a b =
FStar.Mul.(int_of_hex a * 16 + int_of_hex b) | val byte_of_hex: a:hex_digit -> b:hex_digit -> int
let byte_of_hex a b = | false | null | false | let open FStar.Mul in int_of_hex a * 16 + int_of_hex b | {
"checked_file": "Lib.Meta.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.Meta.fst"
} | [
"total"
] | [
"Lib.Meta.hex_digit",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.Meta.int_of_hex",
"Prims.int"
] | [] | module Lib.Meta
open Lib.IntTypes
/// Helpers used in tests and tactics (see e.g. Test.LowStarize)
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
val is_hex_digit: Char.char -> bool
let is_hex_digit = function
| '0'
| '1'
| '2'
| '3'
| '4'
| '5'
| '6'
| '7'
| '8'
| '9'
| 'a' | 'A'
| 'b' | 'B'
| 'c' | 'C'
| 'd' | 'D'
| 'e' | 'E'
| 'f' | 'F' -> true
| _ -> false
type hex_digit = c:Char.char{is_hex_digit c}
val int_of_hex: c:hex_digit -> int
let int_of_hex = function
| '0' -> 0
| '1' -> 1
| '2' -> 2
| '3' -> 3
| '4' -> 4
| '5' -> 5
| '6' -> 6
| '7' -> 7
| '8' -> 8
| '9' -> 9
| 'a' | 'A' -> 10
| 'b' | 'B' -> 11
| 'c' | 'C' -> 12
| 'd' | 'D' -> 13
| 'e' | 'E' -> 14
| 'f' | 'F' -> 15
val byte_of_hex: a:hex_digit -> b:hex_digit -> int | false | true | Lib.Meta.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val byte_of_hex: a:hex_digit -> b:hex_digit -> int | [] | Lib.Meta.byte_of_hex | {
"file_name": "lib/Lib.Meta.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.Meta.hex_digit -> b: Lib.Meta.hex_digit -> Prims.int | {
"end_col": 46,
"end_line": 56,
"start_col": 2,
"start_line": 56
} |
Prims.Tot | val is_hex_digit: Char.char -> bool | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_hex_digit = function
| '0'
| '1'
| '2'
| '3'
| '4'
| '5'
| '6'
| '7'
| '8'
| '9'
| 'a' | 'A'
| 'b' | 'B'
| 'c' | 'C'
| 'd' | 'D'
| 'e' | 'E'
| 'f' | 'F' -> true
| _ -> false | val is_hex_digit: Char.char -> bool
let is_hex_digit = | false | null | false | function
| '0'
| '1'
| '2'
| '3'
| '4'
| '5'
| '6'
| '7'
| '8'
| '9'
| 'a'
| 'A'
| 'b'
| 'B'
| 'c'
| 'C'
| 'd'
| 'D'
| 'e'
| 'E'
| 'f'
| 'F' -> true
| _ -> false | {
"checked_file": "Lib.Meta.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.Meta.fst"
} | [
"total"
] | [
"FStar.Char.char",
"Prims.bool"
] | [] | module Lib.Meta
open Lib.IntTypes
/// Helpers used in tests and tactics (see e.g. Test.LowStarize)
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" | false | true | Lib.Meta.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_hex_digit: Char.char -> bool | [] | Lib.Meta.is_hex_digit | {
"file_name": "lib/Lib.Meta.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: FStar.Char.char -> Prims.bool | {
"end_col": 14,
"end_line": 28,
"start_col": 19,
"start_line": 11
} |
Prims.Tot | val int_of_hex: c:hex_digit -> int | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int_of_hex = function
| '0' -> 0
| '1' -> 1
| '2' -> 2
| '3' -> 3
| '4' -> 4
| '5' -> 5
| '6' -> 6
| '7' -> 7
| '8' -> 8
| '9' -> 9
| 'a' | 'A' -> 10
| 'b' | 'B' -> 11
| 'c' | 'C' -> 12
| 'd' | 'D' -> 13
| 'e' | 'E' -> 14
| 'f' | 'F' -> 15 | val int_of_hex: c:hex_digit -> int
let int_of_hex = | false | null | false | function
| '0' -> 0
| '1' -> 1
| '2' -> 2
| '3' -> 3
| '4' -> 4
| '5' -> 5
| '6' -> 6
| '7' -> 7
| '8' -> 8
| '9' -> 9
| 'a' | 'A' -> 10
| 'b' | 'B' -> 11
| 'c' | 'C' -> 12
| 'd' | 'D' -> 13
| 'e' | 'E' -> 14
| 'f' | 'F' -> 15 | {
"checked_file": "Lib.Meta.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.Meta.fst"
} | [
"total"
] | [
"Lib.Meta.hex_digit",
"Prims.int"
] | [] | module Lib.Meta
open Lib.IntTypes
/// Helpers used in tests and tactics (see e.g. Test.LowStarize)
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
val is_hex_digit: Char.char -> bool
let is_hex_digit = function
| '0'
| '1'
| '2'
| '3'
| '4'
| '5'
| '6'
| '7'
| '8'
| '9'
| 'a' | 'A'
| 'b' | 'B'
| 'c' | 'C'
| 'd' | 'D'
| 'e' | 'E'
| 'f' | 'F' -> true
| _ -> false
type hex_digit = c:Char.char{is_hex_digit c} | false | true | Lib.Meta.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int_of_hex: c:hex_digit -> int | [] | Lib.Meta.int_of_hex | {
"file_name": "lib/Lib.Meta.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | c: Lib.Meta.hex_digit -> Prims.int | {
"end_col": 19,
"end_line": 51,
"start_col": 17,
"start_line": 35
} |
Prims.Tot | val from_hex (s: hex_string) : Seq.lseq uint8 (String.strlen s / 2) | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let from_hex (s:hex_string) : Seq.lseq uint8 (String.strlen s / 2) =
Seq.seq_of_list (as_uint8s [] (String.list_of_string s)) | val from_hex (s: hex_string) : Seq.lseq uint8 (String.strlen s / 2)
let from_hex (s: hex_string) : Seq.lseq uint8 (String.strlen s / 2) = | false | null | false | Seq.seq_of_list (as_uint8s [] (String.list_of_string s)) | {
"checked_file": "Lib.Meta.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Char.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.Meta.fst"
} | [
"total"
] | [
"Lib.Meta.hex_string",
"FStar.Seq.Properties.seq_of_list",
"Lib.IntTypes.uint8",
"Lib.Meta.as_uint8s",
"Prims.Nil",
"FStar.String.list_of_string",
"FStar.Seq.Properties.lseq",
"Prims.op_Division",
"FStar.String.strlen"
] | [] | module Lib.Meta
open Lib.IntTypes
/// Helpers used in tests and tactics (see e.g. Test.LowStarize)
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
val is_hex_digit: Char.char -> bool
let is_hex_digit = function
| '0'
| '1'
| '2'
| '3'
| '4'
| '5'
| '6'
| '7'
| '8'
| '9'
| 'a' | 'A'
| 'b' | 'B'
| 'c' | 'C'
| 'd' | 'D'
| 'e' | 'E'
| 'f' | 'F' -> true
| _ -> false
type hex_digit = c:Char.char{is_hex_digit c}
val int_of_hex: c:hex_digit -> int
let int_of_hex = function
| '0' -> 0
| '1' -> 1
| '2' -> 2
| '3' -> 3
| '4' -> 4
| '5' -> 5
| '6' -> 6
| '7' -> 7
| '8' -> 8
| '9' -> 9
| 'a' | 'A' -> 10
| 'b' | 'B' -> 11
| 'c' | 'C' -> 12
| 'd' | 'D' -> 13
| 'e' | 'E' -> 14
| 'f' | 'F' -> 15
val byte_of_hex: a:hex_digit -> b:hex_digit -> int
let byte_of_hex a b =
FStar.Mul.(int_of_hex a * 16 + int_of_hex b)
unfold
type hex_string =
s:string{normalize (String.strlen s % 2 = 0) /\
normalize (List.Tot.for_all is_hex_digit (String.list_of_string s))}
#push-options "--fuel 2"
let rec as_uint8s acc
