effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let max_length_info (a:S.hash_algorithm) = max_size_t - S.size_label_version - S.size_suite_id_hpke - S.size_label_info_hash - Spec.Hash.Definitions.block_length a
let max_length_info (a: S.hash_algorithm) =
false
null
false
max_size_t - S.size_label_version - S.size_suite_id_hpke - S.size_label_info_hash - Spec.Hash.Definitions.block_length a
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.hash_algorithm", "Prims.op_Subtraction", "Lib.IntTypes.max_size_t", "Spec.Agile.HPKE.size_label_version", "Spec.Agile.HPKE.size_suite_id_hpke", "Spec.Agile.HPKE.size_label_info_hash", "Spec.Hash.Definitions.block_length", "Prims.int" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs)) inline_for_extraction noextract let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs)) inline_for_extraction noextract let key_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_key cs)) inline_for_extraction noextract let nonce_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_nonce cs)) (* Redefining this to work around Low*'s limitation on buffer size *) inline_for_extraction noextract
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val max_length_info : a: Spec.Agile.HPKE.hash_algorithm -> Prims.int
[]
Hacl.Impl.HPKE.max_length_info
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Agile.HPKE.hash_algorithm -> Prims.int
{ "end_col": 122, "end_line": 29, "start_col": 2, "start_line": 29 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs))
let serialized_point_dh (cs: S.ciphersuite) =
false
null
false
lbuffer uint8 (size (S.size_dh_serialized cs))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size", "Spec.Agile.HPKE.size_dh_serialized" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs))
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialized_point_dh : cs: Spec.Agile.HPKE.ciphersuite -> Type0
[]
Hacl.Impl.HPKE.serialized_point_dh
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> Type0
{ "end_col": 91, "end_line": 20, "start_col": 45, "start_line": 20 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let key_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_key cs))
let key_aead (cs: S.ciphersuite) =
false
null
false
lbuffer uint8 (size (S.size_aead_key cs))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size", "Spec.Agile.HPKE.size_aead_key" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs)) inline_for_extraction noextract let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs))
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val key_aead : cs: Spec.Agile.HPKE.ciphersuite -> Type0
[]
Hacl.Impl.HPKE.key_aead
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> Type0
{ "end_col": 75, "end_line": 22, "start_col": 34, "start_line": 22 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs))
let key_dh_secret (cs: S.ciphersuite) =
false
null
false
lbuffer uint8 (size (S.size_dh_key cs))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size", "Spec.Agile.HPKE.size_dh_key" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs))
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val key_dh_secret : cs: Spec.Agile.HPKE.ciphersuite -> Type0
[]
Hacl.Impl.HPKE.key_dh_secret
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> Type0
{ "end_col": 78, "end_line": 18, "start_col": 39, "start_line": 18 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nonce_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_nonce cs))
let nonce_aead (cs: S.ciphersuite) =
false
null
false
lbuffer uint8 (size (S.size_aead_nonce cs))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size", "Spec.Agile.HPKE.size_aead_nonce" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs)) inline_for_extraction noextract let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs)) inline_for_extraction noextract let key_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_key cs))
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nonce_aead : cs: Spec.Agile.HPKE.ciphersuite -> Type0
[]
Hacl.Impl.HPKE.nonce_aead
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> Type0
{ "end_col": 79, "end_line": 24, "start_col": 36, "start_line": 24 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "HKDF" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "SDH" }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "SHa" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let setupBaseR_st (cs:S.ciphersuite) (p:Type0) = o_ctx : context_s cs -> pkE: key_dh_public cs -> skR: key_dh_secret cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ ctx_invariant h0 o_ctx /\ live h0 pkE /\ live h0 skR /\ live h0 info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) ) (ensures fun h0 result h1 -> modifies (ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseR cs (as_seq h0 pkE) (as_seq h0 skR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let ctx = Some?.v output in as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False ) )
let setupBaseR_st (cs: S.ciphersuite) (p: Type0) =
false
null
false
o_ctx: context_s cs -> pkE: key_dh_public cs -> skR: key_dh_secret cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ ctx_invariant h0 o_ctx /\ live h0 pkE /\ live h0 skR /\ live h0 info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info)) (ensures fun h0 result h1 -> modifies (ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseR cs (as_seq h0 pkE) (as_seq h0 skR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let ctx = Some?.v output in as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Hacl.Impl.HPKE.context_s", "Hacl.Impl.HPKE.key_dh_public", "Hacl.Impl.HPKE.key_dh_secret", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.HPKE.max_length_info", "Spec.Agile.HPKE.hash_of_cs", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Hacl.Impl.HPKE.ctx_invariant", "Lib.Buffer.live", "Lib.Buffer.MUT", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Impl.HPKE.ctx_loc", "Lib.Buffer.loc", "Lib.Buffer.modifies", "FStar.Pervasives.Native.uu___is_Some", "Spec.Agile.HPKE.encryption_context", "Prims.eq2", "Hacl.Impl.HPKE.as_ctx", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.uu___is_None", "Prims.l_False", "Prims.logical", "FStar.Pervasives.Native.option", "Spec.Agile.HPKE.setupBaseR", "Lib.Buffer.as_seq", "Lib.IntTypes.size", "Spec.Agile.HPKE.size_dh_public", "Spec.Agile.HPKE.size_dh_key" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs)) inline_for_extraction noextract let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs)) inline_for_extraction noextract let key_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_key cs)) inline_for_extraction noextract let nonce_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_nonce cs)) (* Redefining this to work around Low*'s limitation on buffer size *) inline_for_extraction noextract let max_length_info (a:S.hash_algorithm) = max_size_t - S.size_label_version - S.size_suite_id_hpke - S.size_label_info_hash - Spec.Hash.Definitions.block_length a val context_s (cs:S.ciphersuite) : Type0 val ctx_loc (#cs:S.ciphersuite) (ctx:context_s cs) : GTot B.loc val ctx_invariant (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot prop val as_ctx (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot (S.encryption_context cs) val frame_ctx (#cs:S.ciphersuite) (ctx:context_s cs) (l:B.loc) (h0 h1:mem) : Lemma (requires ctx_invariant h0 ctx /\ B.loc_disjoint (ctx_loc ctx) l /\ modifies l h0 h1) (ensures ctx_invariant h1 ctx /\ as_ctx h0 ctx == as_ctx h1 ctx) [SMTPat (modifies l h0 h1); SMTPat (ctx_invariant h0 ctx)] inline_for_extraction noextract let setupBaseS_st (cs:S.ciphersuite) (p:Type0) = o_pkE: key_dh_public cs -> o_ctx: context_s cs -> skE: key_dh_secret cs -> pkR: serialized_point_dh cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_pkE /\ ctx_invariant h0 o_ctx /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ disjoint o_pkE skE /\ disjoint o_pkE pkR /\ disjoint o_pkE info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) /\ B.loc_disjoint (loc o_pkE) (ctx_loc o_ctx)) (ensures fun h0 result h1 -> modifies (loc o_pkE |+| ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseS cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let pkE, ctx = Some?.v output in as_seq h1 o_pkE == pkE /\ as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False ) ) inline_for_extraction noextract
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val setupBaseR_st : cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
[]
Hacl.Impl.HPKE.setupBaseR_st
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
{ "end_col": 6, "end_line": 91, "start_col": 5, "start_line": 71 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "HKDF" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "SDH" }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "SHa" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let setupBaseS_st (cs:S.ciphersuite) (p:Type0) = o_pkE: key_dh_public cs -> o_ctx: context_s cs -> skE: key_dh_secret cs -> pkR: serialized_point_dh cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_pkE /\ ctx_invariant h0 o_ctx /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ disjoint o_pkE skE /\ disjoint o_pkE pkR /\ disjoint o_pkE info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) /\ B.loc_disjoint (loc o_pkE) (ctx_loc o_ctx)) (ensures fun h0 result h1 -> modifies (loc o_pkE |+| ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseS cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let pkE, ctx = Some?.v output in as_seq h1 o_pkE == pkE /\ as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False ) )
let setupBaseS_st (cs: S.ciphersuite) (p: Type0) =
false
null
false
o_pkE: key_dh_public cs -> o_ctx: context_s cs -> skE: key_dh_secret cs -> pkR: serialized_point_dh cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_pkE /\ ctx_invariant h0 o_ctx /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ disjoint o_pkE skE /\ disjoint o_pkE pkR /\ disjoint o_pkE info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) /\ B.loc_disjoint (loc o_pkE) (ctx_loc o_ctx)) (ensures fun h0 result h1 -> modifies (loc o_pkE |+| ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseS cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let pkE, ctx = Some?.v output in as_seq h1 o_pkE == pkE /\ as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Hacl.Impl.HPKE.key_dh_public", "Hacl.Impl.HPKE.context_s", "Hacl.Impl.HPKE.key_dh_secret", "Hacl.Impl.HPKE.serialized_point_dh", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.HPKE.max_length_info", "Spec.Agile.HPKE.hash_of_cs", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.HPKE.ctx_invariant", "Lib.Buffer.disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Impl.HPKE.ctx_loc", "Lib.Buffer.loc", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.tuple2", "Spec.Agile.HPKE.key_dh_public_s", "Spec.Agile.HPKE.encryption_context", "Prims.eq2", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.size", "Spec.Agile.HPKE.size_dh_public", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.as_seq", "Hacl.Impl.HPKE.as_ctx", "Prims.logical", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.uu___is_None", "Prims.l_False", "FStar.Pervasives.Native.option", "Spec.Agile.HPKE.setupBaseS", "Spec.Agile.HPKE.size_dh_key", "Spec.Agile.HPKE.size_dh_serialized" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs)) inline_for_extraction noextract let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs)) inline_for_extraction noextract let key_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_key cs)) inline_for_extraction noextract let nonce_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_nonce cs)) (* Redefining this to work around Low*'s limitation on buffer size *) inline_for_extraction noextract let max_length_info (a:S.hash_algorithm) = max_size_t - S.size_label_version - S.size_suite_id_hpke - S.size_label_info_hash - Spec.Hash.Definitions.block_length a val context_s (cs:S.ciphersuite) : Type0 val ctx_loc (#cs:S.ciphersuite) (ctx:context_s cs) : GTot B.loc val ctx_invariant (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot prop val as_ctx (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot (S.encryption_context cs) val frame_ctx (#cs:S.ciphersuite) (ctx:context_s cs) (l:B.loc) (h0 h1:mem) : Lemma (requires ctx_invariant h0 ctx /\ B.loc_disjoint (ctx_loc ctx) l /\ modifies l h0 h1) (ensures ctx_invariant h1 ctx /\ as_ctx h0 ctx == as_ctx h1 ctx) [SMTPat (modifies l h0 h1); SMTPat (ctx_invariant h0 ctx)] inline_for_extraction noextract
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val setupBaseS_st : cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
[]
Hacl.Impl.HPKE.setupBaseS_st
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
{ "end_col": 6, "end_line": 67, "start_col": 5, "start_line": 43 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "HKDF" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "SDH" }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "SHa" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let openBase_st (cs:S.ciphersuite) (p:Type0) = pkE: key_dh_public cs { S.is_valid_not_export_only_ciphersuite cs } -> skR: key_dh_secret cs -> infolen: size_t {v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> aadlen: size_t {v aadlen <= SAEAD.max_length (S.aead_alg_of cs)} -> aad: lbuffer uint8 aadlen -> ctlen: size_t{16 < v ctlen /\ v ctlen <= SAEAD.max_length (S.aead_alg_of cs) } -> ct:lbuffer uint8 ctlen -> o_pt: lbuffer uint8 (size (v ctlen - 16)) -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_pt /\ live h0 skR /\ live h0 pkE /\ live h0 info /\ live h0 aad /\ live h0 ct /\ disjoint o_pt skR /\ disjoint o_pt pkE /\ disjoint o_pt info /\ disjoint o_pt aad /\ disjoint o_pt ct ) (ensures fun h0 result h1 -> modifies (loc o_pt) h0 h1 /\ (let sealed = S.openBase cs (as_seq h0 pkE) (as_seq h0 skR) (as_seq h0 info) (as_seq h0 aad) (as_seq h0 ct) in match result with | 0ul -> Some? sealed /\ (let pt = Some?.v sealed in as_seq h1 o_pt `Seq.equal` pt) | 1ul -> True | _ -> False) )
let openBase_st (cs: S.ciphersuite) (p: Type0) =
false
null
false
pkE: key_dh_public cs {S.is_valid_not_export_only_ciphersuite cs} -> skR: key_dh_secret cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> aadlen: size_t{v aadlen <= SAEAD.max_length (S.aead_alg_of cs)} -> aad: lbuffer uint8 aadlen -> ctlen: size_t{16 < v ctlen /\ v ctlen <= SAEAD.max_length (S.aead_alg_of cs)} -> ct: lbuffer uint8 ctlen -> o_pt: lbuffer uint8 (size (v ctlen - 16)) -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_pt /\ live h0 skR /\ live h0 pkE /\ live h0 info /\ live h0 aad /\ live h0 ct /\ disjoint o_pt skR /\ disjoint o_pt pkE /\ disjoint o_pt info /\ disjoint o_pt aad /\ disjoint o_pt ct) (ensures fun h0 result h1 -> modifies (loc o_pt) h0 h1 /\ (let sealed = S.openBase cs (as_seq h0 pkE) (as_seq h0 skR) (as_seq h0 info) (as_seq h0 aad) (as_seq h0 ct) in match result with | 0ul -> Some? sealed /\ (let pt = Some?.v sealed in (as_seq h1 o_pt) `Seq.equal` pt) | 1ul -> True | _ -> False))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Hacl.Impl.HPKE.key_dh_public", "Prims.b2t", "Spec.Agile.HPKE.is_valid_not_export_only_ciphersuite", "Hacl.Impl.HPKE.key_dh_secret", "Lib.IntTypes.size_t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.HPKE.max_length_info", "Spec.Agile.HPKE.hash_of_cs", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Spec.Agile.AEAD.max_length", "Spec.Agile.HPKE.aead_alg_of", "Prims.l_and", "Prims.op_LessThan", "Lib.IntTypes.size", "Prims.op_Subtraction", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "FStar.Pervasives.Native.uu___is_Some", "Spec.Agile.AEAD.decrypted", "Lib.Buffer.as_seq", "FStar.Seq.Base.equal", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.__proj__Some__item__v", "Prims.l_True", "Prims.l_False", "Prims.logical", "FStar.Pervasives.Native.option", "Spec.Agile.HPKE.openBase", "Spec.Agile.HPKE.size_dh_public", "Spec.Agile.HPKE.size_dh_key" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs)) inline_for_extraction noextract let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs)) inline_for_extraction noextract let key_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_key cs)) inline_for_extraction noextract let nonce_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_nonce cs)) (* Redefining this to work around Low*'s limitation on buffer size *) inline_for_extraction noextract let max_length_info (a:S.hash_algorithm) = max_size_t - S.size_label_version - S.size_suite_id_hpke - S.size_label_info_hash - Spec.Hash.Definitions.block_length a val context_s (cs:S.ciphersuite) : Type0 val ctx_loc (#cs:S.ciphersuite) (ctx:context_s cs) : GTot B.loc val ctx_invariant (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot prop val as_ctx (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot (S.encryption_context cs) val frame_ctx (#cs:S.ciphersuite) (ctx:context_s cs) (l:B.loc) (h0 h1:mem) : Lemma (requires ctx_invariant h0 ctx /\ B.loc_disjoint (ctx_loc ctx) l /\ modifies l h0 h1) (ensures ctx_invariant h1 ctx /\ as_ctx h0 ctx == as_ctx h1 ctx) [SMTPat (modifies l h0 h1); SMTPat (ctx_invariant h0 ctx)] inline_for_extraction noextract let setupBaseS_st (cs:S.ciphersuite) (p:Type0) = o_pkE: key_dh_public cs -> o_ctx: context_s cs -> skE: key_dh_secret cs -> pkR: serialized_point_dh cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_pkE /\ ctx_invariant h0 o_ctx /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ disjoint o_pkE skE /\ disjoint o_pkE pkR /\ disjoint o_pkE info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) /\ B.loc_disjoint (loc o_pkE) (ctx_loc o_ctx)) (ensures fun h0 result h1 -> modifies (loc o_pkE |+| ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseS cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let pkE, ctx = Some?.v output in as_seq h1 o_pkE == pkE /\ as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False ) ) inline_for_extraction noextract let setupBaseR_st (cs:S.ciphersuite) (p:Type0) = o_ctx : context_s cs -> pkE: key_dh_public cs -> skR: key_dh_secret cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ ctx_invariant h0 o_ctx /\ live h0 pkE /\ live h0 skR /\ live h0 info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) ) (ensures fun h0 result h1 -> modifies (ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseR cs (as_seq h0 pkE) (as_seq h0 skR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let ctx = Some?.v output in as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False ) ) (* The error code here is not exact w.r.t. the spec. The reason is that, in the spec, the overflow of an internal counter is defined when it runs above 2**96. In the code, this counter is represented as a uint64, so the overflow occurs earlier. Apart from this case, the behaviour of the impl and the spec should be identical *) inline_for_extraction noextract let sealBase_st (cs:S.ciphersuite) (p:Type0) = skE: key_dh_secret cs { S.is_valid_not_export_only_ciphersuite cs } -> pkR: serialized_point_dh cs -> infolen: size_t {v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> aadlen: size_t {v aadlen <= SAEAD.max_length (S.aead_alg_of cs)} -> aad: lbuffer uint8 aadlen -> plainlen: size_t {v plainlen <= SAEAD.max_length (S.aead_alg_of cs) /\ v plainlen + 16 <= max_size_t} -> plain: lbuffer uint8 plainlen -> o_enc: key_dh_public cs -> o_ct: lbuffer uint8 (size (v plainlen + 16)) -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_enc /\ live h0 o_ct /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ live h0 aad /\ live h0 plain /\ disjoint o_enc skE /\ disjoint o_enc pkR /\ disjoint o_enc info /\ disjoint o_enc aad /\ disjoint o_enc plain /\ disjoint o_ct skE /\ disjoint o_ct pkR /\ disjoint o_ct info /\ disjoint o_ct aad /\ disjoint o_ct plain /\ disjoint o_ct o_enc ) (ensures fun h0 result h1 -> modifies (loc o_enc |+| loc o_ct) h0 h1 /\ (let sealed = S.sealBase cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) (as_seq h0 aad) (as_seq h0 plain) in match result with | 0ul -> Some? sealed /\ (let enc, ct = Some?.v sealed in as_seq h1 o_enc `Seq.equal` enc /\ as_seq h1 o_ct `Seq.equal` ct) | 1ul -> True | _ -> False) ) (* Same issue as above for the exactness of the error code *) inline_for_extraction noextract
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val openBase_st : cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
[]
Hacl.Impl.HPKE.openBase_st
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
{ "end_col": 8, "end_line": 160, "start_col": 5, "start_line": 134 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "HKDF" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "SDH" }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "SHa" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "SAEAD" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sealBase_st (cs:S.ciphersuite) (p:Type0) = skE: key_dh_secret cs { S.is_valid_not_export_only_ciphersuite cs } -> pkR: serialized_point_dh cs -> infolen: size_t {v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> aadlen: size_t {v aadlen <= SAEAD.max_length (S.aead_alg_of cs)} -> aad: lbuffer uint8 aadlen -> plainlen: size_t {v plainlen <= SAEAD.max_length (S.aead_alg_of cs) /\ v plainlen + 16 <= max_size_t} -> plain: lbuffer uint8 plainlen -> o_enc: key_dh_public cs -> o_ct: lbuffer uint8 (size (v plainlen + 16)) -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_enc /\ live h0 o_ct /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ live h0 aad /\ live h0 plain /\ disjoint o_enc skE /\ disjoint o_enc pkR /\ disjoint o_enc info /\ disjoint o_enc aad /\ disjoint o_enc plain /\ disjoint o_ct skE /\ disjoint o_ct pkR /\ disjoint o_ct info /\ disjoint o_ct aad /\ disjoint o_ct plain /\ disjoint o_ct o_enc ) (ensures fun h0 result h1 -> modifies (loc o_enc |+| loc o_ct) h0 h1 /\ (let sealed = S.sealBase cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) (as_seq h0 aad) (as_seq h0 plain) in match result with | 0ul -> Some? sealed /\ (let enc, ct = Some?.v sealed in as_seq h1 o_enc `Seq.equal` enc /\ as_seq h1 o_ct `Seq.equal` ct) | 1ul -> True | _ -> False) )
let sealBase_st (cs: S.ciphersuite) (p: Type0) =
false
null
false
skE: key_dh_secret cs {S.is_valid_not_export_only_ciphersuite cs} -> pkR: serialized_point_dh cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> aadlen: size_t{v aadlen <= SAEAD.max_length (S.aead_alg_of cs)} -> aad: lbuffer uint8 aadlen -> plainlen: size_t{v plainlen <= SAEAD.max_length (S.aead_alg_of cs) /\ v plainlen + 16 <= max_size_t} -> plain: lbuffer uint8 plainlen -> o_enc: key_dh_public cs -> o_ct: lbuffer uint8 (size (v plainlen + 16)) -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_enc /\ live h0 o_ct /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ live h0 aad /\ live h0 plain /\ disjoint o_enc skE /\ disjoint o_enc pkR /\ disjoint o_enc info /\ disjoint o_enc aad /\ disjoint o_enc plain /\ disjoint o_ct skE /\ disjoint o_ct pkR /\ disjoint o_ct info /\ disjoint o_ct aad /\ disjoint o_ct plain /\ disjoint o_ct o_enc) (ensures fun h0 result h1 -> modifies (loc o_enc |+| loc o_ct) h0 h1 /\ (let sealed = S.sealBase cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) (as_seq h0 aad) (as_seq h0 plain) in match result with | 0ul -> Some? sealed /\ (let enc, ct = Some?.v sealed in (as_seq h1 o_enc) `Seq.equal` enc /\ (as_seq h1 o_ct) `Seq.equal` ct) | 1ul -> True | _ -> False))
{ "checked_file": "Hacl.Impl.HPKE.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HPKE.fsti" }
[ "total" ]
[ "Spec.Agile.HPKE.ciphersuite", "Hacl.Impl.HPKE.key_dh_secret", "Prims.b2t", "Spec.Agile.HPKE.is_valid_not_export_only_ciphersuite", "Hacl.Impl.HPKE.serialized_point_dh", "Lib.IntTypes.size_t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.HPKE.max_length_info", "Spec.Agile.HPKE.hash_of_cs", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Spec.Agile.AEAD.max_length", "Spec.Agile.HPKE.aead_alg_of", "Prims.l_and", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Impl.HPKE.key_dh_public", "Lib.IntTypes.size", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.loc", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.tuple2", "Spec.Agile.HPKE.key_dh_public_s", "Spec.Agile.AEAD.encrypted", "Lib.Buffer.as_seq", "FStar.Seq.Base.equal", "Spec.Agile.HPKE.size_dh_public", "Prims.logical", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.__proj__Some__item__v", "Prims.l_True", "Prims.l_False", "FStar.Pervasives.Native.option", "Spec.Agile.HPKE.sealBase", "Spec.Agile.HPKE.size_dh_key", "Spec.Agile.HPKE.size_dh_serialized" ]
[]
module Hacl.Impl.HPKE open FStar.HyperStack open FStar.HyperStack.All module B = LowStar.Buffer open Lib.Buffer open Lib.IntTypes module S = Spec.Agile.HPKE module SAEAD = Spec.Agile.AEAD #set-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let key_dh_public (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_public cs)) inline_for_extraction noextract let key_dh_secret (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_key cs)) inline_for_extraction noextract let serialized_point_dh (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_dh_serialized cs)) inline_for_extraction noextract let key_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_key cs)) inline_for_extraction noextract let nonce_aead (cs:S.ciphersuite) = lbuffer uint8 (size (S.size_aead_nonce cs)) (* Redefining this to work around Low*'s limitation on buffer size *) inline_for_extraction noextract let max_length_info (a:S.hash_algorithm) = max_size_t - S.size_label_version - S.size_suite_id_hpke - S.size_label_info_hash - Spec.Hash.Definitions.block_length a val context_s (cs:S.ciphersuite) : Type0 val ctx_loc (#cs:S.ciphersuite) (ctx:context_s cs) : GTot B.loc val ctx_invariant (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot prop val as_ctx (#cs:S.ciphersuite) (h:mem) (ctx:context_s cs) : GTot (S.encryption_context cs) val frame_ctx (#cs:S.ciphersuite) (ctx:context_s cs) (l:B.loc) (h0 h1:mem) : Lemma (requires ctx_invariant h0 ctx /\ B.loc_disjoint (ctx_loc ctx) l /\ modifies l h0 h1) (ensures ctx_invariant h1 ctx /\ as_ctx h0 ctx == as_ctx h1 ctx) [SMTPat (modifies l h0 h1); SMTPat (ctx_invariant h0 ctx)] inline_for_extraction noextract let setupBaseS_st (cs:S.ciphersuite) (p:Type0) = o_pkE: key_dh_public cs -> o_ctx: context_s cs -> skE: key_dh_secret cs -> pkR: serialized_point_dh cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ live h0 o_pkE /\ ctx_invariant h0 o_ctx /\ live h0 skE /\ live h0 pkR /\ live h0 info /\ disjoint o_pkE skE /\ disjoint o_pkE pkR /\ disjoint o_pkE info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) /\ B.loc_disjoint (loc o_pkE) (ctx_loc o_ctx)) (ensures fun h0 result h1 -> modifies (loc o_pkE |+| ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseS cs (as_seq h0 skE) (as_seq h0 pkR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let pkE, ctx = Some?.v output in as_seq h1 o_pkE == pkE /\ as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False ) ) inline_for_extraction noextract let setupBaseR_st (cs:S.ciphersuite) (p:Type0) = o_ctx : context_s cs -> pkE: key_dh_public cs -> skR: key_dh_secret cs -> infolen: size_t{v infolen <= max_length_info (S.hash_of_cs cs)} -> info: lbuffer uint8 infolen -> Stack UInt32.t (requires fun h0 -> p /\ ctx_invariant h0 o_ctx /\ live h0 pkE /\ live h0 skR /\ live h0 info /\ B.loc_disjoint (ctx_loc o_ctx) (loc info) ) (ensures fun h0 result h1 -> modifies (ctx_loc o_ctx) h0 h1 /\ (let output = S.setupBaseR cs (as_seq h0 pkE) (as_seq h0 skR) (as_seq h0 info) in match result with | 0ul -> Some? output /\ (let ctx = Some?.v output in as_ctx h1 o_ctx == ctx) | 1ul -> None? output | _ -> False ) ) (* The error code here is not exact w.r.t. the spec. The reason is that, in the spec, the overflow of an internal counter is defined when it runs above 2**96. In the code, this counter is represented as a uint64, so the overflow occurs earlier. Apart from this case, the behaviour of the impl and the spec should be identical *) inline_for_extraction noextract
false
true
Hacl.Impl.HPKE.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sealBase_st : cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
[]
Hacl.Impl.HPKE.sealBase_st
{ "file_name": "code/hpke/Hacl.Impl.HPKE.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Spec.Agile.HPKE.ciphersuite -> p: Type0 -> Type0
{ "end_col": 8, "end_line": 129, "start_col": 5, "start_line": 100 }
Prims.Tot
val hash_sha256:Hash.hash_st Spec.Agile.Hash.SHA2_256
[ { "abbrev": true, "full_module": "Hacl.Hash.Definitions", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.HPKE.Interface", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE.Interface", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_sha256 : Hash.hash_st Spec.Agile.Hash.SHA2_256 = Hacl.Streaming.SHA2.hash_256
val hash_sha256:Hash.hash_st Spec.Agile.Hash.SHA2_256 let hash_sha256:Hash.hash_st Spec.Agile.Hash.SHA2_256 =
false
null
false
Hacl.Streaming.SHA2.hash_256
{ "checked_file": "Hacl.HPKE.Interface.Hash.fst.checked", "dependencies": [ "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Hacl.Streaming.SHA2.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Interface.Hash.fst" }
[ "total" ]
[ "Hacl.Streaming.SHA2.hash_256" ]
[]
module Hacl.HPKE.Interface.Hash module S = Spec.Agile.HPKE module Hash = Hacl.Hash.Definitions [@ Meta.Attribute.specialize ] noextract assume val hash: #cs:S.ciphersuite -> Hash.hash_st (S.hash_of_cs cs) (** Instantiations of hash **) inline_for_extraction noextract
false
true
Hacl.HPKE.Interface.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_sha256:Hash.hash_st Spec.Agile.Hash.SHA2_256
[]
Hacl.HPKE.Interface.Hash.hash_sha256
{ "file_name": "code/hpke/Hacl.HPKE.Interface.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Hash.Definitions.hash_st Spec.Hash.Definitions.SHA2_256
{ "end_col": 30, "end_line": 14, "start_col": 2, "start_line": 14 }
Prims.Tot
val hash_sha512:Hash.hash_st Spec.Agile.Hash.SHA2_512
[ { "abbrev": true, "full_module": "Hacl.Hash.Definitions", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.HPKE.Interface", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE.Interface", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_sha512 : Hash.hash_st Spec.Agile.Hash.SHA2_512 = Hacl.Streaming.SHA2.hash_512
val hash_sha512:Hash.hash_st Spec.Agile.Hash.SHA2_512 let hash_sha512:Hash.hash_st Spec.Agile.Hash.SHA2_512 =
false
null
false
Hacl.Streaming.SHA2.hash_512
{ "checked_file": "Hacl.HPKE.Interface.Hash.fst.checked", "dependencies": [ "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Hacl.Streaming.SHA2.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Interface.Hash.fst" }
[ "total" ]
[ "Hacl.Streaming.SHA2.hash_512" ]
[]
module Hacl.HPKE.Interface.Hash module S = Spec.Agile.HPKE module Hash = Hacl.Hash.Definitions [@ Meta.Attribute.specialize ] noextract assume val hash: #cs:S.ciphersuite -> Hash.hash_st (S.hash_of_cs cs) (** Instantiations of hash **) inline_for_extraction noextract let hash_sha256 : Hash.hash_st Spec.Agile.Hash.SHA2_256 = Hacl.Streaming.SHA2.hash_256 inline_for_extraction noextract
false
true
Hacl.HPKE.Interface.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_sha512:Hash.hash_st Spec.Agile.Hash.SHA2_512
[]
Hacl.HPKE.Interface.Hash.hash_sha512
{ "file_name": "code/hpke/Hacl.HPKE.Interface.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Hash.Definitions.hash_st Spec.Hash.Definitions.SHA2_512
{ "end_col": 30, "end_line": 17, "start_col": 2, "start_line": 17 }
FStar.Pervasives.Lemma
val mem_index (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mem_index = mem_index'
val mem_index (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) let mem_index =
false
null
true
mem_index'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.mem_index'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mem_index (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x))
[]
FStar.Seq.Properties.mem_index
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: a -> s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.mem x s) (ensures exists (i: Prims.nat{i < FStar.Seq.Base.length s}). FStar.Seq.Base.index s i == x)
{ "end_col": 26, "end_line": 60, "start_col": 16, "start_line": 60 }
FStar.Pervasives.Lemma
val lemma_mem_count: #a:eqtype -> s:seq a -> f:(a -> Tot bool) -> Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mem_count = lemma_mem_count'
val lemma_mem_count: #a:eqtype -> s:seq a -> f:(a -> Tot bool) -> Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) let lemma_mem_count =
false
null
true
lemma_mem_count'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.lemma_mem_count'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mem_count: #a:eqtype -> s:seq a -> f:(a -> Tot bool) -> Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x))
[]
FStar.Seq.Properties.lemma_mem_count
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat{i < FStar.Seq.Base.length s}). f (FStar.Seq.Base.index s i)) (ensures forall (x: a). FStar.Seq.Properties.mem x s ==> f x)
{ "end_col": 38, "end_line": 125, "start_col": 22, "start_line": 125 }
FStar.Pervasives.Lemma
val sorted_concat_lemma: #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi))))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sorted_concat_lemma = sorted_concat_lemma'
val sorted_concat_lemma: #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) let sorted_concat_lemma =
false
null
true
sorted_concat_lemma'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.sorted_concat_lemma'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sorted_concat_lemma: #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi))))
[]
FStar.Seq.Properties.sorted_concat_lemma
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Prims.bool){FStar.Seq.Properties.total_order a f} -> lo: FStar.Seq.Base.seq a {FStar.Seq.Properties.sorted f lo} -> pivot: a -> hi: FStar.Seq.Base.seq a {FStar.Seq.Properties.sorted f hi} -> FStar.Pervasives.Lemma (requires forall (y: a). (FStar.Seq.Properties.mem y lo ==> f y pivot) /\ (FStar.Seq.Properties.mem y hi ==> f pivot y)) (ensures FStar.Seq.Properties.sorted f (FStar.Seq.Base.append lo (FStar.Seq.Properties.cons pivot hi)))
{ "end_col": 46, "end_line": 148, "start_col": 26, "start_line": 148 }
FStar.Pervasives.Lemma
val lemma_list_seq_bij: #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_list_seq_bij = lemma_list_seq_bij'
val lemma_list_seq_bij: #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) let lemma_list_seq_bij =
false
null
true
lemma_list_seq_bij'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.lemma_list_seq_bij'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) )
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_list_seq_bij: #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l))
[]
FStar.Seq.Properties.lemma_list_seq_bij
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.seq_to_list (FStar.Seq.Properties.seq_of_list l) == l)
{ "end_col": 44, "end_line": 423, "start_col": 25, "start_line": 423 }
FStar.Pervasives.Lemma
val lemma_split : #a:Type -> s:seq a -> i:nat{(0 <= i /\ i <= length s)} -> Lemma (ensures (append (fst (split s i)) (snd (split s i)) == s))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s)
val lemma_split : #a:Type -> s:seq a -> i:nat{(0 <= i /\ i <= length s)} -> Lemma (ensures (append (fst (split s i)) (snd (split s i)) == s)) let lemma_split #_ s i =
false
null
true
cut (equal (append (fst (split s i)) (snd (split s i))) s)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.Pervasives.Native.fst", "FStar.Seq.Properties.split", "FStar.Pervasives.Native.snd", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_split : #a:Type -> s:seq a -> i:nat{(0 <= i /\ i <= length s)} -> Lemma (ensures (append (fst (split s i)) (snd (split s i)) == s))
[]
FStar.Seq.Properties.lemma_split
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat{0 <= i /\ i <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append (FStar.Pervasives.Native.fst (FStar.Seq.Properties.split s i)) (FStar.Pervasives.Native.snd (FStar.Seq.Properties.split s i)) == s)
{ "end_col": 61, "end_line": 50, "start_col": 2, "start_line": 50 }
FStar.Pervasives.Lemma
val lemma_cons_inj: #a:Type -> v1:a -> v2:a -> s1:seq a -> s2:seq a -> Lemma (requires (equal (cons v1 s1) (cons v2 s2))) (ensures (v1 == v2 /\ equal s1 s2))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0)
val lemma_cons_inj: #a:Type -> v1:a -> v2:a -> s1:seq a -> s2:seq a -> Lemma (requires (equal (cons v1 s1) (cons v2 s2))) (ensures (v1 == v2 /\ equal s1 s2)) let lemma_cons_inj #_ v1 v2 s1 s2 =
false
null
true
let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert (index t1 0 == index t2 0)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "Prims.unit", "FStar.Seq.Properties.lemma_append_inj", "FStar.Seq.Base.create" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cons_inj: #a:Type -> v1:a -> v2:a -> s1:seq a -> s2:seq a -> Lemma (requires (equal (cons v1 s1) (cons v2 s2))) (ensures (v1 == v2 /\ equal s1 s2))
[]
FStar.Seq.Properties.lemma_cons_inj
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v1: a -> v2: a -> s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Seq.Properties.cons v1 s1) (FStar.Seq.Properties.cons v2 s2)) (ensures v1 == v2 /\ FStar.Seq.Base.equal s1 s2)
{ "end_col": 34, "end_line": 47, "start_col": 35, "start_line": 43 }
FStar.Pervasives.Lemma
val upd_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < j - i} -> v:a -> Lemma (requires i + k < j) (ensures upd (slice s i j) k v == slice (upd s (i + k) v) i j) [SMTPat (upd (slice s i j) k v)]
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j)
val upd_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < j - i} -> v:a -> Lemma (requires i + k < j) (ensures upd (slice s i j) k v == slice (upd s (i + k) v) i j) [SMTPat (upd (slice s i j) k v)] let upd_slice #_ s i j k v =
false
null
true
lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Base.upd", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val upd_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < j - i} -> v:a -> Lemma (requires i + k < j) (ensures upd (slice s i j) k v == slice (upd s (i + k) v) i j) [SMTPat (upd (slice s i j) k v)]
[]
FStar.Seq.Properties.upd_slice
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j /\ j <= FStar.Seq.Base.length s} -> k: Prims.nat{k < j - i} -> v: a -> FStar.Pervasives.Lemma (requires i + k < j) (ensures FStar.Seq.Base.upd (FStar.Seq.Base.slice s i j) k v == FStar.Seq.Base.slice (FStar.Seq.Base.upd s (i + k) v) i j) [SMTPat (FStar.Seq.Base.upd (FStar.Seq.Base.slice s i j) k v)]
{ "end_col": 70, "end_line": 78, "start_col": 2, "start_line": 78 }
FStar.Pervasives.Lemma
val slice_upd: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < length s} -> v:a -> Lemma (requires k < i \/ j <= k) (ensures slice (upd s k v) i j == slice s i j) [SMTPat (slice (upd s k v) i j)]
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j)
val slice_upd: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < length s} -> v:a -> Lemma (requires k < i \/ j <= k) (ensures slice (upd s k v) i j == slice s i j) [SMTPat (slice (upd s k v) i j)] let slice_upd #_ s i j k v =
false
null
true
lemma_eq_intro (slice (upd s k v) i j) (slice s i j)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_LessThan", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Base.slice", "FStar.Seq.Base.upd", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val slice_upd: #a:Type -> s:seq a -> i:nat -> j:nat{i <= j /\ j <= length s} -> k:nat{k < length s} -> v:a -> Lemma (requires k < i \/ j <= k) (ensures slice (upd s k v) i j == slice s i j) [SMTPat (slice (upd s k v) i j)]
[]
FStar.Seq.Properties.slice_upd
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j /\ j <= FStar.Seq.Base.length s} -> k: Prims.nat{k < FStar.Seq.Base.length s} -> v: a -> FStar.Pervasives.Lemma (requires k < i \/ j <= k) (ensures FStar.Seq.Base.slice (FStar.Seq.Base.upd s k v) i j == FStar.Seq.Base.slice s i j) [SMTPat (FStar.Seq.Base.slice (FStar.Seq.Base.upd s k v) i j)]
{ "end_col": 54, "end_line": 75, "start_col": 2, "start_line": 75 }
FStar.Pervasives.Lemma
val lemma_mem_snoc : #a:eqtype -> s:Seq.seq a -> x:a -> Lemma (ensures (forall y. mem y (snoc s x) <==> mem y s \/ x=y))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x)