(cs:list Char.char{normalize (List.length cs % 2 = 0) /\
normalize (List.Tot.for_all is_hex_digit cs)}):
Tot (l:list uint8{List.length l = List.length acc + List.length cs / 2}) (decreases (List.length cs))
=
match cs with
| c1 :: c2 :: cs' -> as_uint8s (u8 (byte_of_hex c1 c2) :: acc) cs'
| _ -> List.rev_length acc; List.rev acc | false | false | Lib.Meta.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 2,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val from_hex (s: hex_string) : Seq.lseq uint8 (String.strlen s / 2) | [] | Lib.Meta.from_hex | {
"file_name": "lib/Lib.Meta.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Meta.hex_string -> FStar.Seq.Properties.lseq Lib.IntTypes.uint8 (FStar.String.strlen s / 2) | {
"end_col": 58,
"end_line": 75,
"start_col": 2,
"start_line": 75
} |
Prims.GTot | val parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0
= Seq.length (serialize s x) == sz | val parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0
let parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0 = | false | null | false | Seq.length (serialize s x) == sz | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"sometrivial"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"Prims.eq2",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"LowParse.Spec.Base.serialize"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz
val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True))
let parse_fldata_consumes_all #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) ->
Some (v, (sz <: consumed_length s))
| _ -> None
let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b))
= parser_kind_prop_equiv k p
let parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0 | [] | LowParse.Spec.FLData.parse_fldata_strong_pred | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> sz: Prims.nat -> x: t -> Prims.GTot Type0 | {
"end_col": 34,
"end_line": 112,
"start_col": 2,
"start_line": 112
} |
Prims.Tot | val serialize_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (bare_serializer (parse_fldata_strong_t s sz)) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (bare_serializer (parse_fldata_strong_t s sz))
= (fun (x: parse_fldata_strong_t s sz) ->
s x) | val serialize_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (bare_serializer (parse_fldata_strong_t s sz))
let serialize_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (bare_serializer (parse_fldata_strong_t s sz)) = | false | null | false | (fun (x: parse_fldata_strong_t s sz) -> s x) | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.bare_serializer"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz
val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True))
let parse_fldata_consumes_all #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) ->
Some (v, (sz <: consumed_length s))
| _ -> None
let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b))
= parser_kind_prop_equiv k p
let parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0
= Seq.length (serialize s x) == sz
let parse_fldata_strong_t
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot Type
= (x: t { parse_fldata_strong_pred s sz x } )
let parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma
(requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x))
= serializer_correct_implies_complete p s
inline_for_extraction
let parse_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) (parse_fldata_strong_t s sz))
= coerce_parser
(parse_fldata_strong_t s sz)
(parse_strengthen (parse_fldata p sz) (parse_fldata_strong_pred s sz) (parse_fldata_strong_correct s sz))
#set-options "--z3rlimit 16"
let serialize_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (bare_serializer (parse_fldata_strong_t s sz)) | [] | LowParse.Spec.FLData.serialize_fldata_strong' | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> sz: Prims.nat
-> LowParse.Spec.Base.bare_serializer (LowParse.Spec.FLData.parse_fldata_strong_t s sz) | {
"end_col": 6,
"end_line": 159,
"start_col": 2,
"start_line": 158
} |
Prims.Tot | val parse_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (parser (parse_fldata_kind sz k) (parse_fldata_strong_t s sz)) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) (parse_fldata_strong_t s sz))
= coerce_parser
(parse_fldata_strong_t s sz)
(parse_strengthen (parse_fldata p sz) (parse_fldata_strong_pred s sz) (parse_fldata_strong_correct s sz)) | val parse_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (parser (parse_fldata_kind sz k) (parse_fldata_strong_t s sz))
let parse_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (parser (parse_fldata_kind sz k) (parse_fldata_strong_t s sz)) = | false | null | false | coerce_parser (parse_fldata_strong_t s sz)
(parse_strengthen (parse_fldata p sz)
(parse_fldata_strong_pred s sz)
(parse_fldata_strong_correct s sz)) | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"LowParse.Spec.Base.coerce_parser",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_pred",
"LowParse.Spec.Combinators.parse_strengthen",
"LowParse.Spec.FLData.parse_fldata",
"LowParse.Spec.FLData.parse_fldata_strong_correct"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz
val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True))
let parse_fldata_consumes_all #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) ->
Some (v, (sz <: consumed_length s))
| _ -> None
let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b))
= parser_kind_prop_equiv k p
let parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0
= Seq.length (serialize s x) == sz
let parse_fldata_strong_t
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot Type
= (x: t { parse_fldata_strong_pred s sz x } )
let parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma
(requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x))
= serializer_correct_implies_complete p s
inline_for_extraction
let parse_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata_strong (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (sz: nat)
: Tot (parser (parse_fldata_kind sz k) (parse_fldata_strong_t s sz)) | [] | LowParse.Spec.FLData.parse_fldata_strong | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> sz: Prims.nat