val lemma_mem_snoc : #a:eqtype -> s:Seq.seq a -> x:a -> Lemma (ensures (forall y. mem y (snoc s x) <==> mem y s \/ x=y)) let lemma_mem_snoc #_ s x =
false
null
true
lemma_append_count s (Seq.create 1 x)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "FStar.Seq.Properties.lemma_append_count", "FStar.Seq.Base.create", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mem_snoc : #a:eqtype -> s:Seq.seq a -> x:a -> Lemma (ensures (forall y. mem y (snoc s x) <==> mem y s \/ x=y))
[]
FStar.Seq.Properties.lemma_mem_snoc
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> x: a -> FStar.Pervasives.Lemma (ensures forall (y: a). FStar.Seq.Properties.mem y (FStar.Seq.Properties.snoc s x) <==> FStar.Seq.Properties.mem y s \/ x = y)
{ "end_col": 65, "end_line": 321, "start_col": 28, "start_line": 321 }
FStar.Pervasives.Lemma
val find_append_some: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let find_append_some = find_append_some'
val find_append_some: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) let find_append_some =
false
null
true
find_append_some'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.find_append_some'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_append_some: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1))
[]
FStar.Seq.Properties.find_append_some
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires Some? (FStar.Seq.Properties.find_l f s1)) (ensures FStar.Seq.Properties.find_l f (FStar.Seq.Base.append s1 s2) == FStar.Seq.Properties.find_l f s1)
{ "end_col": 40, "end_line": 333, "start_col": 23, "start_line": 333 }
FStar.Pervasives.Lemma
val swap_frame_lo : #a:Type -> s:seq a -> lo:nat -> i:nat{lo <= i} -> j:nat{i <= j && j < length s} -> Lemma (ensures (slice s lo i == slice (swap s i j) lo i))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i))
val swap_frame_lo : #a:Type -> s:seq a -> lo:nat -> i:nat{lo <= i} -> j:nat{i <= j && j < length s} -> Lemma (ensures (slice s lo i == slice (swap s i j) lo i)) let swap_frame_lo #_ s lo i j =
false
null
true
cut (equal (slice s lo i) (slice (swap s i j) lo i))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Properties.swap", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val swap_frame_lo : #a:Type -> s:seq a -> lo:nat -> i:nat{lo <= i} -> j:nat{i <= j && j < length s} -> Lemma (ensures (slice s lo i == slice (swap s i j) lo i))
[]
FStar.Seq.Properties.swap_frame_lo
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> lo: Prims.nat -> i: Prims.nat{lo <= i} -> j: Prims.nat{i <= j && j < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice s lo i == FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) lo i)
{ "end_col": 84, "end_line": 260, "start_col": 32, "start_line": 260 }
FStar.Pervasives.Lemma
val lemma_mem_append : #a:eqtype -> s1:seq a -> s2:seq a -> Lemma (ensures (forall x. mem x (append s1 s2) <==> (mem x s1 || mem x s2)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2
val lemma_mem_append : #a:eqtype -> s1:seq a -> s2:seq a -> Lemma (ensures (forall x. mem x (append s1 s2) <==> (mem x s1 || mem x s2))) let lemma_mem_append #_ s1 s2 =
false
null
true
lemma_append_count s1 s2
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "FStar.Seq.Properties.lemma_append_count", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mem_append : #a:eqtype -> s1:seq a -> s2:seq a -> Lemma (ensures (forall x. mem x (append s1 s2) <==> (mem x s1 || mem x s2)))
[]
FStar.Seq.Properties.lemma_mem_append
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.mem x (FStar.Seq.Base.append s1 s2) <==> FStar.Seq.Properties.mem x s1 || FStar.Seq.Properties.mem x s2)
{ "end_col": 56, "end_line": 242, "start_col": 32, "start_line": 242 }
FStar.Pervasives.Lemma
val lemma_slice_snoc: #a:eqtype -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (ensures (forall x. mem x (slice s i j) <==> (x = index s (j - 1) || mem x (slice s i (j - 1)))))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1)))
val lemma_slice_snoc: #a:eqtype -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (ensures (forall x. mem x (slice s i j) <==> (x = index s (j - 1) || mem x (slice s i (j - 1))))) let lemma_slice_snoc #_ s i j =
false
null
true
cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1)))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_mem_append", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "FStar.Seq.Base.create", "FStar.Seq.Base.index", "Prims.unit", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slice_snoc: #a:eqtype -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (ensures (forall x. mem x (slice s i j) <==> (x = index s (j - 1) || mem x (slice s i (j - 1)))))
[]
FStar.Seq.Properties.lemma_slice_snoc
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i < j && j <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.mem x (FStar.Seq.Base.slice s i j) <==> x = FStar.Seq.Base.index s (j - 1) || FStar.Seq.Properties.mem x (FStar.Seq.Base.slice s i (j - 1)))
{ "end_col": 67, "end_line": 250, "start_col": 2, "start_line": 249 }
FStar.Pervasives.Lemma
val find_append_none: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let find_append_none = find_append_none'
val find_append_none: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) let find_append_none =
false
null
true
find_append_none'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.find_append_none'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_append_none: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2))
[]
FStar.Seq.Properties.find_append_none
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires None? (FStar.Seq.Properties.find_l f s1)) (ensures FStar.Seq.Properties.find_l f (FStar.Seq.Base.append s1 s2) == FStar.Seq.Properties.find_l f s2)
{ "end_col": 40, "end_line": 345, "start_col": 23, "start_line": 345 }
FStar.Pervasives.Lemma
val lemma_index_is_nth: #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_index_is_nth = lemma_index_is_nth'
val lemma_index_is_nth: #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) let lemma_index_is_nth =
false
null
true
lemma_index_is_nth'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.lemma_index_is_nth'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) )
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_index_is_nth: #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i))
[]
FStar.Seq.Properties.lemma_index_is_nth
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat{i < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.index (FStar.Seq.Properties.seq_to_list s) i == FStar.Seq.Base.index s i)
{ "end_col": 44, "end_line": 435, "start_col": 25, "start_line": 435 }
FStar.Pervasives.Lemma
val seq_mem_k' (#a: eqtype) (s: seq a) (n: nat{n < Seq.length s}) : Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n)
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1)
val seq_mem_k' (#a: eqtype) (s: seq a) (n: nat{n < Seq.length s}) : Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) let rec seq_mem_k': #a: eqtype -> s: seq a -> n: nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) =
false
null
true
fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Properties.seq_mem_k'", "Prims.op_Subtraction", "FStar.Seq.Properties.tail", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_mem_k' (#a: eqtype) (s: seq a) (n: nat{n < Seq.length s}) : Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n)
[ "recursion" ]
FStar.Seq.Properties.seq_mem_k'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> n: Prims.nat{n < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.mem (FStar.Seq.Base.index s n) s) (decreases n)
{ "end_col": 28, "end_line": 381, "start_col": 2, "start_line": 378 }
FStar.Pervasives.Lemma
val lemma_find_l_contains (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l)))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_find_l_contains = lemma_find_l_contains'
val lemma_find_l_contains (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) let lemma_find_l_contains =
false
null
true
lemma_find_l_contains'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.lemma_find_l_contains'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_find_l_contains (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l)))
[]
FStar.Seq.Properties.lemma_find_l_contains
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Prims.bool) -> l: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures Some? (FStar.Seq.Properties.find_l f l) ==> FStar.Seq.Properties.contains l (Some?.v (FStar.Seq.Properties.find_l f l)))
{ "end_col": 50, "end_line": 472, "start_col": 28, "start_line": 472 }
FStar.Pervasives.Lemma
val lemma_swap_slice_commute : #a:Type -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (slice (swap s i j) start len == (swap (slice s start len) (i - start) (j - start))))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start)))
val lemma_swap_slice_commute : #a:Type -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (slice (swap s i j) start len == (swap (slice s start len) (i - start) (j - start)))) let lemma_swap_slice_commute #_ s start i j len =
false
null
true
cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start)))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Properties.swap", "Prims.op_Subtraction", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_swap_slice_commute : #a:Type -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (slice (swap s i j) start len == (swap (slice s start len) (i - start) (j - start))))
[]
FStar.Seq.Properties.lemma_swap_slice_commute
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> start: Prims.nat -> i: Prims.nat{start <= i} -> j: Prims.nat{i <= j} -> len: Prims.nat{j < len && len <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) start len == FStar.Seq.Properties.swap (FStar.Seq.Base.slice s start len) (i - start) (j - start))
{ "end_col": 95, "end_line": 267, "start_col": 2, "start_line": 267 }
FStar.Pervasives.Lemma
val contains_snoc : #a:Type -> s:Seq.seq a -> x:a -> Lemma (ensures (forall y. (snoc s x) `contains` y <==> s `contains` y \/ x==y))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x))
val contains_snoc : #a:Type -> s:Seq.seq a -> x:a -> Lemma (ensures (forall y. (snoc s x) `contains` y <==> s `contains` y \/ x==y)) let contains_snoc #_ s x =
false
null
true
FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "FStar.Classical.forall_intro", "Prims.l_iff", "FStar.Seq.Properties.contains", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Prims.l_or", "FStar.Seq.Properties.append_contains_equiv", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val contains_snoc : #a:Type -> s:Seq.seq a -> x:a -> Lemma (ensures (forall y. (snoc s x) `contains` y <==> s `contains` y \/ x==y))
[]
FStar.Seq.Properties.contains_snoc
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> x: a -> FStar.Pervasives.Lemma (ensures forall (y: a). FStar.Seq.Properties.contains (FStar.Seq.Properties.snoc s x) y <==> FStar.Seq.Properties.contains s y \/ x == y)
{ "end_col": 73, "end_line": 463, "start_col": 2, "start_line": 463 }
FStar.Pervasives.Lemma
val lemma_mem_count' (#a: eqtype) (s: seq a) (f: (a -> Tot bool)) : Lemma (requires (forall (i: nat{i < length s}). f (index s i))) (ensures (forall (x: a). mem x s ==> f x)) (decreases (length s))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f)
val lemma_mem_count' (#a: eqtype) (s: seq a) (f: (a -> Tot bool)) : Lemma (requires (forall (i: nat{i < length s}). f (index s i))) (ensures (forall (x: a). mem x s ==> f x)) (decreases (length s)) let rec lemma_mem_count' (#a: eqtype) (s: seq a) (f: (a -> Tot bool)) : Lemma (requires (forall (i: nat{i < length s}). f (index s i))) (ensures (forall (x: a). mem x s ==> f x)) (decreases (length s)) =
false
null
true
if length s = 0 then () else (let t = i: nat{i < length (tail s)} in cut (forall (i: t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_mem_count'", "FStar.Seq.Properties.tail", "Prims.unit", "Prims.cut", "Prims.l_Forall", "Prims.b2t", "FStar.Seq.Base.index", "Prims.op_Addition", "Prims.nat", "Prims.op_LessThan", "Prims.squash", "Prims.l_imp", "FStar.Seq.Properties.mem", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mem_count' (#a: eqtype) (s: seq a) (f: (a -> Tot bool)) : Lemma (requires (forall (i: nat{i < length s}). f (index s i))) (ensures (forall (x: a). mem x s ==> f x)) (decreases (length s))
[ "recursion" ]
FStar.Seq.Properties.lemma_mem_count'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat{i < FStar.Seq.Base.length s}). f (FStar.Seq.Base.index s i)) (ensures forall (x: a). FStar.Seq.Properties.mem x s ==> f x) (decreases FStar.Seq.Base.length s)
{ "end_col": 36, "end_line": 123, "start_col": 2, "start_line": 119 }
FStar.Pervasives.Lemma
val lemma_seq_to_list_permutation' (#a: eqtype) (s: seq a) : Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_seq_to_list_permutation' (#a:eqtype) (s:seq a) :Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s)) = if length s > 0 then lemma_seq_to_list_permutation' (slice s 1 (length s))
val lemma_seq_to_list_permutation' (#a: eqtype) (s: seq a) : Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s)) let rec lemma_seq_to_list_permutation' (#a: eqtype) (s: seq a) : Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s)) =
false
null
true
if length s > 0 then lemma_seq_to_list_permutation' (slice s 1 (length s))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_seq_to_list_permutation'", "FStar.Seq.Base.slice", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.eq2", "Prims.nat", "FStar.Seq.Properties.count", "FStar.List.Tot.Base.count", "FStar.Seq.Properties.seq_to_list", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1) let seq_of_list_tl #_ l = lemma_seq_of_list_induction l let rec mem_seq_of_list #_ x l = lemma_seq_of_list_induction l; match l with | [] -> () | y :: q -> let _ : squash (head (seq_of_list l) == y) = () in let _ : squash (tail (seq_of_list l) == seq_of_list q) = seq_of_list_tl l in let _ : squash (mem x (seq_of_list l) == (x = y || mem x (seq_of_list q))) = lemma_mem_inversion (seq_of_list l) in mem_seq_of_list x q let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases ( List.Tot.length l)) = fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl let intro_of_list' = intro_of_list'' let intro_of_list #_ s l = intro_of_list' 0 s l let rec elim_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l)) (ensures ( explode_and i s l)) (decreases ( List.Tot.length l)) = fun #_ i s l -> match l with | [] -> () | hd :: tl -> lemma_seq_of_list_induction l; elim_of_list'' (i + 1) s tl let elim_of_list' = elim_of_list'' let elim_of_list #_ l = elim_of_list' 0 (seq_of_list l) l let rec lemma_seq_to_list_permutation' (#a:eqtype) (s:seq a)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_to_list_permutation' (#a: eqtype) (s: seq a) : Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s))
[ "recursion" ]
FStar.Seq.Properties.lemma_seq_to_list_permutation'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.count x s == FStar.List.Tot.Base.count x (FStar.Seq.Properties.seq_to_list s)) (decreases FStar.Seq.Base.length s)
{ "end_col": 78, "end_line": 596, "start_col": 4, "start_line": 596 }
FStar.Pervasives.Lemma
val un_snoc_snoc (#a:Type) (s:seq a) (x:a) : Lemma (un_snoc (snoc s x) == (s, x))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s')
val un_snoc_snoc (#a:Type) (s:seq a) (x:a) : Lemma (un_snoc (snoc s x) == (s, x)) let un_snoc_snoc #_ s x =
false
null
true
let s', x = un_snoc (snoc s x) in assert (Seq.equal s s')
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims._assert", "FStar.Seq.Base.equal", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val un_snoc_snoc (#a:Type) (s:seq a) (x:a) : Lemma (un_snoc (snoc s x) == (s, x))
[]
FStar.Seq.Properties.un_snoc_snoc
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.un_snoc (FStar.Seq.Properties.snoc s x) == FStar.Pervasives.Native.Mktuple2 s x)
{ "end_col": 25, "end_line": 367, "start_col": 25, "start_line": 365 }
FStar.Pervasives.Lemma
val lemma_append_inj_l: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a{length s1 = length t1 /\ equal (append s1 s2) (append t1 t2)} -> i:nat{i < length s1} -> Lemma (index s1 i == index t1 i)
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i))
val lemma_append_inj_l: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a{length s1 = length t1 /\ equal (append s1 s2) (append t1 t2)} -> i:nat{i < length s1} -> Lemma (index s1 i == index t1 i) let lemma_append_inj_l #_ s1 s2 t1 t2 i =
false
null
true
assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_append_inj_l: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a{length s1 = length t1 /\ equal (append s1 s2) (append t1 t2)} -> i:nat{i < length s1} -> Lemma (index s1 i == index t1 i)
[]
FStar.Seq.Properties.lemma_append_inj_l
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> t1: FStar.Seq.Base.seq a -> t2: FStar.Seq.Base.seq a { FStar.Seq.Base.length s1 = FStar.Seq.Base.length t1 /\ FStar.Seq.Base.equal (FStar.Seq.Base.append s1 s2) (FStar.Seq.Base.append t1 t2) } -> i: Prims.nat{i < FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index s1 i == FStar.Seq.Base.index t1 i)
{ "end_col": 49, "end_line": 24, "start_col": 2, "start_line": 23 }
FStar.Pervasives.Lemma
val intro_append_contains_from_disjunction (#a: Type) (s1 s2: seq a) (x: a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x)))
val intro_append_contains_from_disjunction (#a: Type) (s1 s2: seq a) (x: a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) let intro_append_contains_from_disjunction (#a: Type) (s1 s2: seq a) (x: a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) =
false
null
true
let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x)))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "FStar.Classical.or_elim", "FStar.Seq.Properties.contains", "Prims.squash", "Prims.l_or", "FStar.Seq.Base.append", "Prims.unit", "FStar.Classical.exists_elim", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Squash.get_proof", "Prims._assert", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_append_contains_from_disjunction (#a: Type) (s1 s2: seq a) (x: a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x)
[]
FStar.Seq.Properties.intro_append_contains_from_disjunction
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> x: a -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.contains s1 x \/ FStar.Seq.Properties.contains s2 x) (ensures FStar.Seq.Properties.contains (FStar.Seq.Base.append s1 s2) x)
{ "end_col": 62, "end_line": 457, "start_col": 6, "start_line": 451 }
FStar.Pervasives.Lemma
val find_mem (#a:eqtype) (s:seq a) (f:a -> Tot bool) (x:a{f x}) : Lemma (requires (mem x s)) (ensures (Some? (seq_find f s) /\ f (Some?.v (seq_find f s))))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> ()
val find_mem (#a:eqtype) (s:seq a) (f:a -> Tot bool) (x:a{f x}) : Lemma (requires (mem x s)) (ensures (Some? (seq_find f s) /\ f (Some?.v (seq_find f s)))) let find_mem #_ s f x =
false
null
true
match seq_find f s with | None -> mem_index x s | Some _ -> ()
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.bool", "Prims.b2t", "FStar.Seq.Properties.seq_find", "FStar.Seq.Properties.mem_index", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s')
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_mem (#a:eqtype) (s:seq a) (f:a -> Tot bool) (x:a{f x}) : Lemma (requires (mem x s)) (ensures (Some? (seq_find f s) /\ f (Some?.v (seq_find f s))))
[]
FStar.Seq.Properties.find_mem
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> x: a{f x} -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.mem x s) (ensures Some? (FStar.Seq.Properties.seq_find f s) /\ f (Some?.v (FStar.Seq.Properties.seq_find f s)) )
{ "end_col": 19, "end_line": 372, "start_col": 5, "start_line": 370 }
FStar.Pervasives.Lemma
val swap_frame_hi : #a:Type -> s:seq a -> i:nat -> j:nat{i <= j} -> k:nat{j < k} -> hi:nat{k <= hi /\ hi <= length s} -> Lemma (ensures (slice s k hi == slice (swap s i j) k hi))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi))
val swap_frame_hi : #a:Type -> s:seq a -> i:nat -> j:nat{i <= j} -> k:nat{j < k} -> hi:nat{k <= hi /\ hi <= length s} -> Lemma (ensures (slice s k hi == slice (swap s i j) k hi)) let swap_frame_hi #_ s i j k hi =