-> LowParse.Spec.Base.parser (LowParse.Spec.FLData.parse_fldata_kind sz k)
(LowParse.Spec.FLData.parse_fldata_strong_t s sz) | {
"end_col": 107,
"end_line": 147,
"start_col": 2,
"start_line": 145
} |
Prims.Tot | val parse_fldata_kind (sz: nat) (k: parser_kind) : Tot parser_kind | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
) | val parse_fldata_kind (sz: nat) (k: parser_kind) : Tot parser_kind
let parse_fldata_kind (sz: nat) (k: parser_kind) : Tot parser_kind = | false | null | false | strong_parser_kind sz
sz
(match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None) | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"total"
] | [
"Prims.nat",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.strong_parser_kind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_metadata",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.parser_kind_metadata_some",
"LowParse.Spec.Base.ParserKindMetadataFail",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.None",
"LowParse.Spec.Base.parser_kind_metadata_t"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind) | false | true | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata_kind (sz: nat) (k: parser_kind) : Tot parser_kind | [] | LowParse.Spec.FLData.parse_fldata_kind | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: Prims.nat -> k: LowParse.Spec.Base.parser_kind -> LowParse.Spec.Base.parser_kind | {
"end_col": 3,
"end_line": 57,
"start_col": 2,
"start_line": 53
} |
Prims.Tot | val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None | val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz = | false | null | false | let () = () in
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat) then Some (v, (sz <: consumed_length s)) else None
| _ -> None | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"LowParse.Bytes.bytes",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"Prims.bool",
"LowParse.Spec.Base.parse",
"FStar.Seq.Base.slice",
"Prims.op_Equality",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.bare_parser",
"Prims.unit"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t) | [] | LowParse.Spec.FLData.parse_fldata' | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t -> sz: Prims.nat -> LowParse.Spec.Base.bare_parser t | {
"end_col": 15,
"end_line": 28,
"start_col": 30,
"start_line": 17
} |
Prims.Tot | val serialize_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (serializer (parse_fldata_strong s sz)) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (serializer (parse_fldata_strong s sz))
= serialize_fldata_strong' s sz | val serialize_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (serializer (parse_fldata_strong s sz))
let serialize_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (serializer (parse_fldata_strong s sz)) = | false | null | false | serialize_fldata_strong' s sz | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"LowParse.Spec.FLData.serialize_fldata_strong'",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_strong_t",
"LowParse.Spec.FLData.parse_fldata_strong"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz
val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True))
let parse_fldata_consumes_all #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) ->
Some (v, (sz <: consumed_length s))
| _ -> None
let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b))
= parser_kind_prop_equiv k p
let parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0
= Seq.length (serialize s x) == sz
let parse_fldata_strong_t
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot Type
= (x: t { parse_fldata_strong_pred s sz x } )
let parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma
(requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x))
= serializer_correct_implies_complete p s
inline_for_extraction
let parse_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) (parse_fldata_strong_t s sz))
= coerce_parser
(parse_fldata_strong_t s sz)
(parse_strengthen (parse_fldata p sz) (parse_fldata_strong_pred s sz) (parse_fldata_strong_correct s sz))
#set-options "--z3rlimit 16"
let serialize_fldata_strong'
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (bare_serializer (parse_fldata_strong_t s sz))
= (fun (x: parse_fldata_strong_t s sz) ->
s x)
let serialize_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_fldata_strong
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot (serializer (parse_fldata_strong s sz)) | [] | LowParse.Spec.FLData.serialize_fldata_strong | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> sz: Prims.nat
-> LowParse.Spec.Base.serializer (LowParse.Spec.FLData.parse_fldata_strong s sz) | {
"end_col": 31,
"end_line": 168,
"start_col": 2,
"start_line": 168
} |
Prims.Pure | val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True)) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata_consumes_all #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) ->
Some (v, (sz <: consumed_length s))
| _ -> None | val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True))
let parse_fldata_consumes_all #k #t p sz = | false | null | false | let () = () in
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) -> Some (v, (sz <: consumed_length s))
| _ -> None | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"LowParse.Bytes.bytes",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"Prims.bool",
"LowParse.Spec.Base.parse",
"FStar.Seq.Base.slice",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.bare_parser",
"Prims.unit"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz
val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True)) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True)) | [] | LowParse.Spec.FLData.parse_fldata_consumes_all | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t -> sz: Prims.nat -> Prims.Pure (LowParse.Spec.Base.bare_parser t) | {
"end_col": 15,
"end_line": 91,
"start_col": 42,
"start_line": 82
} |
Prims.Tot | val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz | val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz = | false | null | false | parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"LowParse.Spec.FLData.parse_fldata'",