false
null
true
cut (equal (slice s k hi) (slice (swap s i j) k hi))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.l_and", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Properties.swap", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i'))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val swap_frame_hi : #a:Type -> s:seq a -> i:nat -> j:nat{i <= j} -> k:nat{j < k} -> hi:nat{k <= hi /\ hi <= length s} -> Lemma (ensures (slice s k hi == slice (swap s i j) k hi))
[]
FStar.Seq.Properties.swap_frame_hi
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j} -> k: Prims.nat{j < k} -> hi: Prims.nat{k <= hi /\ hi <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice s k hi == FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) k hi)
{ "end_col": 86, "end_line": 264, "start_col": 34, "start_line": 264 }
FStar.Pervasives.Lemma
val lemma_seq_frame_hi: #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat{i <= j} -> m:nat{j <= m} -> n:nat{m < n && n <= length s1} -> Lemma (requires (s1 == (splice s2 i s1 j))) (ensures ((slice s1 m n == slice s2 m n) /\ (index s1 m == index s2 m)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n))
val lemma_seq_frame_hi: #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat{i <= j} -> m:nat{j <= m} -> n:nat{m < n && n <= length s1} -> Lemma (requires (s1 == (splice s2 i s1 j))) (ensures ((slice s1 m n == slice s2 m n) /\ (index s1 m == index s2 m))) let lemma_seq_frame_hi #_ s1 s2 i j m n =
false
null
true
cut (equal (slice s1 m n) (slice s2 m n))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_frame_hi: #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat{i <= j} -> m:nat{j <= m} -> n:nat{m < n && n <= length s1} -> Lemma (requires (s1 == (splice s2 i s1 j))) (ensures ((slice s1 m n == slice s2 m n) /\ (index s1 m == index s2 m)))
[]
FStar.Seq.Properties.lemma_seq_frame_hi
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2} -> i: Prims.nat -> j: Prims.nat{i <= j} -> m: Prims.nat{j <= m} -> n: Prims.nat{m < n && n <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (requires s1 == FStar.Seq.Properties.splice s2 i s1 j) (ensures FStar.Seq.Base.slice s1 m n == FStar.Seq.Base.slice s2 m n /\ FStar.Seq.Base.index s1 m == FStar.Seq.Base.index s2 m)
{ "end_col": 43, "end_line": 278, "start_col": 2, "start_line": 278 }
FStar.Pervasives.Lemma
val mem_cons (#a:eqtype) (x:a) (s:seq a) : Lemma (ensures (forall y. mem y (cons x s) <==> mem y s \/ x=y))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mem_cons #_ x s = lemma_append_count (create 1 x) s
val mem_cons (#a:eqtype) (x:a) (s:seq a) : Lemma (ensures (forall y. mem y (cons x s) <==> mem y s \/ x=y)) let mem_cons #_ x s =
false
null
true
lemma_append_count (create 1 x) s
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "FStar.Seq.Properties.lemma_append_count", "FStar.Seq.Base.create", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = ()
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mem_cons (#a:eqtype) (x:a) (s:seq a) : Lemma (ensures (forall y. mem y (cons x s) <==> mem y s \/ x=y))
[]
FStar.Seq.Properties.mem_cons
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: a -> s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures forall (y: a). FStar.Seq.Properties.mem y (FStar.Seq.Properties.cons x s) <==> FStar.Seq.Properties.mem y s \/ x = y)
{ "end_col": 55, "end_line": 515, "start_col": 22, "start_line": 515 }
FStar.Pervasives.Lemma
val seq_of_list_tl (#a: Type) (l: list a { List.Tot.length l > 0 } ) : Lemma (requires True) (ensures (seq_of_list (List.Tot.tl l) == tail (seq_of_list l)))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_of_list_tl #_ l = lemma_seq_of_list_induction l
val seq_of_list_tl (#a: Type) (l: list a { List.Tot.length l > 0 } ) : Lemma (requires True) (ensures (seq_of_list (List.Tot.tl l) == tail (seq_of_list l))) let seq_of_list_tl #_ l =
false
null
true
lemma_seq_of_list_induction l
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.list", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "FStar.Seq.Properties.lemma_seq_of_list_induction", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_of_list_tl (#a: Type) (l: list a { List.Tot.length l > 0 } ) : Lemma (requires True) (ensures (seq_of_list (List.Tot.tl l) == tail (seq_of_list l)))
[]
FStar.Seq.Properties.seq_of_list_tl
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a {FStar.List.Tot.Base.length l > 0} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.seq_of_list (FStar.List.Tot.Base.tl l) == FStar.Seq.Properties.tail (FStar.Seq.Properties.seq_of_list l))
{ "end_col": 55, "end_line": 533, "start_col": 26, "start_line": 533 }
FStar.Pervasives.Lemma
val suffix_of_tail (#a: Type) (s: seq a {length s > 0}) : Lemma (requires True) (ensures ((tail s) `suffix_of` s)) [SMTPat ((tail s) `suffix_of` s)]
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let suffix_of_tail #_ s = cons_head_tail s
val suffix_of_tail (#a: Type) (s: seq a {length s > 0}) : Lemma (requires True) (ensures ((tail s) `suffix_of` s)) [SMTPat ((tail s) `suffix_of` s)] let suffix_of_tail #_ s =
false
null
true
cons_head_tail s
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Properties.cons_head_tail", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = ()
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val suffix_of_tail (#a: Type) (s: seq a {length s > 0}) : Lemma (requires True) (ensures ((tail s) `suffix_of` s)) [SMTPat ((tail s) `suffix_of` s)]
[]
FStar.Seq.Properties.suffix_of_tail
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s > 0} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.suffix_of (FStar.Seq.Properties.tail s) s) [SMTPat (FStar.Seq.Properties.suffix_of (FStar.Seq.Properties.tail s) s)]
{ "end_col": 42, "end_line": 505, "start_col": 26, "start_line": 505 }
FStar.Pervasives.Lemma
val lemma_slice_cons: #a:eqtype -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (ensures (forall x. mem x (slice s i j) <==> (x = index s i || mem x (slice s (i + 1) j))))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j)
val lemma_slice_cons: #a:eqtype -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (ensures (forall x. mem x (slice s i j) <==> (x = index s i || mem x (slice s (i + 1) j)))) let lemma_slice_cons #_ s i j =
false
null
true
cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_mem_append", "FStar.Seq.Base.create", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.unit", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slice_cons: #a:eqtype -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (ensures (forall x. mem x (slice s i j) <==> (x = index s i || mem x (slice s (i + 1) j))))
[]
FStar.Seq.Properties.lemma_slice_cons
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i < j && j <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.mem x (FStar.Seq.Base.slice s i j) <==> x = FStar.Seq.Base.index s i || FStar.Seq.Properties.mem x (FStar.Seq.Base.slice s (i + 1) j))
{ "end_col": 61, "end_line": 246, "start_col": 2, "start_line": 245 }
FStar.Pervasives.Lemma
val lemma_weaken_frame_left : #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j && j <= k && k <= length s1} -> Lemma (requires (s1 == splice s2 j s1 k)) (ensures (s1 == splice s2 i s1 k))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k))
val lemma_weaken_frame_left : #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j && j <= k && k <= length s1} -> Lemma (requires (s1 == splice s2 j s1 k)) (ensures (s1 == splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k =
false
null
true
cut (equal s1 (splice s2 i s1 k))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.splice", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_weaken_frame_left : #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j && j <= k && k <= length s1} -> Lemma (requires (s1 == splice s2 j s1 k)) (ensures (s1 == splice s2 i s1 k))
[]
FStar.Seq.Properties.lemma_weaken_frame_left
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2} -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat{i <= j && j <= k && k <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (requires s1 == FStar.Seq.Properties.splice s2 j s1 k) (ensures s1 == FStar.Seq.Properties.splice s2 i s1 k)
{ "end_col": 78, "end_line": 288, "start_col": 45, "start_line": 288 }
FStar.Pervasives.Lemma
val snoc_slice_index (#a: Type) (s: seq a) (i: nat) (j: nat {i <= j /\ j < length s} ) : Lemma (requires True) (ensures (snoc (slice s i j) (index s j) == slice s i (j + 1))) [SMTPat (snoc (slice s i j) (index s j))]
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1))
val snoc_slice_index (#a: Type) (s: seq a) (i: nat) (j: nat {i <= j /\ j < length s} ) : Lemma (requires True) (ensures (snoc (slice s i j) (index s j) == slice s i (j + 1))) [SMTPat (snoc (slice s i j) (index s j))] let snoc_slice_index #_ s i j =
false
null
true
lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Properties.snoc", "FStar.Seq.Base.slice", "FStar.Seq.Base.index", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val snoc_slice_index (#a: Type) (s: seq a) (i: nat) (j: nat {i <= j /\ j < length s} ) : Lemma (requires True) (ensures (snoc (slice s i j) (index s j) == slice s i (j + 1))) [SMTPat (snoc (slice s i j) (index s j))]
[]
FStar.Seq.Properties.snoc_slice_index
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.snoc (FStar.Seq.Base.slice s i j) (FStar.Seq.Base.index s j) == FStar.Seq.Base.slice s i (j + 1)) [SMTPat (FStar.Seq.Properties.snoc (FStar.Seq.Base.slice s i j) (FStar.Seq.Base.index s j))]
{ "end_col": 98, "end_line": 517, "start_col": 32, "start_line": 517 }
FStar.Pervasives.Lemma
val elim_of_list (#a: Type) (l: list a): Lemma (ensures ( let s = seq_of_list l in pointwise_and s l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_of_list #_ l = elim_of_list' 0 (seq_of_list l) l
val elim_of_list (#a: Type) (l: list a): Lemma (ensures ( let s = seq_of_list l in pointwise_and s l)) let elim_of_list #_ l =
false
null
true
elim_of_list' 0 (seq_of_list l) l
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Seq.Properties.elim_of_list'", "FStar.Seq.Properties.seq_of_list", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1) let seq_of_list_tl #_ l = lemma_seq_of_list_induction l let rec mem_seq_of_list #_ x l = lemma_seq_of_list_induction l; match l with | [] -> () | y :: q -> let _ : squash (head (seq_of_list l) == y) = () in let _ : squash (tail (seq_of_list l) == seq_of_list q) = seq_of_list_tl l in let _ : squash (mem x (seq_of_list l) == (x = y || mem x (seq_of_list q))) = lemma_mem_inversion (seq_of_list l) in mem_seq_of_list x q let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases ( List.Tot.length l)) = fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl let intro_of_list' = intro_of_list'' let intro_of_list #_ s l = intro_of_list' 0 s l let rec elim_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l)) (ensures ( explode_and i s l)) (decreases ( List.Tot.length l)) = fun #_ i s l -> match l with | [] -> () | hd :: tl -> lemma_seq_of_list_induction l; elim_of_list'' (i + 1) s tl let elim_of_list' = elim_of_list''
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_of_list (#a: Type) (l: list a): Lemma (ensures ( let s = seq_of_list l in pointwise_and s l))
[]
FStar.Seq.Properties.elim_of_list
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a -> FStar.Pervasives.Lemma (ensures (let s = FStar.Seq.Properties.seq_of_list l in FStar.Seq.Properties.pointwise_and s l))
{ "end_col": 57, "end_line": 592, "start_col": 24, "start_line": 592 }
FStar.Pervasives.Lemma
val lemma_append_count' (#a: eqtype) (lo hi: seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h))
val lemma_append_count' (#a: eqtype) (lo hi: seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) let rec lemma_append_count' (#a: eqtype) (lo hi: seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) =
false
null
true
if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "Prims.bool", "FStar.Seq.Properties.tail", "FStar.Seq.Properties.cons", "FStar.Seq.Properties.head", "Prims.unit", "FStar.Seq.Properties.lemma_append_count'", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.b2t", "FStar.Seq.Properties.count", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_append_count' (#a: eqtype) (lo hi: seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo))
[ "recursion" ]
FStar.Seq.Properties.lemma_append_count'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
lo: FStar.Seq.Base.seq a -> hi: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.count x (FStar.Seq.Base.append lo hi) = FStar.Seq.Properties.count x lo + FStar.Seq.Properties.count x hi) (decreases FStar.Seq.Base.length lo)
{ "end_col": 37, "end_line": 106, "start_col": 2, "start_line": 99 }
FStar.Pervasives.Lemma
val lemma_seq_list_bij' (#a: Type) (s: seq a) : Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) )
val lemma_seq_list_bij' (#a: Type) (s: seq a) : Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) let rec lemma_seq_list_bij': #a: Type -> s: seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) =
false
null
true
fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then (assert (equal s (seq_of_list l))) else (lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.seq_of_list", "Prims.bool", "FStar.Seq.Properties.seq_to_list", "Prims.unit", "FStar.Seq.Properties.lemma_seq_list_bij'", "FStar.Seq.Base.slice", "FStar.Seq.Properties.lemma_seq_of_list_induction", "Prims.list", "Prims.b2t", "Prims.nat", "FStar.List.Tot.Base.length" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_list_bij' (#a: Type) (s: seq a) : Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s))
[ "recursion" ]
FStar.Seq.Properties.lemma_seq_list_bij'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.seq_of_list (FStar.Seq.Properties.seq_to_list s) == s) (decreases FStar.Seq.Base.length s)
{ "end_col": 3, "end_line": 407, "start_col": 2, "start_line": 398 }
FStar.Pervasives.Lemma
val lemma_seq_of_list_permutation (#a:eqtype) (l:list a) :Lemma (forall x. List.Tot.Base.count x l == count x (seq_of_list l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_seq_of_list_permutation #a l = lemma_seq_of_list_induction l; match l with | [] -> () | _::tl -> lemma_seq_of_list_permutation tl
val lemma_seq_of_list_permutation (#a:eqtype) (l:list a) :Lemma (forall x. List.Tot.Base.count x l == count x (seq_of_list l)) let rec lemma_seq_of_list_permutation #a l =
false
null
true
lemma_seq_of_list_induction l; match l with | [] -> () | _ :: tl -> lemma_seq_of_list_permutation tl
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "Prims.list", "FStar.Seq.Properties.lemma_seq_of_list_permutation", "Prims.unit", "FStar.Seq.Properties.lemma_seq_of_list_induction" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1) let seq_of_list_tl #_ l = lemma_seq_of_list_induction l let rec mem_seq_of_list #_ x l = lemma_seq_of_list_induction l; match l with | [] -> () | y :: q -> let _ : squash (head (seq_of_list l) == y) = () in let _ : squash (tail (seq_of_list l) == seq_of_list q) = seq_of_list_tl l in let _ : squash (mem x (seq_of_list l) == (x = y || mem x (seq_of_list q))) = lemma_mem_inversion (seq_of_list l) in mem_seq_of_list x q let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases ( List.Tot.length l)) = fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl let intro_of_list' = intro_of_list'' let intro_of_list #_ s l = intro_of_list' 0 s l let rec elim_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l)) (ensures ( explode_and i s l)) (decreases ( List.Tot.length l)) = fun #_ i s l -> match l with | [] -> () | hd :: tl -> lemma_seq_of_list_induction l; elim_of_list'' (i + 1) s tl let elim_of_list' = elim_of_list'' let elim_of_list #_ l = elim_of_list' 0 (seq_of_list l) l let rec lemma_seq_to_list_permutation' (#a:eqtype) (s:seq a) :Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s)) = if length s > 0 then lemma_seq_to_list_permutation' (slice s 1 (length s)) let lemma_seq_to_list_permutation = lemma_seq_to_list_permutation' let rec lemma_seq_of_list_permutation #a l
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_of_list_permutation (#a:eqtype) (l:list a) :Lemma (forall x. List.Tot.Base.count x l == count x (seq_of_list l))
[ "recursion" ]
FStar.Seq.Properties.lemma_seq_of_list_permutation
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.List.Tot.Base.count x l == FStar.Seq.Properties.count x (FStar.Seq.Properties.seq_of_list l))
{ "end_col": 47, "end_line": 605, "start_col": 4, "start_line": 602 }
FStar.Pervasives.Lemma
val find_append_none' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f
val find_append_none' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) let rec find_append_none': #a: Type -> s1: seq a -> s2: seq a -> f: (a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) =
false
null
true
fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.Seq.Properties.find_append_none'", "FStar.Seq.Properties.tail", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_append_none' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1))
[ "recursion" ]
FStar.Seq.Properties.find_append_none'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires None? (FStar.Seq.Properties.find_l f s1)) (ensures FStar.Seq.Properties.find_l f (FStar.Seq.Base.append s1 s2) == FStar.Seq.Properties.find_l f s2) (decreases FStar.Seq.Base.length s1)
{ "end_col": 36, "end_line": 343, "start_col": 2, "start_line": 339 }
FStar.Pervasives.Lemma
val lemma_index_is_nth' (#a: Type) (s: seq a) (i: nat{i < length s}) : Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) )
val lemma_index_is_nth' (#a: Type) (s: seq a) (i: nat{i < length s}) : Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) let rec lemma_index_is_nth': #a: Type -> s: seq a -> i: nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) =
false
null
true
fun #_ s i -> if i = 0 then () else (lemma_index_is_nth' (slice s 1 (length s)) (i - 1))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Properties.lemma_index_is_nth'", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_index_is_nth' (#a: Type) (s: seq a) (i: nat{i < length s}) : Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i)
[ "recursion" ]
FStar.Seq.Properties.lemma_index_is_nth'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat{i < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.index (FStar.Seq.Properties.seq_to_list s) i == FStar.Seq.Base.index s i ) (decreases i)
{ "end_col": 3, "end_line": 433, "start_col": 2, "start_line": 429 }
FStar.Pervasives.Lemma
val cons_head_tail (#a: Type) (s: seq a {length s > 0}) : Lemma (requires True) (ensures (s == cons (head s) (tail s))) [SMTPat (cons (head s) (tail s))]
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1
val cons_head_tail (#a: Type) (s: seq a {length s > 0}) : Lemma (requires True) (ensures (s == cons (head s) (tail s))) [SMTPat (cons (head s) (tail s))] let cons_head_tail #_ s =
false
null
true
let _:squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_split", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.slice", "FStar.Seq.Base.create", "FStar.Seq.Base.index", "FStar.Seq.Base.lemma_eq_elim", "Prims.unit", "FStar.Seq.Base.lemma_index_create", "FStar.Seq.Base.lemma_index_slice" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cons_head_tail (#a: Type) (s: seq a {length s > 0}) : Lemma (requires True) (ensures (s == cons (head s) (tail s))) [SMTPat (cons (head s) (tail s))]
[]
FStar.Seq.Properties.cons_head_tail
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s > 0} -> FStar.Pervasives.Lemma (ensures s == FStar.Seq.Properties.cons (FStar.Seq.Properties.head s) (FStar.Seq.Properties.tail s)) [ SMTPat (FStar.Seq.Properties.cons (FStar.Seq.Properties.head s) (FStar.Seq.Properties.tail s)) ]
{ "end_col": 17, "end_line": 501, "start_col": 25, "start_line": 495 }
FStar.Pervasives.Lemma
val lemma_seq_of_list_sorted (#a:Type) (f:a -> a -> Tot bool) (l:list a) :Lemma (requires (List.Tot.Properties.sorted f l)) (ensures (sorted f (seq_of_list l)))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_seq_of_list_sorted #a f l = lemma_seq_of_list_induction l; if List.Tot.length l > 1 then begin lemma_seq_of_list_induction (List.Tot.Base.tl l); lemma_seq_of_list_sorted f (List.Tot.Base.tl l) end
val lemma_seq_of_list_sorted (#a:Type) (f:a -> a -> Tot bool) (l:list a) :Lemma (requires (List.Tot.Properties.sorted f l)) (ensures (sorted f (seq_of_list l))) let rec lemma_seq_of_list_sorted #a f l =
false
null
true
lemma_seq_of_list_induction l; if List.Tot.length l > 1 then (lemma_seq_of_list_induction (List.Tot.Base.tl l); lemma_seq_of_list_sorted f (List.Tot.Base.tl l))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.bool", "Prims.list", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "FStar.Seq.Properties.lemma_seq_of_list_sorted", "FStar.List.Tot.Base.tl", "Prims.unit", "FStar.Seq.Properties.lemma_seq_of_list_induction" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1) let seq_of_list_tl #_ l = lemma_seq_of_list_induction l let rec mem_seq_of_list #_ x l = lemma_seq_of_list_induction l; match l with | [] -> () | y :: q -> let _ : squash (head (seq_of_list l) == y) = () in let _ : squash (tail (seq_of_list l) == seq_of_list q) = seq_of_list_tl l in let _ : squash (mem x (seq_of_list l) == (x = y || mem x (seq_of_list q))) = lemma_mem_inversion (seq_of_list l) in mem_seq_of_list x q let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases ( List.Tot.length l)) = fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl let intro_of_list' = intro_of_list'' let intro_of_list #_ s l = intro_of_list' 0 s l let rec elim_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l)) (ensures ( explode_and i s l)) (decreases ( List.Tot.length l)) = fun #_ i s l -> match l with | [] -> () | hd :: tl -> lemma_seq_of_list_induction l; elim_of_list'' (i + 1) s tl let elim_of_list' = elim_of_list'' let elim_of_list #_ l = elim_of_list' 0 (seq_of_list l) l let rec lemma_seq_to_list_permutation' (#a:eqtype) (s:seq a) :Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s)) = if length s > 0 then lemma_seq_to_list_permutation' (slice s 1 (length s)) let lemma_seq_to_list_permutation = lemma_seq_to_list_permutation' let rec lemma_seq_of_list_permutation #a l = lemma_seq_of_list_induction l; match l with | [] -> () | _::tl -> lemma_seq_of_list_permutation tl let rec lemma_seq_of_list_sorted #a f l
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_of_list_sorted (#a:Type) (f:a -> a -> Tot bool) (l:list a) :Lemma (requires (List.Tot.Properties.sorted f l)) (ensures (sorted f (seq_of_list l)))
[ "recursion" ]
FStar.Seq.Properties.lemma_seq_of_list_sorted
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Prims.bool) -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Properties.sorted f l) (ensures FStar.Seq.Properties.sorted f (FStar.Seq.Properties.seq_of_list l))
{ "end_col": 7, "end_line": 613, "start_col": 4, "start_line": 609 }
FStar.Pervasives.Lemma
val intro_of_list'' (#a: Type) (i: nat) (s: seq a) (l: list a) : Lemma (requires (List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures (equal (seq_of_list l) (slice s i (length s)))) (decreases (List.Tot.length l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases ( List.Tot.length l)) = fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl
val intro_of_list'' (#a: Type) (i: nat) (s: seq a) (l: list a) : Lemma (requires (List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures (equal (seq_of_list l) (slice s i (length s)))) (decreases (List.Tot.length l)) let rec intro_of_list'': #a: Type -> i: nat -> s: seq a -> l: list a -> Lemma (requires (List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures (equal (seq_of_list l) (slice s i (length s)))) (decreases (List.Tot.length l)) =
false
null
true
fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.nat", "FStar.Seq.Base.seq", "Prims.list", "FStar.Seq.Properties.intro_of_list''", "Prims.op_Addition", "Prims.unit", "FStar.Seq.Properties.lemma_seq_of_list_induction" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1) let seq_of_list_tl #_ l = lemma_seq_of_list_induction l let rec mem_seq_of_list #_ x l = lemma_seq_of_list_induction l; match l with | [] -> () | y :: q -> let _ : squash (head (seq_of_list l) == y) = () in let _ : squash (tail (seq_of_list l) == seq_of_list q) = seq_of_list_tl l in let _ : squash (mem x (seq_of_list l) == (x = y || mem x (seq_of_list q))) = lemma_mem_inversion (seq_of_list l) in mem_seq_of_list x q let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases (
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_of_list'' (#a: Type) (i: nat) (s: seq a) (l: list a) : Lemma (requires (List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures (equal (seq_of_list l) (slice s i (length s)))) (decreases (List.Tot.length l))
[ "recursion" ]
FStar.Seq.Properties.intro_of_list''
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
i: Prims.nat -> s: FStar.Seq.Base.seq a -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length l + i = FStar.Seq.Base.length s /\ i <= FStar.Seq.Base.length s /\ FStar.Seq.Properties.explode_and i s l) (ensures FStar.Seq.Base.equal (FStar.Seq.Properties.seq_of_list l) (FStar.Seq.Base.slice s i (FStar.Seq.Base.length s))) (decreases FStar.List.Tot.Base.length l)
{ "end_col": 44, "end_line": 564, "start_col": 2, "start_line": 560 }
FStar.Pervasives.Lemma
val lemma_weaken_perm_right: #a:eqtype -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j /\ j <= k /\ k <= length s1} -> Lemma (requires (s1 == splice s2 i s1 j /\ permutation a (slice s2 i j) (slice s1 i j))) (ensures (permutation a (slice s2 i k) (slice s1 i k)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k)
val lemma_weaken_perm_right: #a:eqtype -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j /\ j <= k /\ k <= length s1} -> Lemma (requires (s1 == splice s2 i s1 j /\ permutation a (slice s2 i j) (slice s1 i j))) (ensures (permutation a (slice s2 i k) (slice s1 i k))) let lemma_weaken_perm_right #_ s1 s2 i j k =
false
null
true
cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_and", "Prims.op_LessThanOrEqual", "FStar.Seq.Properties.lemma_append_count", "FStar.Seq.Base.slice", "Prims.unit", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_weaken_perm_right: #a:eqtype -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j /\ j <= k /\ k <= length s1} -> Lemma (requires (s1 == splice s2 i s1 j /\ permutation a (slice s2 i j) (slice s1 i j))) (ensures (permutation a (slice s2 i k) (slice s1 i k)))
[]
FStar.Seq.Properties.lemma_weaken_perm_right
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2} -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat{i <= j /\ j <= k /\ k <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (requires s1 == FStar.Seq.Properties.splice s2 i s1 j /\ FStar.Seq.Properties.permutation a (FStar.Seq.Base.slice s2 i j) (FStar.Seq.Base.slice s1 i j)) (ensures FStar.Seq.Properties.permutation a (FStar.Seq.Base.slice s2 i k) (FStar.Seq.Base.slice s1 i k))
{ "end_col": 50, "end_line": 306, "start_col": 2, "start_line": 301 }
FStar.Pervasives.Lemma
val sorted_feq (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sorted_feq = sorted_feq'
val sorted_feq (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) let sorted_feq =
false
null
true
sorted_feq'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.sorted_feq'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sorted_feq (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s))
[]
FStar.Seq.Properties.sorted_feq
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Prims.bool) -> g: (_: a -> _: a -> Prims.bool) -> s: FStar.Seq.Base.seq a {forall (x: a) (y: a). f x y == g x y} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.sorted f s <==> FStar.Seq.Properties.sorted g s)
{ "end_col": 28, "end_line": 92, "start_col": 17, "start_line": 92 }
FStar.Pervasives.Lemma
val lemma_append_inj_r: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a{length s1 = length t1 /\ length s2 = length t2 /\ equal (append s1 s2) (append t1 t2)} -> i:nat{i < length s2} -> Lemma (ensures (index s2 i == index t2 i))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1)))
val lemma_append_inj_r: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a{length s1 = length t1 /\ length s2 = length t2 /\ equal (append s1 s2) (append t1 t2)} -> i:nat{i < length s2} -> Lemma (ensures (index s2 i == index t2 i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i =
false
null
true
assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1)))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_append_inj_r: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a{length s1 = length t1 /\ length s2 = length t2 /\ equal (append s1 s2) (append t1 t2)} -> i:nat{i < length s2} -> Lemma (ensures (index s2 i == index t2 i))
[]
FStar.Seq.Properties.lemma_append_inj_r
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> t1: FStar.Seq.Base.seq a -> t2: FStar.Seq.Base.seq a { FStar.Seq.Base.length s1 = FStar.Seq.Base.length t1 /\ FStar.Seq.Base.length s2 = FStar.Seq.Base.length t2 /\ FStar.Seq.Base.equal (FStar.Seq.Base.append s1 s2) (FStar.Seq.Base.append t1 t2) } -> i: Prims.nat{i < FStar.Seq.Base.length s2} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index s2 i == FStar.Seq.Base.index t2 i)
{ "end_col": 63, "end_line": 28, "start_col": 2, "start_line": 27 }
FStar.Pervasives.Lemma
val lemma_append_count: #a:eqtype -> lo:seq a -> hi:seq a -> Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_append_count = lemma_append_count'
val lemma_append_count: #a:eqtype -> lo:seq a -> hi:seq a -> Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) let lemma_append_count =
false
null
true
lemma_append_count'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.lemma_append_count'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_append_count: #a:eqtype -> lo:seq a -> hi:seq a -> Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi)))
[]
FStar.Seq.Properties.lemma_append_count
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
lo: FStar.Seq.Base.seq a -> hi: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.count x (FStar.Seq.Base.append lo hi) = FStar.Seq.Properties.count x lo + FStar.Seq.Properties.count x hi)
{ "end_col": 44, "end_line": 108, "start_col": 25, "start_line": 108 }
FStar.Pervasives.Lemma
val lemma_append_len_disj: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a {(length s1 = length t1 \/ length s2 = length t2) /\ (equal (append s1 s2) (append t1 t2))} -> Lemma (ensures (length s1 = length t1 /\ length s2 = length t2))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2)
val lemma_append_len_disj: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a {(length s1 = length t1 \/ length s2 = length t2) /\ (equal (append s1 s2) (append t1 t2))} -> Lemma (ensures (length s1 = length t1 /\ length s2 = length t2)) let lemma_append_len_disj #_ s1 s2 t1 t2 =
false
null
true
cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.l_and", "Prims.l_or", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "Prims.cut", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_append_len_disj: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a {(length s1 = length t1 \/ length s2 = length t2) /\ (equal (append s1 s2) (append t1 t2))} -> Lemma (ensures (length s1 = length t1 /\ length s2 = length t2))
[]
FStar.Seq.Properties.lemma_append_len_disj
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> t1: FStar.Seq.Base.seq a -> t2: FStar.Seq.Base.seq a { (FStar.Seq.Base.length s1 = FStar.Seq.Base.length t1 \/ FStar.Seq.Base.length s2 = FStar.Seq.Base.length t2) /\ FStar.Seq.Base.equal (FStar.Seq.Base.append s1 s2) (FStar.Seq.Base.append t1 t2) } -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length s1 = FStar.Seq.Base.length t1 /\ FStar.Seq.Base.length s2 = FStar.Seq.Base.length t2)
{ "end_col": 54, "end_line": 32, "start_col": 2, "start_line": 31 }
FStar.Pervasives.Lemma
val lemma_append_inj: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a {length s1 = length t1 \/ length s2 = length t2} -> Lemma (requires (equal (append s1 s2) (append t1 t2))) (ensures (equal s1 t1 /\ equal s2 t2))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2)
val lemma_append_inj: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a {length s1 = length t1 \/ length s2 = length t2} -> Lemma (requires (equal (append s1 s2) (append t1 t2))) (ensures (equal s1 t1 /\ equal s2 t2)) let lemma_append_inj #_ s1 s2 t1 t2 =
false
null
true
lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i: nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i: nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.l_or", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "FStar.Classical.forall_intro", "Prims.op_LessThan", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Properties.lemma_append_inj_r", "Prims.unit", "FStar.Seq.Properties.lemma_append_inj_l", "FStar.Seq.Properties.lemma_append_len_disj" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_append_inj: #a:Type -> s1:seq a -> s2:seq a -> t1:seq a -> t2:seq a {length s1 = length t1 \/ length s2 = length t2} -> Lemma (requires (equal (append s1 s2) (append t1 t2))) (ensures (equal s1 t1 /\ equal s2 t2))
[]
FStar.Seq.Properties.lemma_append_inj
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> t1: FStar.Seq.Base.seq a -> t2: FStar.Seq.Base.seq a { FStar.Seq.Base.length s1 = FStar.Seq.Base.length t1 \/ FStar.Seq.Base.length s2 = FStar.Seq.Base.length t2 } -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Seq.Base.append s1 s2) (FStar.Seq.Base.append t1 t2)) (ensures FStar.Seq.Base.equal s1 t1 /\ FStar.Seq.Base.equal s2 t2)
{ "end_col": 124, "end_line": 37, "start_col": 2, "start_line": 35 }
FStar.Pervasives.Lemma
val perm_len (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let perm_len = perm_len'
val perm_len (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) let perm_len =
false
null
true
perm_len'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.perm_len'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val perm_len (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2))
[]
FStar.Seq.Properties.perm_len
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.permutation a s1 s2) (ensures FStar.Seq.Base.length s1 == FStar.Seq.Base.length s2)
{ "end_col": 24, "end_line": 238, "start_col": 15, "start_line": 238 }
FStar.Pervasives.Lemma
val seq_mem_k: #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) [SMTPat (mem (Seq.index s n) s)]
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_mem_k = seq_mem_k'
val seq_mem_k: #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) [SMTPat (mem (Seq.index s n) s)] let seq_mem_k =
false
null
true
seq_mem_k'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.seq_mem_k'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_mem_k: #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) [SMTPat (mem (Seq.index s n) s)]
[]
FStar.Seq.Properties.seq_mem_k
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> n: Prims.nat{n < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.mem (FStar.Seq.Base.index s n) s) [SMTPat (FStar.Seq.Properties.mem (FStar.Seq.Base.index s n) s)]
{ "end_col": 26, "end_line": 383, "start_col": 16, "start_line": 383 }
FStar.Pervasives.Lemma
val lemma_seq_list_bij: #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_seq_list_bij = lemma_seq_list_bij'
val lemma_seq_list_bij: #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) let lemma_seq_list_bij =
false
null
true
lemma_seq_list_bij'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.lemma_seq_list_bij'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) )
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_list_bij: #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s))
[]
FStar.Seq.Properties.lemma_seq_list_bij
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.seq_of_list (FStar.Seq.Properties.seq_to_list s) == s)
{ "end_col": 44, "end_line": 409, "start_col": 25, "start_line": 409 }
Prims.Tot
val contains (#a:Type) (s:seq a) (x:a) : Tot Type0
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x
val contains (#a:Type) (s:seq a) (x:a) : Tot Type0 let contains #a s x =
false
null
false
exists (k: nat). k < Seq.length s /\ Seq.index s k == x
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "total" ]
[ "FStar.Seq.Base.seq", "Prims.l_Exists", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "FStar.Seq.Base.index" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val contains (#a:Type) (s:seq a) (x:a) : Tot Type0
[]
FStar.Seq.Properties.contains
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> x: a -> Type0
{ "end_col": 56, "end_line": 438, "start_col": 2, "start_line": 438 }
FStar.Pervasives.Lemma
val lemma_tail_append: #a:Type -> s1:seq a{length s1 > 0} -> s2:seq a -> Lemma (tail (append s1 s2) == append (tail s1) s2)
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2))
val lemma_tail_append: #a:Type -> s1:seq a{length s1 > 0} -> s2:seq a -> Lemma (tail (append s1 s2) == append (tail s1) s2) let lemma_tail_append #_ s1 s2 =
false
null
true
cut (equal (tail (append s1 s2)) (append (tail s1) s2))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.tail", "FStar.Seq.Base.append", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = ()
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_tail_append: #a:Type -> s1:seq a{length s1 > 0} -> s2:seq a -> Lemma (tail (append s1 s2) == append (tail s1) s2)
[]
FStar.Seq.Properties.lemma_tail_append
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 > 0} -> s2: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.tail (FStar.Seq.Base.append s1 s2) == FStar.Seq.Base.append (FStar.Seq.Properties.tail s1) s2)
{ "end_col": 88, "end_line": 41, "start_col": 33, "start_line": 41 }
FStar.Pervasives.Lemma
val mem_index' (#a: eqtype) (x: a) (s: seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s)
val mem_index' (#a: eqtype) (x: a) (s: seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) let rec mem_index' (#a: eqtype) (x: a) (s: seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) =
false
null
true
if length s = 0 then () else if head s = x then () else mem_index' x (tail s)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Seq.Properties.head", "FStar.Seq.Properties.mem_index'", "FStar.Seq.Properties.tail", "Prims.unit", "Prims.b2t", "FStar.Seq.Properties.mem", "Prims.squash", "Prims.l_Exists", "Prims.nat", "Prims.op_LessThan", "Prims.eq2", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mem_index' (#a: eqtype) (x: a) (s: seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s))
[ "recursion" ]
FStar.Seq.Properties.mem_index'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: a -> s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.mem x s) (ensures exists (i: Prims.nat{i < FStar.Seq.Base.length s}). FStar.Seq.Base.index s i == x) (decreases FStar.Seq.Base.length s)
{ "end_col": 32, "end_line": 58, "start_col": 6, "start_line": 56 }
FStar.Pervasives.Lemma
val find_l_none_no_index (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let find_l_none_no_index = find_l_none_no_index'
val find_l_none_no_index (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) let find_l_none_no_index =
false
null
true
find_l_none_no_index'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Properties.find_l_none_no_index'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_l_none_no_index (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s))
[]
FStar.Seq.Properties.find_l_none_no_index
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires None? (FStar.Seq.Properties.find_l f s)) (ensures forall (i: Prims.nat{i < FStar.Seq.Base.length s}). Prims.op_Negation (f (FStar.Seq.Base.index s i))) (decreases FStar.Seq.Base.length s)
{ "end_col": 48, "end_line": 493, "start_col": 27, "start_line": 493 }
FStar.Pervasives.Lemma
val lemma_slice_first_in_append: #a:Type -> s1:seq a -> s2:seq a -> i:nat{i <= length s1} -> Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slice_first_in_append = lemma_slice_first_in_append'
val lemma_slice_first_in_append: #a:Type -> s1:seq a -> s2:seq a -> i:nat{i <= length s1} -> Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) let lemma_slice_first_in_append =
false
null
true