"Prims.unit",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"LowParse.Spec.FLData.parse_fldata_kind",
"LowParse.Spec.FLData.parse_fldata_injective"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t) | [] | LowParse.Spec.FLData.parse_fldata | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t -> sz: Prims.nat
-> LowParse.Spec.Base.parser (LowParse.Spec.FLData.parse_fldata_kind sz k) t | {
"end_col": 20,
"end_line": 71,
"start_col": 2,
"start_line": 68
} |
FStar.Pervasives.Lemma | val parse_fldata_injective (#k: parser_kind) (#t: Type) (p: parser k t) (sz: nat)
: Lemma (ensures (injective (parse_fldata' p sz))) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b)) | val parse_fldata_injective (#k: parser_kind) (#t: Type) (p: parser k t) (sz: nat)
: Lemma (ensures (injective (parse_fldata' p sz)))
let parse_fldata_injective (#k: parser_kind) (#t: Type) (p: parser k t) (sz: nat)
: Lemma (ensures (injective (parse_fldata' p sz))) = | false | null | true | parser_kind_prop_equiv k p;
let f (b1 b2: bytes)
: Lemma (requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2)) =
assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b)) | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"FStar.Classical.forall_intro_2",
"LowParse.Bytes.bytes",
"Prims.l_imp",
"LowParse.Spec.Base.injective_precond",
"LowParse.Spec.FLData.parse_fldata'",
"LowParse.Spec.Base.injective_postcond",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims._assert",
"FStar.Seq.Base.slice",
"LowParse.Bytes.byte",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"LowParse.Spec.Base.injective"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata_injective (#k: parser_kind) (#t: Type) (p: parser k t) (sz: nat)
: Lemma (ensures (injective (parse_fldata' p sz))) | [] | LowParse.Spec.FLData.parse_fldata_injective | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t -> sz: Prims.nat
-> FStar.Pervasives.Lemma
(ensures LowParse.Spec.Base.injective (LowParse.Spec.FLData.parse_fldata' p sz)) | {
"end_col": 67,
"end_line": 45,
"start_col": 2,
"start_line": 37
} |
FStar.Pervasives.Lemma | val parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma (requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x)) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma
(requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x))
= serializer_correct_implies_complete p s | val parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma (requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x))
let parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma (requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x)) = | false | null | true | serializer_correct_implies_complete p s | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.nat",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.serializer_correct_implies_complete",
"Prims.unit",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.parse",
"LowParse.Spec.FLData.parse_fldata",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Prims.squash",
"LowParse.Spec.FLData.parse_fldata_strong_pred",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz
val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True))
let parse_fldata_consumes_all #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) ->
Some (v, (sz <: consumed_length s))
| _ -> None
let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b))
= parser_kind_prop_equiv k p
let parse_fldata_strong_pred
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(x: t)
: GTot Type0
= Seq.length (serialize s x) == sz
let parse_fldata_strong_t
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
: Tot Type
= (x: t { parse_fldata_strong_pred s sz x } )
let parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma
(requires (parse (parse_fldata p sz) xbytes == Some (x, consumed))) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata_strong_correct
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(sz: nat)
(xbytes: bytes)
(consumed: consumed_length xbytes)
(x: t)
: Lemma (requires (parse (parse_fldata p sz) xbytes == Some (x, consumed)))
(ensures (parse_fldata_strong_pred s sz x)) | [] | LowParse.Spec.FLData.parse_fldata_strong_correct | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.Base.serializer p ->
sz: Prims.nat ->
xbytes: LowParse.Bytes.bytes ->
consumed: LowParse.Spec.Base.consumed_length xbytes ->
x: t
-> FStar.Pervasives.Lemma
(requires
LowParse.Spec.Base.parse (LowParse.Spec.FLData.parse_fldata p sz) xbytes ==
FStar.Pervasives.Native.Some (x, consumed))
(ensures LowParse.Spec.FLData.parse_fldata_strong_pred s sz x) | {
"end_col": 41,
"end_line": 135,
"start_col": 2,
"start_line": 135
} |
FStar.Pervasives.Lemma | val parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma (requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b)) | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b))
= parser_kind_prop_equiv k p | val parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma (requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b))
let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma (requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b)) = | false | null | true | parser_kind_prop_equiv k p | {
"checked_file": "LowParse.Spec.FLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.FLData.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.nat",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"Prims.unit",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserConsumesAll",
"Prims.squash",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"LowParse.Spec.FLData.parse_fldata",
"LowParse.Spec.FLData.parse_fldata_consumes_all",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (* Parse data of some explicitly fixed length *)
module LowParse.Spec.FLData
include LowParse.Spec.Combinators
module Seq = FStar.Seq
module Classical = FStar.Classical
inline_for_extraction
val parse_fldata'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (bare_parser t)
let parse_fldata' #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, consumed) ->
if (consumed <: nat) = (sz <: nat)
then Some (v, (sz <: consumed_length s))
else None
| _ -> None
let parse_fldata_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Lemma
(ensures (injective (parse_fldata' p sz)))
= parser_kind_prop_equiv k p;
let f
(b1 b2: bytes)
: Lemma
(requires (injective_precond (parse_fldata' p sz) b1 b2))
(ensures (injective_postcond (parse_fldata' p sz) b1 b2))
= assert (injective_precond p (Seq.slice b1 0 sz) (Seq.slice b2 0 sz))
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (f b))
// unfold
inline_for_extraction
let parse_fldata_kind
(sz: nat)
(k: parser_kind)
: Tot parser_kind
= strong_parser_kind sz sz (
match k.parser_kind_metadata with
| Some ParserKindMetadataFail -> Some ParserKindMetadataFail
| _ -> None
)
inline_for_extraction
val parse_fldata
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Tot (parser (parse_fldata_kind sz k) t)
let parse_fldata #b #t p sz =
parse_fldata_injective p sz;
parser_kind_prop_equiv b p;
parser_kind_prop_equiv (parse_fldata_kind sz b) (parse_fldata' p sz);
parse_fldata' p sz
val parse_fldata_consumes_all
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
: Pure (bare_parser t)
(requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (fun _ -> True))
let parse_fldata_consumes_all #k #t p sz =
let () = () in // Necessary to pass arity checking
fun (s: bytes) ->
if Seq.length s < sz
then None
else
match parse p (Seq.slice s 0 sz) with
| Some (v, _) ->
Some (v, (sz <: consumed_length s))
| _ -> None
let parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma
(requires (k.parser_kind_subkind == Some ParserConsumesAll)) | false | false | LowParse.Spec.FLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_fldata_consumes_all_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(sz: nat)
(b: bytes)
: Lemma (requires (k.parser_kind_subkind == Some ParserConsumesAll))
(ensures (parse (parse_fldata p sz) b == parse (parse_fldata_consumes_all p sz) b)) | [] | LowParse.Spec.FLData.parse_fldata_consumes_all_correct | {
"file_name": "src/lowparse/LowParse.Spec.FLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t -> sz: Prims.nat -> b: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(requires
Mkparser_kind'?.parser_kind_subkind k ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserConsumesAll)
(ensures
LowParse.Spec.Base.parse (LowParse.Spec.FLData.parse_fldata p sz) b ==
LowParse.Spec.Base.parse (LowParse.Spec.FLData.parse_fldata_consumes_all p sz) b) | {
"end_col": 28,
"end_line": 102,
"start_col": 2,
"start_line": 102
} |
FStar.All.ML | val print_result (b: bool) : FStar.All.ML unit | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let print_result (b:bool) : FStar.All.ML unit =
if b then IO.print_string "\nSuccess!\n" else IO.print_string "\nFailure!\n" | val print_result (b: bool) : FStar.All.ML unit
let print_result (b: bool) : FStar.All.ML unit = | true | null | false | if b then IO.print_string "\nSuccess!\n" else IO.print_string "\nFailure!\n" | {
"checked_file": "Spec.P256.Test.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.ECDSA.Test.Vectors.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.Meta.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.P256.Test.fst"
} | [
"ml"
] | [
"Prims.bool",
"FStar.IO.print_string",
"Prims.unit"
] | [] | module Spec.P256.Test
open Lib.IntTypes
open Lib.Sequence
open Lib.Meta
open Spec.P256
open Spec.ECDSA.Test.Vectors
open Spec.Hash.Definitions
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
let test_pk_compressed (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk_raw = concat #_ #32 #32 pk_x pk_y in
let pk_c = pk_compressed_from_raw pk_raw in
let pk_raw_c = pk_compressed_to_raw pk_c in
match pk_raw_c with
| Some pk_raw_c -> PS.print_compare true 64 pk_raw pk_raw_c
| None -> false
let test_sigver (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk = concat #_ #32 #32 pk_x pk_y in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg)
pk (from_hex r) (from_hex s) in
is_sig_valid = is_valid
let test_siggen (a:hash_alg_ecdsa) (inp:vec_SigGen) : FStar.All.ML bool =
let { msg'; d; qx'; qy'; k; r'; s' } = inp in
let msg_len = String.strlen msg' / 2 in
let sk_len = String.strlen d / 2 in
let nonce_len = String.strlen k / 2 in
let pk_x_len = String.strlen qx' / 2 in
let pk_y_len = String.strlen qy' / 2 in
let sig_r_len = String.strlen r' / 2 in
let sig_s_len = String.strlen s' / 2 in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
sk_len = 32 && nonce_len = 32 &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx' in
let pk_y = from_hex qy' in
let pk = concat #_ #32 #32 pk_x pk_y in
let sig_r = from_hex r' in
let sig_s = from_hex s' in
let sig_expected = concat #_ #32 #32 sig_r sig_s in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg')
pk (from_hex r') (from_hex s') in
let sig_computed =
ecdsa_signature_agile a msg_len (from_hex msg')
(from_hex d) (from_hex k) in
let compare_sig =
if Some? sig_computed then
PS.print_compare true 64 sig_expected (Some?.v sig_computed)
else false in
compare_sig && is_sig_valid | false | false | Spec.P256.Test.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val print_result (b: bool) : FStar.All.ML unit | [] | Spec.P256.Test.print_result | {
"file_name": "specs/tests/Spec.P256.Test.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Prims.bool -> FStar.All.ML Prims.unit | {
"end_col": 78,
"end_line": 108,
"start_col": 2,
"start_line": 108
} |
FStar.All.ML | val test: Prims.unit -> FStar.All.ML bool | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test () : FStar.All.ML bool =
IO.print_string "\n[P-256 ECDSA-verify with SHA2-256]\n";
let res1 = List.for_all (test_sigver (Hash SHA2_256)) sigver_vectors_sha2_256 in
print_result res1;
IO.print_string "\n[P-256 ECDSA-sign with SHA2-256]\n";
let res2 = List.for_all (test_siggen (Hash SHA2_256)) siggen_vectors_sha2_256 in
print_result res2;
IO.print_string "\n[P-256 ECDSA-verify with SHA2-384]\n";
let res3 = List.for_all (test_sigver (Hash SHA2_384)) sigver_vectors_sha2_384 in
print_result res3;
IO.print_string "\n[P-256 ECDSA-sign with SHA2-384]\n";