lemma_slice_first_in_append'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.lemma_slice_first_in_append'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slice_first_in_append: #a:Type -> s1:seq a -> s2:seq a -> i:nat{i <= length s1} -> Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2)))
[]
FStar.Seq.Properties.lemma_slice_first_in_append
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat{i <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Seq.Base.slice (FStar.Seq.Base.append s1 s2) i (FStar.Seq.Base.length (FStar.Seq.Base.append s1 s2))) (FStar.Seq.Base.append (FStar.Seq.Base.slice s1 i (FStar.Seq.Base.length s1)) s2))
{ "end_col": 62, "end_line": 72, "start_col": 34, "start_line": 72 }
FStar.Pervasives.Lemma
val sorted_feq' (#a: Type) (f g: (a -> a -> Tot bool)) (s: seq a {forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s)
val sorted_feq' (#a: Type) (f g: (a -> a -> Tot bool)) (s: seq a {forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) let rec sorted_feq' (#a: Type) (f g: (a -> a -> Tot bool)) (s: seq a {forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) =
false
null
true
if length s <= 1 then () else sorted_feq' f g (tail s)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.bool", "FStar.Seq.Base.seq", "Prims.l_Forall", "Prims.eq2", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Properties.sorted_feq'", "FStar.Seq.Properties.tail", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.b2t", "FStar.Seq.Properties.sorted", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sorted_feq' (#a: Type) (f g: (a -> a -> Tot bool)) (s: seq a {forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s))
[ "recursion" ]
FStar.Seq.Properties.sorted_feq'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Prims.bool) -> g: (_: a -> _: a -> Prims.bool) -> s: FStar.Seq.Base.seq a {forall (x: a) (y: a). f x y == g x y} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.sorted f s <==> FStar.Seq.Properties.sorted g s) (decreases FStar.Seq.Base.length s)
{ "end_col": 34, "end_line": 90, "start_col": 5, "start_line": 89 }
FStar.Pervasives.Lemma
val lemma_append_count_aux: #a:eqtype -> x:a -> lo:seq a -> hi:seq a -> Lemma (requires True) (ensures (count x (append lo hi) = (count x lo + count x hi)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi
val lemma_append_count_aux: #a:eqtype -> x:a -> lo:seq a -> hi:seq a -> Lemma (requires True) (ensures (count x (append lo hi) = (count x lo + count x hi))) let lemma_append_count_aux #_ _ lo hi =
false
null
true
lemma_append_count lo hi
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "FStar.Seq.Properties.lemma_append_count", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_append_count_aux: #a:eqtype -> x:a -> lo:seq a -> hi:seq a -> Lemma (requires True) (ensures (count x (append lo hi) = (count x lo + count x hi)))
[]
FStar.Seq.Properties.lemma_append_count_aux
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: a -> lo: FStar.Seq.Base.seq a -> hi: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.count x (FStar.Seq.Base.append lo hi) = FStar.Seq.Properties.count x lo + FStar.Seq.Properties.count x hi)
{ "end_col": 64, "end_line": 110, "start_col": 40, "start_line": 110 }
FStar.Pervasives.Lemma
val lemma_slice_first_in_append' (#a: Type) (s1 s2: seq a) (i: nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2) )) (decreases (length s1))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1)
val lemma_slice_first_in_append' (#a: Type) (s1 s2: seq a) (i: nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2) )) (decreases (length s1)) let rec lemma_slice_first_in_append' (#a: Type) (s1 s2: seq a) (i: nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2) )) (decreases (length s1)) =
false
null
true
if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Properties.lemma_slice_first_in_append'", "FStar.Seq.Properties.tail", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slice_first_in_append' (#a: Type) (s1 s2: seq a) (i: nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2) )) (decreases (length s1))
[ "recursion" ]
FStar.Seq.Properties.lemma_slice_first_in_append'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat{i <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Seq.Base.slice (FStar.Seq.Base.append s1 s2) i (FStar.Seq.Base.length (FStar.Seq.Base.append s1 s2))) (FStar.Seq.Base.append (FStar.Seq.Base.slice s1 i (FStar.Seq.Base.length s1)) s2)) (decreases FStar.Seq.Base.length s1)
{ "end_col": 56, "end_line": 70, "start_col": 2, "start_line": 69 }
FStar.Pervasives.Lemma
val lemma_count_slice: #a:eqtype -> s:seq a -> i:nat{i<=length s} -> Lemma (requires True) (ensures (forall x. count x s = count x (slice s 0 i) + count x (slice s i (length s))))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s))
val lemma_count_slice: #a:eqtype -> s:seq a -> i:nat{i<=length s} -> Lemma (requires True) (ensures (forall x. count x s = count x (slice s 0 i) + count x (slice s i (length s)))) let lemma_count_slice #_ s i =
false
null
true
cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_append_count", "FStar.Seq.Base.slice", "Prims.unit", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_count_slice: #a:eqtype -> s:seq a -> i:nat{i<=length s} -> Lemma (requires True) (ensures (forall x. count x s = count x (slice s 0 i) + count x (slice s i (length s))))
[]
FStar.Seq.Properties.lemma_count_slice
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat{i <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.count x s = FStar.Seq.Properties.count x (FStar.Seq.Base.slice s 0 i) + FStar.Seq.Properties.count x (FStar.Seq.Base.slice s i (FStar.Seq.Base.length s)))
{ "end_col": 57, "end_line": 129, "start_col": 2, "start_line": 128 }
FStar.Pervasives.Lemma
val cons_perm: #a:eqtype -> tl:seq a -> s:seq a{length s > 0} -> Lemma (requires (permutation a tl (tail s))) (ensures (permutation a (cons (head s) tl) s))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cons_perm #_ tl s = lemma_tl (head s) tl
val cons_perm: #a:eqtype -> tl:seq a -> s:seq a{length s > 0} -> Lemma (requires (permutation a tl (tail s))) (ensures (permutation a (cons (head s) tl) s)) let cons_perm #_ tl s =
false
null
true
lemma_tl (head s) tl
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_tl", "FStar.Seq.Properties.head", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cons_perm: #a:eqtype -> tl:seq a -> s:seq a{length s > 0} -> Lemma (requires (permutation a tl (tail s))) (ensures (permutation a (cons (head s) tl) s))
[]
FStar.Seq.Properties.cons_perm
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
tl: FStar.Seq.Base.seq a -> s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s > 0} -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.permutation a tl (FStar.Seq.Properties.tail s)) (ensures FStar.Seq.Properties.permutation a (FStar.Seq.Properties.cons (FStar.Seq.Properties.head s) tl) s)
{ "end_col": 44, "end_line": 240, "start_col": 24, "start_line": 240 }
FStar.Pervasives.Lemma
val lemma_swap_permutes (#a:eqtype) (s:seq a) (i:nat{i<length s}) (j:nat{i <= j && j<length s}) : Lemma (permutation a s (swap s i j))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j)
val lemma_swap_permutes (#a:eqtype) (s:seq a) (i:nat{i<length s}) (j:nat{i <= j && j<length s}) : Lemma (permutation a s (swap s i j)) let lemma_swap_permutes #a s i j =
false
null
true
FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Classical.forall_intro", "Prims.op_Equality", "FStar.Seq.Properties.count", "FStar.Seq.Properties.swap", "FStar.Seq.Properties.lemma_swap_permutes_aux", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' )
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_swap_permutes (#a:eqtype) (s:seq a) (i:nat{i<length s}) (j:nat{i <= j && j<length s}) : Lemma (permutation a s (swap s i j))
[]
FStar.Seq.Properties.lemma_swap_permutes
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat{i < FStar.Seq.Base.length s} -> j: Prims.nat{i <= j && j < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.permutation a s (FStar.Seq.Properties.swap s i j))
{ "end_col": 51, "end_line": 202, "start_col": 4, "start_line": 199 }
FStar.Pervasives.Lemma
val swap_frame_lo' : #a:Type -> s:seq a -> lo:nat -> i':nat {lo <= i'} -> i:nat{i' <= i} -> j:nat{i <= j && j < length s} -> Lemma (ensures (slice s lo i' == slice (swap s i j) lo i'))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i'))
val swap_frame_lo' : #a:Type -> s:seq a -> lo:nat -> i':nat {lo <= i'} -> i:nat{i' <= i} -> j:nat{i <= j && j < length s} -> Lemma (ensures (slice s lo i' == slice (swap s i j) lo i')) let swap_frame_lo' #_ s lo i' i j =
false
null
true
cut (equal (slice s lo i') (slice (swap s i j) lo i'))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Properties.swap", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val swap_frame_lo' : #a:Type -> s:seq a -> lo:nat -> i':nat {lo <= i'} -> i:nat{i' <= i} -> j:nat{i <= j && j < length s} -> Lemma (ensures (slice s lo i' == slice (swap s i j) lo i'))
[]
FStar.Seq.Properties.swap_frame_lo'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> lo: Prims.nat -> i': Prims.nat{lo <= i'} -> i: Prims.nat{i' <= i} -> j: Prims.nat{i <= j && j < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice s lo i' == FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) lo i')
{ "end_col": 90, "end_line": 262, "start_col": 36, "start_line": 262 }
FStar.Pervasives.Lemma
val splice_refl : #a:Type -> s:seq a -> i:nat -> j:nat{i <= j && j <= length s} -> Lemma (ensures (s == splice s i s j))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let splice_refl #_ s i j = cut (equal s (splice s i s j))
val splice_refl : #a:Type -> s:seq a -> i:nat -> j:nat{i <= j && j <= length s} -> Lemma (ensures (s == splice s i s j)) let splice_refl #_ s i j =
false
null
true
cut (equal s (splice s i s j))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.splice", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start)
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val splice_refl : #a:Type -> s:seq a -> i:nat -> j:nat{i <= j && j <= length s} -> Lemma (ensures (s == splice s i s j))
[]
FStar.Seq.Properties.splice_refl
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j && j <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures s == FStar.Seq.Properties.splice s i s j)
{ "end_col": 57, "end_line": 273, "start_col": 27, "start_line": 273 }
FStar.Pervasives.Lemma
val lemma_swap_permutes_slice : #a:eqtype -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (permutation a (slice s start len) (slice (swap s i j) start len)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start)
val lemma_swap_permutes_slice : #a:eqtype -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (permutation a (slice s start len) (slice (swap s i j) start len))) let lemma_swap_permutes_slice #_ s start i j len =
false
null
true
lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_swap_permutes", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.unit", "FStar.Seq.Properties.lemma_swap_slice_commute" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_swap_permutes_slice : #a:eqtype -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (permutation a (slice s start len) (slice (swap s i j) start len)))
[]
FStar.Seq.Properties.lemma_swap_permutes_slice
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> start: Prims.nat -> i: Prims.nat{start <= i} -> j: Prims.nat{i <= j} -> len: Prims.nat{j < len && len <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.permutation a (FStar.Seq.Base.slice s start len) (FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) start len))
{ "end_col": 65, "end_line": 271, "start_col": 2, "start_line": 270 }
FStar.Pervasives.Lemma
val append_permutations: #a:eqtype -> s1:seq a -> s2:seq a -> s1':seq a -> s2':seq a -> Lemma (requires permutation a s1 s1' /\ permutation a s2 s2') (ensures permutation a (append s1 s2) (append s1' s2'))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' )
val append_permutations: #a:eqtype -> s1:seq a -> s2:seq a -> s1':seq a -> s2':seq a -> Lemma (requires permutation a s1 s1' /\ permutation a s2 s2') (ensures permutation a (append s1 s2) (append s1' s2')) let append_permutations #a s1 s2 s1' s2' =
false
null
true
(lemma_append_count s1 s2; lemma_append_count s1' s2')
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "FStar.Seq.Properties.lemma_append_count", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_permutations: #a:eqtype -> s1:seq a -> s2:seq a -> s1':seq a -> s2':seq a -> Lemma (requires permutation a s1 s1' /\ permutation a s2 s2') (ensures permutation a (append s1 s2) (append s1' s2'))
[]
FStar.Seq.Properties.append_permutations
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> s1': FStar.Seq.Base.seq a -> s2': FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.permutation a s1 s1' /\ FStar.Seq.Properties.permutation a s2 s2') (ensures FStar.Seq.Properties.permutation a (FStar.Seq.Base.append s1 s2) (FStar.Seq.Base.append s1' s2'))
{ "end_col": 3, "end_line": 196, "start_col": 2, "start_line": 193 }
FStar.Pervasives.Lemma
val lemma_tail_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (requires True) (ensures (tail (slice s i j) == slice s (i + 1) j)) [SMTPat (tail (slice s i j))]
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j))
val lemma_tail_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (requires True) (ensures (tail (slice s i j) == slice s (i + 1) j)) [SMTPat (tail (slice s i j))] let lemma_tail_slice #_ s i j =
false
null
true
cut (equal (tail (slice s i j)) (slice s (i + 1) j))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.tail", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_tail_slice: #a:Type -> s:seq a -> i:nat -> j:nat{i < j && j <= length s} -> Lemma (requires True) (ensures (tail (slice s i j) == slice s (i + 1) j)) [SMTPat (tail (slice s i j))]
[]
FStar.Seq.Properties.lemma_tail_slice
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i < j && j <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.tail (FStar.Seq.Base.slice s i j) == FStar.Seq.Base.slice s (i + 1) j) [SMTPat (FStar.Seq.Properties.tail (FStar.Seq.Base.slice s i j))]
{ "end_col": 54, "end_line": 284, "start_col": 2, "start_line": 284 }
FStar.Pervasives.Lemma
val find_append_none_s2: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let find_append_none_s2 = find_append_none_s2'
val find_append_none_s2: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) let find_append_none_s2 =
false
null
true
find_append_none_s2'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Properties.find_append_none_s2'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_append_none_s2: #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1))
[]
FStar.Seq.Properties.find_append_none_s2
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires None? (FStar.Seq.Properties.find_l f s2)) (ensures FStar.Seq.Properties.find_l f (FStar.Seq.Base.append s1 s2) == FStar.Seq.Properties.find_l f s1)
{ "end_col": 46, "end_line": 359, "start_col": 26, "start_line": 359 }
FStar.Pervasives.Lemma
val lemma_ordering_lo_snoc: #a:eqtype -> f:tot_ord a -> s:seq a -> i:nat -> j:nat{i <= j && j < length s} -> pv:a -> Lemma (requires ((forall y. mem y (slice s i j) ==> f y pv) /\ f (index s j) pv)) (ensures ((forall y. mem y (slice s i (j + 1)) ==> f y pv)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j))
val lemma_ordering_lo_snoc: #a:eqtype -> f:tot_ord a -> s:seq a -> i:nat -> j:nat{i <= j && j < length s} -> pv:a -> Lemma (requires ((forall y. mem y (slice s i j) ==> f y pv) /\ f (index s j) pv)) (ensures ((forall y. mem y (slice s i (j + 1)) ==> f y pv))) let lemma_ordering_lo_snoc #_ f s i j pv =
false
null
true
cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Properties.tot_ord", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_mem_append", "FStar.Seq.Base.slice", "FStar.Seq.Base.create", "FStar.Seq.Base.index", "Prims.unit", "Prims.cut", "FStar.Seq.Base.equal", "Prims.op_Addition", "FStar.Seq.Base.append" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ordering_lo_snoc: #a:eqtype -> f:tot_ord a -> s:seq a -> i:nat -> j:nat{i <= j && j < length s} -> pv:a -> Lemma (requires ((forall y. mem y (slice s i j) ==> f y pv) /\ f (index s j) pv)) (ensures ((forall y. mem y (slice s i (j + 1)) ==> f y pv)))
[]
FStar.Seq.Properties.lemma_ordering_lo_snoc
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: FStar.Seq.Properties.tot_ord a -> s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j && j < FStar.Seq.Base.length s} -> pv: a -> FStar.Pervasives.Lemma (requires (forall (y: a). FStar.Seq.Properties.mem y (FStar.Seq.Base.slice s i j) ==> f y pv) /\ f (FStar.Seq.Base.index s j) pv) (ensures forall (y: a). FStar.Seq.Properties.mem y (FStar.Seq.Base.slice s i (j + 1)) ==> f y pv)
{ "end_col": 55, "end_line": 254, "start_col": 2, "start_line": 253 }
FStar.Pervasives.Lemma
val lemma_snoc_inj: #a:Type -> s1:seq a -> s2:seq a -> v1:a -> v2:a -> Lemma (requires (equal (snoc s1 v1) (snoc s2 v2))) (ensures (v1 == v2 /\ equal s1 s2))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2)
val lemma_snoc_inj: #a:Type -> s1:seq a -> s2:seq a -> v1:a -> v2:a -> Lemma (requires (equal (snoc s1 v1) (snoc s2 v2))) (ensures (v1 == v2 /\ equal s1 s2)) let lemma_snoc_inj #_ s1 s2 v1 v2 =
false
null
true
let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert (head t1 == head t2)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims._assert", "Prims.eq2", "FStar.Seq.Properties.head", "Prims.unit", "FStar.Seq.Properties.lemma_append_inj", "FStar.Seq.Base.create" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_snoc_inj: #a:Type -> s1:seq a -> s2:seq a -> v1:a -> v2:a -> Lemma (requires (equal (snoc s1 v1) (snoc s2 v2))) (ensures (v1 == v2 /\ equal s1 s2))
[]
FStar.Seq.Properties.lemma_snoc_inj
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> v1: a -> v2: a -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Seq.Properties.snoc s1 v1) (FStar.Seq.Properties.snoc s2 v2)) (ensures v1 == v2 /\ FStar.Seq.Base.equal s1 s2)
{ "end_col": 29, "end_line": 319, "start_col": 35, "start_line": 315 }
FStar.Pervasives.Lemma
val lemma_list_seq_bij' (#a: Type) (l: list a) : Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) )
val lemma_list_seq_bij' (#a: Type) (l: list a) : Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) let rec lemma_list_seq_bij': #a: Type -> l: list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) =
false
null
true
fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else (lemma_list_seq_bij' (L.tl l); assert (equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.list", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "Prims.bool", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.seq_of_list", "FStar.List.Tot.Base.tl", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "Prims.unit", "FStar.Seq.Properties.lemma_list_seq_bij'", "FStar.Seq.Properties.lemma_seq_of_list_induction" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_list_seq_bij' (#a: Type) (l: list a) : Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l))
[ "recursion" ]
FStar.Seq.Properties.lemma_list_seq_bij'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.seq_to_list (FStar.Seq.Properties.seq_of_list l) == l) (decreases FStar.List.Tot.Base.length l)
{ "end_col": 3, "end_line": 421, "start_col": 2, "start_line": 415 }
FStar.Pervasives.Lemma
val lemma_weaken_frame_right : #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j && j <= k && k <= length s1} -> Lemma (requires (s1 == splice s2 i s1 j)) (ensures (s1 == splice s2 i s1 k))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k))
val lemma_weaken_frame_right : #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j && j <= k && k <= length s1} -> Lemma (requires (s1 == splice s2 i s1 j)) (ensures (s1 == splice s2 i s1 k)) let lemma_weaken_frame_right #_ s1 s2 i j k =
false
null
true
cut (equal s1 (splice s2 i s1 k))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.splice", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_weaken_frame_right : #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat -> k:nat{i <= j && j <= k && k <= length s1} -> Lemma (requires (s1 == splice s2 i s1 j)) (ensures (s1 == splice s2 i s1 k))