let res4 = List.for_all (test_siggen (Hash SHA2_384)) siggen_vectors_sha2_384 in
print_result res4;
IO.print_string "\n[P-256 ECDSA-verify with SHA2-512]\n";
let res5 = List.for_all (test_sigver (Hash SHA2_512)) sigver_vectors_sha2_512 in
print_result res5;
IO.print_string "\n[P-256 ECDSA-sign with SHA2-512]\n";
let res6 = List.for_all (test_siggen (Hash SHA2_512)) siggen_vectors_sha2_512 in
print_result res6;
IO.print_string "\n[P-256 compressed keys]\n";
let res7 = List.for_all (test_pk_compressed (Hash SHA2_256)) sigver_vectors_sha2_256 in
print_result res7;
let res : bool = res1 && res2 && res3 && res4 && res5 && res6 && res7 in
if res then begin IO.print_string "\n\n[P-256] PASS\n"; true end
else begin IO.print_string "\n\n[P-256] FAIL\n"; false end | val test: Prims.unit -> FStar.All.ML bool
let test () : FStar.All.ML bool = | true | null | false | IO.print_string "\n[P-256 ECDSA-verify with SHA2-256]\n";
let res1 = List.for_all (test_sigver (Hash SHA2_256)) sigver_vectors_sha2_256 in
print_result res1;
IO.print_string "\n[P-256 ECDSA-sign with SHA2-256]\n";
let res2 = List.for_all (test_siggen (Hash SHA2_256)) siggen_vectors_sha2_256 in
print_result res2;
IO.print_string "\n[P-256 ECDSA-verify with SHA2-384]\n";
let res3 = List.for_all (test_sigver (Hash SHA2_384)) sigver_vectors_sha2_384 in
print_result res3;
IO.print_string "\n[P-256 ECDSA-sign with SHA2-384]\n";
let res4 = List.for_all (test_siggen (Hash SHA2_384)) siggen_vectors_sha2_384 in
print_result res4;
IO.print_string "\n[P-256 ECDSA-verify with SHA2-512]\n";
let res5 = List.for_all (test_sigver (Hash SHA2_512)) sigver_vectors_sha2_512 in
print_result res5;
IO.print_string "\n[P-256 ECDSA-sign with SHA2-512]\n";
let res6 = List.for_all (test_siggen (Hash SHA2_512)) siggen_vectors_sha2_512 in
print_result res6;
IO.print_string "\n[P-256 compressed keys]\n";
let res7 = List.for_all (test_pk_compressed (Hash SHA2_256)) sigver_vectors_sha2_256 in
print_result res7;
let res:bool = res1 && res2 && res3 && res4 && res5 && res6 && res7 in
if res
then
(IO.print_string "\n\n[P-256] PASS\n";
true)
else
(IO.print_string "\n\n[P-256] FAIL\n";
false) | {
"checked_file": "Spec.P256.Test.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.ECDSA.Test.Vectors.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.Meta.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.P256.Test.fst"
} | [
"ml"
] | [
"Prims.unit",
"Prims.bool",
"FStar.IO.print_string",
"Prims.op_AmpAmp",
"Spec.P256.Test.print_result",
"FStar.List.for_all",
"Spec.ECDSA.Test.Vectors.vec_SigVer",
"Spec.P256.Test.test_pk_compressed",
"Spec.P256.Hash",
"Spec.Hash.Definitions.SHA2_256",
"Spec.ECDSA.Test.Vectors.sigver_vectors_sha2_256",
"Spec.ECDSA.Test.Vectors.vec_SigGen",
"Spec.P256.Test.test_siggen",
"Spec.Hash.Definitions.SHA2_512",
"Spec.ECDSA.Test.Vectors.siggen_vectors_sha2_512",
"Spec.P256.Test.test_sigver",
"Spec.ECDSA.Test.Vectors.sigver_vectors_sha2_512",
"Spec.Hash.Definitions.SHA2_384",
"Spec.ECDSA.Test.Vectors.siggen_vectors_sha2_384",
"Spec.ECDSA.Test.Vectors.sigver_vectors_sha2_384",
"Spec.ECDSA.Test.Vectors.siggen_vectors_sha2_256"
] | [] | module Spec.P256.Test
open Lib.IntTypes
open Lib.Sequence
open Lib.Meta
open Spec.P256
open Spec.ECDSA.Test.Vectors
open Spec.Hash.Definitions
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
let test_pk_compressed (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk_raw = concat #_ #32 #32 pk_x pk_y in
let pk_c = pk_compressed_from_raw pk_raw in
let pk_raw_c = pk_compressed_to_raw pk_c in
match pk_raw_c with
| Some pk_raw_c -> PS.print_compare true 64 pk_raw pk_raw_c
| None -> false
let test_sigver (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk = concat #_ #32 #32 pk_x pk_y in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg)
pk (from_hex r) (from_hex s) in
is_sig_valid = is_valid
let test_siggen (a:hash_alg_ecdsa) (inp:vec_SigGen) : FStar.All.ML bool =
let { msg'; d; qx'; qy'; k; r'; s' } = inp in
let msg_len = String.strlen msg' / 2 in
let sk_len = String.strlen d / 2 in
let nonce_len = String.strlen k / 2 in
let pk_x_len = String.strlen qx' / 2 in
let pk_y_len = String.strlen qy' / 2 in
let sig_r_len = String.strlen r' / 2 in
let sig_s_len = String.strlen s' / 2 in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
sk_len = 32 && nonce_len = 32 &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx' in
let pk_y = from_hex qy' in
let pk = concat #_ #32 #32 pk_x pk_y in
let sig_r = from_hex r' in
let sig_s = from_hex s' in
let sig_expected = concat #_ #32 #32 sig_r sig_s in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg')
pk (from_hex r') (from_hex s') in
let sig_computed =
ecdsa_signature_agile a msg_len (from_hex msg')
(from_hex d) (from_hex k) in
let compare_sig =
if Some? sig_computed then
PS.print_compare true 64 sig_expected (Some?.v sig_computed)
else false in
compare_sig && is_sig_valid
let print_result (b:bool) : FStar.All.ML unit =
if b then IO.print_string "\nSuccess!\n" else IO.print_string "\nFailure!\n" | false | false | Spec.P256.Test.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test: Prims.unit -> FStar.All.ML bool | [] | Spec.P256.Test.test | {
"file_name": "specs/tests/Spec.P256.Test.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.All.ML Prims.bool | {
"end_col": 60,
"end_line": 143,
"start_col": 2,
"start_line": 112
} |
FStar.All.ML | val test_sigver (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_sigver (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk = concat #_ #32 #32 pk_x pk_y in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg)
pk (from_hex r) (from_hex s) in
is_sig_valid = is_valid | val test_sigver (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool
let test_sigver (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool = | true | null | false | let { msg = msg ; qx = qx ; qy = qy ; r = r ; s = s ; result = result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if
not (msg_len <= max_size_t && min_input_length a <= msg_len && pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 &&
sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk = concat #_ #32 #32 pk_x pk_y in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg) pk (from_hex r) (from_hex s)
in
is_sig_valid = is_valid | {
"checked_file": "Spec.P256.Test.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.ECDSA.Test.Vectors.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.Meta.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.P256.Test.fst"
} | [
"ml"
] | [
"Spec.P256.hash_alg_ecdsa",
"Spec.ECDSA.Test.Vectors.vec_SigVer",
"Lib.Meta.hex_string",
"Prims.bool",
"Prims.op_Negation",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.max_size_t",
"Spec.P256.min_input_length",
"Prims.op_Equality",
"Prims.int",
"Spec.P256.ecdsa_verification_agile",
"Lib.Meta.from_hex",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Addition",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Lib.IntTypes.uint8",
"FStar.Seq.Properties.lseq",
"Prims.op_Division",
"FStar.String.strlen"
] | [] | module Spec.P256.Test
open Lib.IntTypes
open Lib.Sequence
open Lib.Meta
open Spec.P256
open Spec.ECDSA.Test.Vectors
open Spec.Hash.Definitions
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
let test_pk_compressed (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk_raw = concat #_ #32 #32 pk_x pk_y in
let pk_c = pk_compressed_from_raw pk_raw in
let pk_raw_c = pk_compressed_to_raw pk_c in
match pk_raw_c with
| Some pk_raw_c -> PS.print_compare true 64 pk_raw pk_raw_c
| None -> false | false | false | Spec.P256.Test.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_sigver (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool | [] | Spec.P256.Test.test_sigver | {
"file_name": "specs/tests/Spec.P256.Test.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.P256.hash_alg_ecdsa -> inp: Spec.ECDSA.Test.Vectors.vec_SigVer -> FStar.All.ML Prims.bool | {
"end_col": 27,
"end_line": 63,
"start_col": 73,
"start_line": 41
} |
FStar.All.ML | val test_pk_compressed (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_pk_compressed (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk_raw = concat #_ #32 #32 pk_x pk_y in
let pk_c = pk_compressed_from_raw pk_raw in
let pk_raw_c = pk_compressed_to_raw pk_c in
match pk_raw_c with
| Some pk_raw_c -> PS.print_compare true 64 pk_raw pk_raw_c
| None -> false | val test_pk_compressed (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool
let test_pk_compressed (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool = | true | null | false | let { msg = msg ; qx = qx ; qy = qy ; r = r ; s = s ; result = result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if
not (msg_len <= max_size_t && min_input_length a <= msg_len && pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 &&
sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk_raw = concat #_ #32 #32 pk_x pk_y in
let pk_c = pk_compressed_from_raw pk_raw in
let pk_raw_c = pk_compressed_to_raw pk_c in
match pk_raw_c with
| Some pk_raw_c -> PS.print_compare true 64 pk_raw pk_raw_c
| None -> false | {
"checked_file": "Spec.P256.Test.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.ECDSA.Test.Vectors.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.Meta.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.P256.Test.fst"
} | [
"ml"
] | [
"Spec.P256.hash_alg_ecdsa",
"Spec.ECDSA.Test.Vectors.vec_SigVer",
"Lib.Meta.hex_string",
"Prims.bool",
"Prims.op_Negation",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.max_size_t",
"Spec.P256.min_input_length",
"Prims.op_Equality",
"Prims.int",
"Lib.ByteSequence.lbytes",
"Lib.PrintSequence.print_compare",
"FStar.Pervasives.Native.option",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.P256.pk_compressed_to_raw",
"Spec.P256.pk_compressed_from_raw",
"Prims.op_Addition",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Lib.IntTypes.uint8",
"FStar.Seq.Properties.lseq",
"Prims.op_Division",
"FStar.String.strlen",
"Lib.Meta.from_hex"
] | [] | module Spec.P256.Test
open Lib.IntTypes
open Lib.Sequence
open Lib.Meta
open Spec.P256
open Spec.ECDSA.Test.Vectors
open Spec.Hash.Definitions
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" | false | false | Spec.P256.Test.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_pk_compressed (a: hash_alg_ecdsa) (inp: vec_SigVer) : FStar.All.ML bool | [] | Spec.P256.Test.test_pk_compressed | {
"file_name": "specs/tests/Spec.P256.Test.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.P256.hash_alg_ecdsa -> inp: Spec.ECDSA.Test.Vectors.vec_SigVer -> FStar.All.ML Prims.bool | {
"end_col": 19,
"end_line": 38,
"start_col": 80,
"start_line": 15
} |
FStar.All.ML | val test_siggen (a: hash_alg_ecdsa) (inp: vec_SigGen) : FStar.All.ML bool | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.ECDSA.Test.Vectors",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_siggen (a:hash_alg_ecdsa) (inp:vec_SigGen) : FStar.All.ML bool =
let { msg'; d; qx'; qy'; k; r'; s' } = inp in
let msg_len = String.strlen msg' / 2 in
let sk_len = String.strlen d / 2 in
let nonce_len = String.strlen k / 2 in
let pk_x_len = String.strlen qx' / 2 in
let pk_y_len = String.strlen qy' / 2 in
let sig_r_len = String.strlen r' / 2 in
let sig_s_len = String.strlen s' / 2 in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
sk_len = 32 && nonce_len = 32 &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx' in
let pk_y = from_hex qy' in
let pk = concat #_ #32 #32 pk_x pk_y in
let sig_r = from_hex r' in
let sig_s = from_hex s' in
let sig_expected = concat #_ #32 #32 sig_r sig_s in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg')
pk (from_hex r') (from_hex s') in
let sig_computed =
ecdsa_signature_agile a msg_len (from_hex msg')
(from_hex d) (from_hex k) in
let compare_sig =
if Some? sig_computed then
PS.print_compare true 64 sig_expected (Some?.v sig_computed)
else false in
compare_sig && is_sig_valid | val test_siggen (a: hash_alg_ecdsa) (inp: vec_SigGen) : FStar.All.ML bool
let test_siggen (a: hash_alg_ecdsa) (inp: vec_SigGen) : FStar.All.ML bool = | true | null | false | let { msg' = msg' ; d = d ; qx' = qx' ; qy' = qy' ; k = k ; r' = r' ; s' = s' } = inp in
let msg_len = String.strlen msg' / 2 in
let sk_len = String.strlen d / 2 in
let nonce_len = String.strlen k / 2 in