[]
FStar.Seq.Properties.lemma_weaken_frame_right
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2} -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat{i <= j && j <= k && k <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (requires s1 == FStar.Seq.Properties.splice s2 i s1 j) (ensures s1 == FStar.Seq.Properties.splice s2 i s1 k)
{ "end_col": 79, "end_line": 286, "start_col": 46, "start_line": 286 }
FStar.Pervasives.Lemma
val lemma_tail_snoc: #a:Type -> s:Seq.seq a{Seq.length s > 0} -> x:a -> Lemma (ensures (tail (snoc s x) == snoc (tail s) x))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1
val lemma_tail_snoc: #a:Type -> s:Seq.seq a{Seq.length s > 0} -> x:a -> Lemma (ensures (tail (snoc s x) == snoc (tail s) x)) let lemma_tail_snoc #_ s x =
false
null
true
lemma_slice_first_in_append s (Seq.create 1 x) 1
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_slice_first_in_append", "FStar.Seq.Base.create", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = ()
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_tail_snoc: #a:Type -> s:Seq.seq a{Seq.length s > 0} -> x:a -> Lemma (ensures (tail (snoc s x) == snoc (tail s) x))
[]
FStar.Seq.Properties.lemma_tail_snoc
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s > 0} -> x: a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.tail (FStar.Seq.Properties.snoc s x) == FStar.Seq.Properties.snoc (FStar.Seq.Properties.tail s) x)
{ "end_col": 77, "end_line": 313, "start_col": 29, "start_line": 313 }
FStar.Pervasives.Lemma
val find_snoc: #a:Type -> s:Seq.seq a -> x:a -> f:(a -> Tot bool) -> Lemma (ensures (let res = find_l f (snoc s x) in match res with | None -> find_l f s == None /\ not (f x) | Some y -> res == find_l f s \/ (f x /\ x==y)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f
val find_snoc: #a:Type -> s:Seq.seq a -> x:a -> f:(a -> Tot bool) -> Lemma (ensures (let res = find_l f (snoc s x) in match res with | None -> find_l f s == None /\ not (f x) | Some y -> res == find_l f s \/ (f x /\ x==y))) let find_snoc #_ s x f =
false
null
true
if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.bool", "FStar.Pervasives.Native.uu___is_Some", "FStar.Seq.Properties.find_l", "FStar.Seq.Properties.find_append_some", "FStar.Seq.Base.create", "FStar.Seq.Properties.find_append_none", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_snoc: #a:Type -> s:Seq.seq a -> x:a -> f:(a -> Tot bool) -> Lemma (ensures (let res = find_l f (snoc s x) in match res with | None -> find_l f s == None /\ not (f x) | Some y -> res == find_l f s \/ (f x /\ x==y)))
[]
FStar.Seq.Properties.find_snoc
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> x: a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (ensures (let res = FStar.Seq.Properties.find_l f (FStar.Seq.Properties.snoc s x) in (match res with | FStar.Pervasives.Native.None #_ -> FStar.Seq.Properties.find_l f s == FStar.Pervasives.Native.None /\ Prims.op_Negation (f x) | FStar.Pervasives.Native.Some #_ y -> res == FStar.Seq.Properties.find_l f s \/ f x /\ x == y) <: Type0))
{ "end_col": 44, "end_line": 363, "start_col": 2, "start_line": 362 }
FStar.Pervasives.Lemma
val lemma_seq_of_list_induction (#a:Type) (l:list a) :Lemma (requires True) (ensures (let s = seq_of_list l in match l with | [] -> Seq.equal s empty | hd::tl -> s == cons hd (seq_of_list tl) /\ head s == hd /\ tail s == (seq_of_list tl)))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl)
val lemma_seq_of_list_induction (#a:Type) (l:list a) :Lemma (requires True) (ensures (let s = seq_of_list l in match l with | [] -> Seq.equal s empty | hd::tl -> s == cons hd (seq_of_list tl) /\ head s == hd /\ tail s == (seq_of_list tl))) let lemma_seq_of_list_induction #_ l =
false
null
true
match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd :: tl -> assert_norm (seq_of_list (hd :: tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.l_or", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.Seq.Base.length", "Prims.int", "FStar.Seq.Properties.seq_of_list", "FStar.Seq.Base.empty", "FStar.Seq.Properties.lemma_tl", "Prims.unit", "Prims.Cons", "FStar.Seq.Base.op_At_Bar", "FStar.Seq.Base.create" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_of_list_induction (#a:Type) (l:list a) :Lemma (requires True) (ensures (let s = seq_of_list l in match l with | [] -> Seq.equal s empty | hd::tl -> s == cons hd (seq_of_list tl) /\ head s == hd /\ tail s == (seq_of_list tl)))
[]
FStar.Seq.Properties.lemma_seq_of_list_induction
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a -> FStar.Pervasives.Lemma (ensures (let s = FStar.Seq.Properties.seq_of_list l in (match l with | Prims.Nil #_ -> FStar.Seq.Base.equal s FStar.Seq.Base.empty | Prims.Cons #_ hd tl -> s == FStar.Seq.Properties.cons hd (FStar.Seq.Properties.seq_of_list tl) /\ FStar.Seq.Properties.head s == hd /\ FStar.Seq.Properties.tail s == FStar.Seq.Properties.seq_of_list tl) <: Type0))
{ "end_col": 34, "end_line": 392, "start_col": 4, "start_line": 388 }
FStar.Pervasives.Lemma
val lemma_swap_splice : #a:Type -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (swap s i j == splice s start (swap s i j) len))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len))
val lemma_swap_splice : #a:Type -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (swap s i j == splice s start (swap s i j) len)) let lemma_swap_splice #_ s start i j len =
false
null
true
cut (equal (swap s i j) (splice s start (swap s i j) len))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_AmpAmp", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.swap", "FStar.Seq.Properties.splice", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_swap_splice : #a:Type -> s:seq a -> start:nat -> i:nat{start <= i} -> j:nat{i <= j} -> len:nat{j < len && len <= length s} -> Lemma (ensures (swap s i j == splice s start (swap s i j) len))
[]
FStar.Seq.Properties.lemma_swap_splice
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> start: Prims.nat -> i: Prims.nat{start <= i} -> j: Prims.nat{i <= j} -> len: Prims.nat{j < len && len <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.swap s i j == FStar.Seq.Properties.splice s start (FStar.Seq.Properties.swap s i j) len)
{ "end_col": 101, "end_line": 275, "start_col": 43, "start_line": 275 }
FStar.Pervasives.Lemma
val append_contains_equiv (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma ((append s1 s2) `contains` x <==> (s1 `contains` x \/ s2 `contains` x))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x
val append_contains_equiv (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma ((append s1 s2) `contains` x <==> (s1 `contains` x \/ s2 `contains` x)) let append_contains_equiv #_ s1 s2 x =
false
null
true
FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "FStar.Classical.move_requires", "Prims.l_or", "FStar.Seq.Properties.contains", "FStar.Seq.Base.append", "FStar.Seq.Properties.intro_append_contains_from_disjunction", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val append_contains_equiv (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma ((append s1 s2) `contains` x <==> (s1 `contains` x \/ s2 `contains` x))
[]
FStar.Seq.Properties.append_contains_equiv
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.contains (FStar.Seq.Base.append s1 s2) x <==> FStar.Seq.Properties.contains s1 x \/ FStar.Seq.Properties.contains s2 x)
{ "end_col": 82, "end_line": 460, "start_col": 4, "start_line": 460 }
FStar.Pervasives.Lemma
val lemma_seq_frame_lo: #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat{i <= j} -> m:nat{j < m} -> n:nat{m <= n && n <= length s1} -> Lemma (requires (s1 == (splice s2 m s1 n))) (ensures ((slice s1 i j == slice s2 i j) /\ (index s1 j == index s2 j)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j))
val lemma_seq_frame_lo: #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat{i <= j} -> m:nat{j < m} -> n:nat{m <= n && n <= length s1} -> Lemma (requires (s1 == (splice s2 m s1 n))) (ensures ((slice s1 i j == slice s2 i j) /\ (index s1 j == index s2 j))) let lemma_seq_frame_lo #_ s1 s2 i j m n =
false
null
true
cut (equal (slice s1 i j) (slice s2 i j))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_AmpAmp", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_frame_lo: #a:Type -> s1:seq a -> s2:seq a{length s1 = length s2} -> i:nat -> j:nat{i <= j} -> m:nat{j < m} -> n:nat{m <= n && n <= length s1} -> Lemma (requires (s1 == (splice s2 m s1 n))) (ensures ((slice s1 i j == slice s2 i j) /\ (index s1 j == index s2 j)))
[]
FStar.Seq.Properties.lemma_seq_frame_lo
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2} -> i: Prims.nat -> j: Prims.nat{i <= j} -> m: Prims.nat{j < m} -> n: Prims.nat{m <= n && n <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (requires s1 == FStar.Seq.Properties.splice s2 m s1 n) (ensures FStar.Seq.Base.slice s1 i j == FStar.Seq.Base.slice s2 i j /\ FStar.Seq.Base.index s1 j == FStar.Seq.Base.index s2 j)
{ "end_col": 43, "end_line": 281, "start_col": 2, "start_line": 281 }
FStar.Pervasives.Lemma
val find_append_some' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f
val find_append_some' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) let rec find_append_some': #a: Type -> s1: seq a -> s2: seq a -> f: (a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) =
false
null
true
fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "Prims.bool", "FStar.Seq.Properties.head", "FStar.Seq.Properties.find_append_some'", "FStar.Seq.Properties.tail", "Prims.unit", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_append_some' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1))
[ "recursion" ]
FStar.Seq.Properties.find_append_some'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires Some? (FStar.Seq.Properties.find_l f s1)) (ensures FStar.Seq.Properties.find_l f (FStar.Seq.Base.append s1 s2) == FStar.Seq.Properties.find_l f s1) (decreases FStar.Seq.Base.length s1)
{ "end_col": 36, "end_line": 331, "start_col": 2, "start_line": 327 }
FStar.Pervasives.Lemma
val lemma_ordering_hi_cons: #a:eqtype -> f:tot_ord a -> s:seq a -> back:nat -> len:nat{back < len && len <= length s} -> pv:a -> Lemma (requires ((forall y. mem y (slice s (back + 1) len) ==> f pv y) /\ f pv (index s back))) (ensures ((forall y. mem y (slice s back len) ==> f pv y)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len)
val lemma_ordering_hi_cons: #a:eqtype -> f:tot_ord a -> s:seq a -> back:nat -> len:nat{back < len && len <= length s} -> pv:a -> Lemma (requires ((forall y. mem y (slice s (back + 1) len) ==> f pv y) /\ f pv (index s back))) (ensures ((forall y. mem y (slice s back len) ==> f pv y))) let lemma_ordering_hi_cons #_ f s back len pv =
false
null
true
cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Seq.Properties.tot_ord", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Properties.lemma_mem_append", "FStar.Seq.Base.create", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.unit", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ordering_hi_cons: #a:eqtype -> f:tot_ord a -> s:seq a -> back:nat -> len:nat{back < len && len <= length s} -> pv:a -> Lemma (requires ((forall y. mem y (slice s (back + 1) len) ==> f pv y) /\ f pv (index s back))) (ensures ((forall y. mem y (slice s back len) ==> f pv y)))
[]
FStar.Seq.Properties.lemma_ordering_hi_cons
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: FStar.Seq.Properties.tot_ord a -> s: FStar.Seq.Base.seq a -> back: Prims.nat -> len: Prims.nat{back < len && len <= FStar.Seq.Base.length s} -> pv: a -> FStar.Pervasives.Lemma (requires (forall (y: a). FStar.Seq.Properties.mem y (FStar.Seq.Base.slice s (back + 1) len) ==> f pv y) /\ f pv (FStar.Seq.Base.index s back)) (ensures forall (y: a). FStar.Seq.Properties.mem y (FStar.Seq.Base.slice s back len) ==> f pv y)
{ "end_col": 69, "end_line": 258, "start_col": 2, "start_line": 257 }
FStar.Pervasives.Lemma
val sorted_concat_lemma' (#a: eqtype) (f: (a -> a -> Tot bool){total_order a f}) (lo: seq a {sorted f lo}) (pivot: a) (hi: seq a {sorted f hi}) : Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi)))
val sorted_concat_lemma' (#a: eqtype) (f: (a -> a -> Tot bool){total_order a f}) (lo: seq a {sorted f lo}) (pivot: a) (hi: seq a {sorted f hi}) : Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) let rec sorted_concat_lemma': #a: eqtype -> f: (a -> a -> Tot bool){total_order a f} -> lo: seq a {sorted f lo} -> pivot: a -> hi: seq a {sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) =
false
null
true
fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi)))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "Prims.bool", "FStar.Seq.Properties.total_order", "FStar.Seq.Base.seq", "Prims.b2t", "FStar.Seq.Properties.sorted", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.tail", "FStar.Seq.Properties.cons", "Prims.unit", "FStar.Seq.Base.append", "FStar.Seq.Properties.lemma_tl", "FStar.Seq.Properties.head", "FStar.Seq.Properties.lemma_append_cons", "FStar.Seq.Properties.sorted_concat_lemma'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi))))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sorted_concat_lemma' (#a: eqtype) (f: (a -> a -> Tot bool){total_order a f}) (lo: seq a {sorted f lo}) (pivot: a) (hi: seq a {sorted f hi}) : Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo))
[ "recursion" ]
FStar.Seq.Properties.sorted_concat_lemma'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Prims.bool){FStar.Seq.Properties.total_order a f} -> lo: FStar.Seq.Base.seq a {FStar.Seq.Properties.sorted f lo} -> pivot: a -> hi: FStar.Seq.Base.seq a {FStar.Seq.Properties.sorted f hi} -> FStar.Pervasives.Lemma (requires forall (y: a). (FStar.Seq.Properties.mem y lo ==> f y pivot) /\ (FStar.Seq.Properties.mem y hi ==> f pivot y)) (ensures FStar.Seq.Properties.sorted f (FStar.Seq.Base.append lo (FStar.Seq.Properties.cons pivot hi))) (decreases FStar.Seq.Base.length lo)
{ "end_col": 62, "end_line": 146, "start_col": 2, "start_line": 140 }
FStar.Pervasives.Lemma
val lemma_swap_permutes_aux_frag_eq: #a:Type -> s:seq a -> i:nat{i<length s} -> j:nat{i <= j && j<length s} -> i':nat -> j':nat{i' <= j' /\ j'<=length s /\ (j < i' //high slice \/ j' <= i //low slice \/ (i < i' /\ j' <= j)) //mid slice } -> Lemma (ensures (slice s i' j' == slice (swap s i j) i' j' /\ slice s i (i + 1) == slice (swap s i j) j (j + 1) /\ slice s j (j + 1) == slice (swap s i j) i (i + 1)))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1)))
val lemma_swap_permutes_aux_frag_eq: #a:Type -> s:seq a -> i:nat{i<length s} -> j:nat{i <= j && j<length s} -> i':nat -> j':nat{i' <= j' /\ j'<=length s /\ (j < i' //high slice \/ j' <= i //low slice \/ (i < i' /\ j' <= j)) //mid slice } -> Lemma (ensures (slice s i' j' == slice (swap s i j) i' j' /\ slice s i (i + 1) == slice (swap s i j) j (j + 1) /\ slice s j (j + 1) == slice (swap s i j) i (i + 1))) let lemma_swap_permutes_aux_frag_eq #a s i j i' j' =
false
null
true
cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1)))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.l_or", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Prims.op_Addition", "FStar.Seq.Properties.swap", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_swap_permutes_aux_frag_eq: #a:Type -> s:seq a -> i:nat{i<length s} -> j:nat{i <= j && j<length s} -> i':nat -> j':nat{i' <= j' /\ j'<=length s /\ (j < i' //high slice \/ j' <= i //low slice \/ (i < i' /\ j' <= j)) //mid slice } -> Lemma (ensures (slice s i' j' == slice (swap s i j) i' j' /\ slice s i (i + 1) == slice (swap s i j) j (j + 1) /\ slice s j (j + 1) == slice (swap s i j) i (i + 1)))
[]
FStar.Seq.Properties.lemma_swap_permutes_aux_frag_eq
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat{i < FStar.Seq.Base.length s} -> j: Prims.nat{i <= j && j < FStar.Seq.Base.length s} -> i': Prims.nat -> j': Prims.nat {i' <= j' /\ j' <= FStar.Seq.Base.length s /\ (j < i' \/ j' <= i \/ i < i' /\ j' <= j)} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice s i' j' == FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) i' j' /\ FStar.Seq.Base.slice s i (i + 1) == FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) j (j + 1) /\ FStar.Seq.Base.slice s j (j + 1) == FStar.Seq.Base.slice (FStar.Seq.Properties.swap s i j) i (i + 1))
{ "end_col": 65, "end_line": 161, "start_col": 2, "start_line": 159 }
FStar.Pervasives.Lemma
val lemma_trans_frame : #a:Type -> s1:seq a -> s2:seq a -> s3:seq a{length s1 = length s2 /\ length s2 = length s3} -> i:nat -> j:nat{i <= j && j <= length s1} -> Lemma (requires ((s1 == splice s2 i s1 j) /\ s2 == splice s3 i s2 j)) (ensures (s1 == splice s3 i s1 j))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j))
val lemma_trans_frame : #a:Type -> s1:seq a -> s2:seq a -> s3:seq a{length s1 = length s2 /\ length s2 = length s3} -> i:nat -> j:nat{i <= j && j <= length s1} -> Lemma (requires ((s1 == splice s2 i s1 j) /\ s2 == splice s3 i s2 j)) (ensures (s1 == splice s3 i s1 j)) let lemma_trans_frame #_ s1 s2 s3 i j =
false
null
true
cut (equal s1 (splice s3 i s1 j))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Properties.splice", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_trans_frame : #a:Type -> s1:seq a -> s2:seq a -> s3:seq a{length s1 = length s2 /\ length s2 = length s3} -> i:nat -> j:nat{i <= j && j <= length s1} -> Lemma (requires ((s1 == splice s2 i s1 j) /\ s2 == splice s3 i s2 j)) (ensures (s1 == splice s3 i s1 j))
[]
FStar.Seq.Properties.lemma_trans_frame
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> s3: FStar.Seq.Base.seq a { FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2 /\ FStar.Seq.Base.length s2 = FStar.Seq.Base.length s3 } -> i: Prims.nat -> j: Prims.nat{i <= j && j <= FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (requires s1 == FStar.Seq.Properties.splice s2 i s1 j /\ s2 == FStar.Seq.Properties.splice s3 i s2 j) (ensures s1 == FStar.Seq.Properties.splice s3 i s1 j)
{ "end_col": 73, "end_line": 290, "start_col": 40, "start_line": 290 }
Prims.Pure
val split_5 : #a:Type -> s:seq a -> i:nat -> j:nat{i < j && j < length s} -> Pure (seq (seq a)) (requires True) (ensures (fun x -> (length x = 5 /\ equal s (append (index x 0) (append (index x 1) (append (index x 2) (append (index x 3) (index x 4))))) /\ equal (index x 0) (slice s 0 i) /\ equal (index x 1) (slice s i (i+1)) /\ equal (index x 2) (slice s (i+1) j) /\ equal (index x 3) (slice s j (j + 1)) /\ equal (index x 4) (slice s (j + 1) (length s)))))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi
val split_5 : #a:Type -> s:seq a -> i:nat -> j:nat{i < j && j < length s} -> Pure (seq (seq a)) (requires True) (ensures (fun x -> (length x = 5 /\ equal s (append (index x 0) (append (index x 1) (append (index x 2) (append (index x 3) (index x 4))))) /\ equal (index x 0) (slice s 0 i) /\ equal (index x 1) (slice s i (i+1)) /\ equal (index x 2) (slice s (i+1) j) /\ equal (index x 3) (slice s j (j + 1)) /\ equal (index x 4) (slice s (j + 1) (length s))))) let split_5 #a s i j =
false
null
false
let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Seq.Base.upd", "FStar.Seq.Base.create", "FStar.Seq.Base.slice", "Prims.op_Addition" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val split_5 : #a:Type -> s:seq a -> i:nat -> j:nat{i < j && j < length s} -> Pure (seq (seq a)) (requires True) (ensures (fun x -> (length x = 5 /\ equal s (append (index x 0) (append (index x 1) (append (index x 2) (append (index x 3) (index x 4))))) /\ equal (index x 0) (slice s 0 i) /\ equal (index x 1) (slice s i (i+1)) /\ equal (index x 2) (slice s (i+1) j) /\ equal (index x 3) (slice s j (j + 1)) /\ equal (index x 4) (slice s (j + 1) (length s)))))
[]
FStar.Seq.Properties.split_5
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i < j && j < FStar.Seq.Base.length s} -> Prims.Pure (FStar.Seq.Base.seq (FStar.Seq.Base.seq a))
{ "end_col": 81, "end_line": 156, "start_col": 22, "start_line": 150 }
FStar.Pervasives.Lemma
val lemma_find_l_contains' (#a: Type) (f: (a -> Tot bool)) (l: seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l)
val lemma_find_l_contains' (#a: Type) (f: (a -> Tot bool)) (l: seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) let rec lemma_find_l_contains' (#a: Type) (f: (a -> Tot bool)) (l: seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) =