let pk_x_len = String.strlen qx' / 2 in
let pk_y_len = String.strlen qy' / 2 in
let sig_r_len = String.strlen r' / 2 in
let sig_s_len = String.strlen s' / 2 in
if
not (msg_len <= max_size_t && min_input_length a <= msg_len && sk_len = 32 && nonce_len = 32 &&
pk_x_len = 32 &&
pk_y_len = 32 &&
sig_r_len = 32 &&
sig_s_len = 32)
then false
else
let pk_x = from_hex qx' in
let pk_y = from_hex qy' in
let pk = concat #_ #32 #32 pk_x pk_y in
let sig_r = from_hex r' in
let sig_s = from_hex s' in
let sig_expected = concat #_ #32 #32 sig_r sig_s in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg') pk (from_hex r') (from_hex s')
in
let sig_computed = ecdsa_signature_agile a msg_len (from_hex msg') (from_hex d) (from_hex k) in
let compare_sig =
if Some? sig_computed
then PS.print_compare true 64 sig_expected (Some?.v sig_computed)
else false
in
compare_sig && is_sig_valid | {
"checked_file": "Spec.P256.Test.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.ECDSA.Test.Vectors.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.Meta.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.P256.Test.fst"
} | [
"ml"
] | [
"Spec.P256.hash_alg_ecdsa",
"Spec.ECDSA.Test.Vectors.vec_SigGen",
"Lib.Meta.hex_string",
"Prims.op_Negation",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.max_size_t",
"Spec.P256.min_input_length",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"FStar.Pervasives.Native.uu___is_Some",
"Lib.ByteSequence.lbytes",
"Lib.PrintSequence.print_compare",
"FStar.Pervasives.Native.__proj__Some__item__v",
"FStar.Pervasives.Native.option",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.P256.ecdsa_signature_agile",
"Lib.Meta.from_hex",
"Spec.P256.ecdsa_verification_agile",
"Prims.op_Addition",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Lib.IntTypes.uint8",
"FStar.Seq.Properties.lseq",
"Prims.op_Division",
"FStar.String.strlen"
] | [] | module Spec.P256.Test
open Lib.IntTypes
open Lib.Sequence
open Lib.Meta
open Spec.P256
open Spec.ECDSA.Test.Vectors
open Spec.Hash.Definitions
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
let test_pk_compressed (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk_raw = concat #_ #32 #32 pk_x pk_y in
let pk_c = pk_compressed_from_raw pk_raw in
let pk_raw_c = pk_compressed_to_raw pk_c in
match pk_raw_c with
| Some pk_raw_c -> PS.print_compare true 64 pk_raw pk_raw_c
| None -> false
let test_sigver (a:hash_alg_ecdsa) (inp:vec_SigVer) : FStar.All.ML bool =
let { msg; qx; qy; r; s; result } = inp in
let msg_len = String.strlen msg / 2 in
let pk_x_len = String.strlen qx / 2 in
let pk_y_len = String.strlen qy / 2 in
let sig_r_len = String.strlen r / 2 in
let sig_s_len = String.strlen s / 2 in
let is_valid = result in
if not (msg_len <= max_size_t &&
min_input_length a <= msg_len &&
pk_x_len = 32 && pk_y_len = 32 &&
sig_r_len = 32 && sig_s_len = 32)
then false
else
let pk_x = from_hex qx in
let pk_y = from_hex qy in
let pk = concat #_ #32 #32 pk_x pk_y in
let is_sig_valid =
ecdsa_verification_agile a msg_len (from_hex msg)
pk (from_hex r) (from_hex s) in
is_sig_valid = is_valid | false | false | Spec.P256.Test.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_siggen (a: hash_alg_ecdsa) (inp: vec_SigGen) : FStar.All.ML bool | [] | Spec.P256.Test.test_siggen | {
"file_name": "specs/tests/Spec.P256.Test.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.P256.hash_alg_ecdsa -> inp: Spec.ECDSA.Test.Vectors.vec_SigGen -> FStar.All.ML Prims.bool | {
"end_col": 31,
"end_line": 104,
"start_col": 73,
"start_line": 66
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mont_pre (#t:limb_t) (#nLen:size_pos) (n:lbignum t nLen) (mu:limb t) =
(1 + bn_v n * v mu) % pow2 (bits t) == 0 /\
bn_v n % 2 = 1 /\ 1 < bn_v n /\
bn_v n < pow2 (bits t * nLen) | let bn_mont_pre (#t: limb_t) (#nLen: size_pos) (n: lbignum t nLen) (mu: limb t) = | false | null | false | (1 + bn_v n * v mu) % pow2 (bits t) == 0 /\ bn_v n % 2 = 1 /\ 1 < bn_v n /\
bn_v n < pow2 (bits t * nLen) | {
"checked_file": "Hacl.Spec.Bignum.Montgomery.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Montgomery.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_pos",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Lib.IntTypes.bits",
"Prims.b2t",
"Prims.op_Equality",
"Prims.op_LessThan",
"Prims.logical"
] | [] | module Hacl.Spec.Bignum.Montgomery
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module M = Hacl.Spec.Montgomery.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | false | Hacl.Spec.Bignum.Montgomery.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mont_pre : n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> mu: Hacl.Spec.Bignum.Definitions.limb t
-> Prims.logical | [] | Hacl.Spec.Bignum.Montgomery.bn_mont_pre | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Montgomery.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> mu: Hacl.Spec.Bignum.Definitions.limb t
-> Prims.logical | {
"end_col": 31,
"end_line": 16,
"start_col": 2,
"start_line": 14
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "SAEAD"
},
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) | let key_dh_public (cs: S.ciphersuite) = | false | null | false | lbuffer uint8 (size (S.size_dh_public cs)) | {
"checked_file": "Hacl.Impl.HPKE.fsti.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.HPKE.fsti"
} | [
"total"
] | [
"Spec.Agile.HPKE.ciphersuite",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.size",
"Spec.Agile.HPKE.size_dh_public"
] | [] | module Hacl.Impl.HPKE
open FStar.HyperStack
open FStar.HyperStack.All
module B = LowStar.Buffer
open Lib.Buffer
open Lib.IntTypes
module S = Spec.Agile.HPKE
module SAEAD = Spec.Agile.AEAD
#set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" | false | true | Hacl.Impl.HPKE.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val key_dh_public : cs: Spec.Agile.HPKE.ciphersuite -> Type0 | [] | Hacl.Impl.HPKE.key_dh_public | {
"file_name": "code/hpke/Hacl.Impl.HPKE.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | cs: Spec.Agile.HPKE.ciphersuite -> Type0 | {
"end_col": 81,
"end_line": 16,
"start_col": 39,
"start_line": 16
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.