false
null
true
if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l)
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.bool", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Properties.head", "FStar.Seq.Properties.lemma_find_l_contains'", "FStar.Seq.Properties.tail", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "FStar.Seq.Properties.find_l", "FStar.Seq.Properties.contains", "FStar.Pervasives.Native.__proj__Some__item__v", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l)))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_find_l_contains' (#a: Type) (f: (a -> Tot bool)) (l: seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l))
[ "recursion" ]
FStar.Seq.Properties.lemma_find_l_contains'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Prims.bool) -> l: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures Some? (FStar.Seq.Properties.find_l f l) ==> FStar.Seq.Properties.contains l (Some?.v (FStar.Seq.Properties.find_l f l))) (decreases FStar.Seq.Base.length l)
{ "end_col": 42, "end_line": 470, "start_col": 4, "start_line": 468 }
FStar.Pervasives.Lemma
val perm_len' (#a: eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2'
val perm_len' (#a: eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) let rec perm_len' (#a: eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) =
false
null
true
if length s1 = 0 then if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "Prims._assert", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Properties.count", "FStar.Seq.Base.index", "Prims.unit", "FStar.Seq.Properties.perm_len'", "FStar.Seq.Properties.permutation", "FStar.Seq.Properties.lemma_append_count", "FStar.Seq.Properties.tail", "FStar.Seq.Base.create", "FStar.Seq.Base.append", "FStar.Seq.Base.equal", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split_eq", "Prims.nat", "FStar.Seq.Properties.index_mem", "FStar.Seq.Properties.head", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val perm_len' (#a: eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1))
[ "recursion" ]
FStar.Seq.Properties.perm_len'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Properties.permutation a s1 s2) (ensures FStar.Seq.Base.length s1 == FStar.Seq.Base.length s2) (decreases FStar.Seq.Base.length s1)
{ "end_col": 33, "end_line": 235, "start_col": 4, "start_line": 214 }
FStar.Pervasives.Lemma
val contains_cons (#a:Type) (hd:a) (tl:Seq.seq a) (x:a) : Lemma ((cons hd tl) `contains` x <==> (x==hd \/ tl `contains` x))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x
val contains_cons (#a:Type) (hd:a) (tl:Seq.seq a) (x:a) : Lemma ((cons hd tl) `contains` x <==> (x==hd \/ tl `contains` x)) let contains_cons #_ hd tl x =
false
null
true
append_contains_equiv (Seq.create 1 hd) tl x
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "FStar.Seq.Properties.append_contains_equiv", "FStar.Seq.Base.create", "Prims.unit" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains'
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val contains_cons (#a:Type) (hd:a) (tl:Seq.seq a) (x:a) : Lemma ((cons hd tl) `contains` x <==> (x==hd \/ tl `contains` x))
[]
FStar.Seq.Properties.contains_cons
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
hd: a -> tl: FStar.Seq.Base.seq a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Properties.contains (FStar.Seq.Properties.cons hd tl) x <==> x == hd \/ FStar.Seq.Properties.contains tl x)
{ "end_col": 48, "end_line": 475, "start_col": 4, "start_line": 475 }
FStar.Pervasives.Lemma
val lemma_seq_to_list_permutation (#a:eqtype) (s:seq a) :Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_seq_to_list_permutation = lemma_seq_to_list_permutation'
val lemma_seq_to_list_permutation (#a:eqtype) (s:seq a) :Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s)) let lemma_seq_to_list_permutation =
false
null
true
lemma_seq_to_list_permutation'
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Properties.lemma_seq_to_list_permutation'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end let find_append_none_s2 = find_append_none_s2' let find_snoc #_ s x f = if Some? (find_l f s) then find_append_some s (Seq.create 1 x) f else find_append_none s (Seq.create 1 x) f let un_snoc_snoc #_ s x = let s', x = un_snoc (snoc s x) in assert (Seq.equal s s') let find_mem #_ s f x = match seq_find f s with | None -> mem_index x s | Some _ -> () let rec seq_mem_k': #a:eqtype -> s:seq a -> n:nat{n < Seq.length s} -> Lemma (requires True) (ensures (mem (Seq.index s n) s)) (decreases n) = fun #_ s n -> if n = 0 then () else let tl = tail s in seq_mem_k' tl (n - 1) let seq_mem_k = seq_mem_k' module L = FStar.List.Tot let lemma_seq_of_list_induction #_ l = match l with | [] -> assert_norm (seq_of_list l == Seq.empty) | hd::tl -> assert_norm (seq_of_list (hd::tl) == create 1 hd @| seq_of_list tl); lemma_tl hd (seq_of_list tl) let rec lemma_seq_list_bij': #a:Type -> s:seq a -> Lemma (requires (True)) (ensures (seq_of_list (seq_to_list s) == s)) (decreases (length s)) = fun #_ s -> let l = seq_to_list s in lemma_seq_of_list_induction l; if length s = 0 then ( assert (equal s (seq_of_list l)) ) else ( lemma_seq_list_bij' (slice s 1 (length s)); assert (equal s (seq_of_list (seq_to_list s))) ) let lemma_seq_list_bij = lemma_seq_list_bij' let rec lemma_list_seq_bij': #a:Type -> l:list a -> Lemma (requires (True)) (ensures (seq_to_list (seq_of_list l) == l)) (decreases (L.length l)) = fun #_ l -> lemma_seq_of_list_induction l; if L.length l = 0 then () else ( lemma_list_seq_bij' (L.tl l); assert(equal (seq_of_list (L.tl l)) (slice (seq_of_list l) 1 (length (seq_of_list l)))) ) let lemma_list_seq_bij = lemma_list_seq_bij' let rec lemma_index_is_nth': #a:Type -> s:seq a -> i:nat{i < length s} -> Lemma (requires True) (ensures (L.index (seq_to_list s) i == index s i)) (decreases i) = fun #_ s i -> if i = 0 then () else ( lemma_index_is_nth' (slice s 1 (length s)) (i-1) ) let lemma_index_is_nth = lemma_index_is_nth' let contains #a s x = exists (k:nat). k < Seq.length s /\ Seq.index s k == x let contains_intro #_ _ _ _ = () let contains_elim #_ _ _ = () let lemma_contains_empty #_ = () let lemma_contains_singleton #_ _ = () private let intro_append_contains_from_disjunction (#a:Type) (s1:seq a) (s2:seq a) (x:a) : Lemma (requires s1 `contains` x \/ s2 `contains` x) (ensures (append s1 s2) `contains` x) = let open FStar.Classical in let open FStar.Squash in or_elim #(s1 `contains` x) #(s2 `contains` x) #(fun _ -> (append s1 s2) `contains` x) (fun _ -> ()) (fun _ -> let s = append s1 s2 in exists_elim (s `contains` x) (get_proof (s2 `contains` x)) (fun k -> assert (Seq.index s (Seq.length s1 + k) == x))) let append_contains_equiv #_ s1 s2 x = FStar.Classical.move_requires (intro_append_contains_from_disjunction s1 s2) x let contains_snoc #_ s x = FStar.Classical.forall_intro (append_contains_equiv s (Seq.create 1 x)) let rec lemma_find_l_contains' (#a:Type) (f:a -> Tot bool) (l:seq a) : Lemma (requires True) (ensures Some? (find_l f l) ==> l `contains` (Some?.v (find_l f l))) (decreases (Seq.length l)) = if length l = 0 then () else if f (head l) then () else lemma_find_l_contains' f (tail l) let lemma_find_l_contains = lemma_find_l_contains' let contains_cons #_ hd tl x = append_contains_equiv (Seq.create 1 hd) tl x let append_cons_snoc #_ _ _ _ = () let append_slices #_ _ _ = () let rec find_l_none_no_index' (#a:Type) (s:Seq.seq a) (f:(a -> Tot bool)) : Lemma (requires (None? (find_l f s))) (ensures (forall (i:nat{i < Seq.length s}). not (f (Seq.index s i)))) (decreases (Seq.length s)) = if Seq.length s = 0 then () else (assert (not (f (head s))); assert (None? (find_l f (tail s))); find_l_none_no_index' (tail s) f; assert (Seq.equal s (cons (head s) (tail s))); find_append_none (create 1 (head s)) (tail s) f) let find_l_none_no_index = find_l_none_no_index' let cons_head_tail #_ s = let _ : squash (slice s 0 1 == create 1 (index s 0)) = lemma_index_slice s 0 1 0; lemma_index_create 1 (index s 0) 0; lemma_eq_elim (slice s 0 1) (create 1 (index s 0)) in lemma_split s 1 let head_cons #_ _ _ = () let suffix_of_tail #_ s = cons_head_tail s let index_cons_l #_ _ _ = () let index_cons_r #_ _ _ _ = () let append_cons #_ c s1 s2 = lemma_eq_elim (append (cons c s1) s2) (cons c (append s1 s2)) let index_tail #_ _ _ = () let mem_cons #_ x s = lemma_append_count (create 1 x) s let snoc_slice_index #_ s i j = lemma_eq_elim (snoc (slice s i j) (index s j)) (slice s i (j + 1)) let cons_index_slice #_ s i j _ = lemma_eq_elim (cons (index s i) (slice s (i + 1) j)) (slice s i j) let slice_is_empty #_ s i = lemma_eq_elim (slice s i i) Seq.empty let slice_length #_ s = lemma_eq_elim (slice s 0 (length s)) s let slice_slice #_ s i1 j1 i2 j2 = lemma_eq_elim (slice (slice s i1 j1) i2 j2) (slice s (i1 + i2) (i1 + j2)) let rec lemma_seq_of_list_index #_ l i = lemma_seq_of_list_induction l; match l with | [] -> () | hd::tl -> if i = 0 then () else lemma_seq_of_list_index tl (i - 1) let seq_of_list_tl #_ l = lemma_seq_of_list_induction l let rec mem_seq_of_list #_ x l = lemma_seq_of_list_induction l; match l with | [] -> () | y :: q -> let _ : squash (head (seq_of_list l) == y) = () in let _ : squash (tail (seq_of_list l) == seq_of_list q) = seq_of_list_tl l in let _ : squash (mem x (seq_of_list l) == (x = y || mem x (seq_of_list q))) = lemma_mem_inversion (seq_of_list l) in mem_seq_of_list x q let rec intro_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ explode_and i s l)) (ensures ( equal (seq_of_list l) (slice s i (length s)))) (decreases ( List.Tot.length l)) = fun #_ i s l -> lemma_seq_of_list_induction l; match l with | [] -> () | hd :: tl -> intro_of_list'' (i + 1) s tl let intro_of_list' = intro_of_list'' let intro_of_list #_ s l = intro_of_list' 0 s l let rec elim_of_list'': #a:Type -> i:nat -> s:seq a -> l:list a -> Lemma (requires ( List.Tot.length l + i = length s /\ i <= length s /\ slice s i (length s) == seq_of_list l)) (ensures ( explode_and i s l)) (decreases ( List.Tot.length l)) = fun #_ i s l -> match l with | [] -> () | hd :: tl -> lemma_seq_of_list_induction l; elim_of_list'' (i + 1) s tl let elim_of_list' = elim_of_list'' let elim_of_list #_ l = elim_of_list' 0 (seq_of_list l) l let rec lemma_seq_to_list_permutation' (#a:eqtype) (s:seq a) :Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s)) = if length s > 0 then lemma_seq_to_list_permutation' (slice s 1 (length s))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_seq_to_list_permutation (#a:eqtype) (s:seq a) :Lemma (requires True) (ensures (forall x. count x s == List.Tot.Base.count x (seq_to_list s))) (decreases (length s))
[]
FStar.Seq.Properties.lemma_seq_to_list_permutation
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.Seq.Properties.count x s == FStar.List.Tot.Base.count x (FStar.Seq.Properties.seq_to_list s)) (decreases FStar.Seq.Base.length s)
{ "end_col": 66, "end_line": 598, "start_col": 36, "start_line": 598 }
FStar.Pervasives.Lemma
val find_append_none_s2' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1))
[ { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else begin find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)) end
val find_append_none_s2' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) let rec find_append_none_s2': #a: Type -> s1: seq a -> s2: seq a -> f: (a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) =
false
null
true
fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else if f (head s1) then () else (find_append_none_s2' (tail s1) s2 f; cut (equal (tail (append s1 s2)) (append (tail s1) s2)))
{ "checked_file": "FStar.Seq.Properties.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Seq.Properties.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.Seq.Properties.head", "FStar.Seq.Properties.tail", "Prims.unit", "FStar.Seq.Properties.find_append_none_s2'" ]
[]
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Seq.Properties open FStar.Seq.Base module Seq = FStar.Seq.Base let lemma_append_inj_l #_ s1 s2 t1 t2 i = assert (index s1 i == (index (append s1 s2) i)); assert (index t1 i == (index (append t1 t2) i)) let lemma_append_inj_r #_ s1 s2 t1 t2 i = assert (index s2 i == (index (append s1 s2) (i + length s1))); assert (index t2 i == (index (append t1 t2) (i + length t1))) let lemma_append_len_disj #_ s1 s2 t1 t2 = cut (length (append s1 s2) == length s1 + length s2); cut (length (append t1 t2) == length t1 + length t2) let lemma_append_inj #_ s1 s2 t1 t2 = lemma_append_len_disj s1 s2 t1 t2; FStar.Classical.forall_intro #(i:nat{i < length s1}) #(fun i -> index s1 i == index t1 i) (lemma_append_inj_l s1 s2 t1 t2); FStar.Classical.forall_intro #(i:nat{i < length s2}) #(fun i -> index s2 i == index t2 i) (lemma_append_inj_r s1 s2 t1 t2) let lemma_head_append #_ _ _ = () let lemma_tail_append #_ s1 s2 = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) let lemma_cons_inj #_ v1 v2 s1 s2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj t1 s1 t2 s2; assert(index t1 0 == index t2 0) let lemma_split #_ s i = cut (equal (append (fst (split s i)) (snd (split s i))) s) let rec mem_index' (#a:eqtype) (x:a) (s:seq a) : Lemma (requires (mem x s)) (ensures (exists i. index s i == x)) (decreases (length s)) = if length s = 0 then () else if head s = x then () else mem_index' x (tail s) let mem_index = mem_index' let lemma_slice_append #_ _ _ = () let rec lemma_slice_first_in_append' (#a:Type) (s1:seq a) (s2:seq a) (i:nat{i <= length s1}) : Lemma (ensures (equal (slice (append s1 s2) i (length (append s1 s2))) (append (slice s1 i (length s1)) s2))) (decreases (length s1)) = if i = 0 then () else lemma_slice_first_in_append' (tail s1) s2 (i - 1) let lemma_slice_first_in_append = lemma_slice_first_in_append' let slice_upd #_ s i j k v = lemma_eq_intro (slice (upd s k v) i j) (slice s i j) let upd_slice #_ s i j k v = lemma_eq_intro (upd (slice s i j) k v) (slice (upd s (i + k) v) i j) let lemma_append_cons #_ _ _ = () let lemma_tl #_ _ _ = () let rec sorted_feq' (#a:Type) (f g : (a -> a -> Tot bool)) (s:seq a{forall x y. f x y == g x y}) : Lemma (ensures (sorted f s <==> sorted g s)) (decreases (length s)) = if length s <= 1 then () else sorted_feq' f g (tail s) let sorted_feq = sorted_feq' let rec lemma_append_count' (#a:eqtype) (lo:seq a) (hi:seq a) : Lemma (requires True) (ensures (forall x. count x (append lo hi) = (count x lo + count x hi))) (decreases (length lo)) = if length lo = 0 then cut (equal (append lo hi) hi) else (cut (equal (cons (head lo) (append (tail lo) hi)) (append lo hi)); lemma_append_count' (tail lo) hi; let tl_l_h = append (tail lo) hi in let lh = cons (head lo) tl_l_h in cut (equal (tail lh) tl_l_h)) let lemma_append_count = lemma_append_count' let lemma_append_count_aux #_ _ lo hi = lemma_append_count lo hi let lemma_mem_inversion #_ _ = () let rec lemma_mem_count' (#a:eqtype) (s:seq a) (f:a -> Tot bool) : Lemma (requires (forall (i:nat{i<length s}). f (index s i))) (ensures (forall (x:a). mem x s ==> f x)) (decreases (length s)) = if length s = 0 then () else (let t = i:nat{i<length (tail s)} in cut (forall (i:t). index (tail s) i = index s (i + 1)); lemma_mem_count' (tail s) f) let lemma_mem_count = lemma_mem_count' let lemma_count_slice #_ s i = cut (equal s (append (slice s 0 i) (slice s i (length s)))); lemma_append_count (slice s 0 i) (slice s i (length s)) let rec sorted_concat_lemma': #a:eqtype -> f:(a -> a -> Tot bool){total_order a f} -> lo:seq a{sorted f lo} -> pivot:a -> hi:seq a{sorted f hi} -> Lemma (requires (forall y. (mem y lo ==> f y pivot) /\ (mem y hi ==> f pivot y))) (ensures (sorted f (append lo (cons pivot hi)))) (decreases (length lo)) = fun #_ f lo pivot hi -> if length lo = 0 then (cut (equal (append lo (cons pivot hi)) (cons pivot hi)); cut (equal (tail (cons pivot hi)) hi)) else (sorted_concat_lemma' f (tail lo) pivot hi; lemma_append_cons lo (cons pivot hi); lemma_tl (head lo) (append (tail lo) (cons pivot hi))) let sorted_concat_lemma = sorted_concat_lemma' let split_5 #a s i j = let frag_lo = slice s 0 i in let frag_i = slice s i (i + 1) in let frag_mid = slice s (i + 1) j in let frag_j = slice s j (j + 1) in let frag_hi = slice s (j + 1) (length s) in upd (upd (upd (upd (create 5 frag_lo) 1 frag_i) 2 frag_mid) 3 frag_j) 4 frag_hi let lemma_swap_permutes_aux_frag_eq #a s i j i' j' = cut (equal (slice s i' j') (slice (swap s i j) i' j')); cut (equal (slice s i (i + 1)) (slice (swap s i j) j (j + 1))); cut (equal (slice s j (j + 1)) (slice (swap s i j) i (i + 1))) #push-options "--z3rlimit 20" let lemma_swap_permutes_aux #_ s i j x = if j=i then cut (equal (swap s i j) s) else begin let s5 = split_5 s i j in let frag_lo, frag_i, frag_mid, frag_j, frag_hi = index s5 0, index s5 1, index s5 2, index s5 3, index s5 4 in lemma_append_count_aux x frag_lo (append frag_i (append frag_mid (append frag_j frag_hi))); lemma_append_count_aux x frag_i (append frag_mid (append frag_j frag_hi)); lemma_append_count_aux x frag_mid (append frag_j frag_hi); lemma_append_count_aux x frag_j frag_hi; let s' = swap s i j in let s5' = split_5 s' i j in let frag_lo', frag_j', frag_mid', frag_i', frag_hi' = index s5' 0, index s5' 1, index s5' 2, index s5' 3, index s5' 4 in lemma_swap_permutes_aux_frag_eq s i j 0 i; lemma_swap_permutes_aux_frag_eq s i j (i + 1) j; lemma_swap_permutes_aux_frag_eq s i j (j + 1) (length s); lemma_append_count_aux x frag_lo (append frag_j (append frag_mid (append frag_i frag_hi))); lemma_append_count_aux x frag_j (append frag_mid (append frag_i frag_hi)); lemma_append_count_aux x frag_mid (append frag_i frag_hi); lemma_append_count_aux x frag_i frag_hi end #pop-options let append_permutations #a s1 s2 s1' s2' = ( lemma_append_count s1 s2; lemma_append_count s1' s2' ) let lemma_swap_permutes #a s i j = FStar.Classical.forall_intro #a #(fun x -> count x s = count x (swap s i j)) (lemma_swap_permutes_aux s i j) (* perm_len: A lemma that shows that two sequences that are permutations of each other also have the same length *) //a proof optimization: Z3 only needs to unfold the recursive definition of `count` once #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let rec perm_len' (#a:eqtype) (s1 s2: seq a) : Lemma (requires (permutation a s1 s2)) (ensures (length s1 == length s2)) (decreases (length s1)) = if length s1 = 0 then begin if length s2 = 0 then () else assert (count (index s2 0) s2 > 0) end else let s1_hd = head s1 in let s1_tl = tail s1 in assert (count s1_hd s1 > 0); assert (count s1_hd s2 > 0); assert (length s2 > 0); let s2_hd = head s2 in let s2_tl = tail s2 in if s1_hd = s2_hd then (assert (permutation a s1_tl s2_tl); perm_len' s1_tl s2_tl) else let i = index_mem s1_hd s2 in let s_pfx, s_sfx = split_eq s2 i in assert (equal s_sfx (append (create 1 s1_hd) (tail s_sfx))); let s2' = append s_pfx (tail s_sfx) in lemma_append_count s_pfx s_sfx; lemma_append_count (create 1 s1_hd) (tail s_sfx); lemma_append_count s_pfx (tail s_sfx); assert (permutation a s1_tl s2'); perm_len' s1_tl s2' #pop-options let perm_len = perm_len' let cons_perm #_ tl s = lemma_tl (head s) tl let lemma_mem_append #_ s1 s2 = lemma_append_count s1 s2 let lemma_slice_cons #_ s i j = cut (equal (slice s i j) (append (create 1 (index s i)) (slice s (i + 1) j))); lemma_mem_append (create 1 (index s i)) (slice s (i + 1) j) let lemma_slice_snoc #_ s i j = cut (equal (slice s i j) (append (slice s i (j - 1)) (create 1 (index s (j - 1))))); lemma_mem_append (slice s i (j - 1)) (create 1 (index s (j - 1))) let lemma_ordering_lo_snoc #_ f s i j pv = cut (equal (slice s i (j + 1)) (append (slice s i j) (create 1 (index s j)))); lemma_mem_append (slice s i j) (create 1 (index s j)) let lemma_ordering_hi_cons #_ f s back len pv = cut (equal (slice s back len) (append (create 1 (index s back)) (slice s (back + 1) len))); lemma_mem_append (create 1 (index s back)) (slice s (back + 1) len) let swap_frame_lo #_ s lo i j = cut (equal (slice s lo i) (slice (swap s i j) lo i)) let swap_frame_lo' #_ s lo i' i j = cut (equal (slice s lo i') (slice (swap s i j) lo i')) let swap_frame_hi #_ s i j k hi = cut (equal (slice s k hi) (slice (swap s i j) k hi)) let lemma_swap_slice_commute #_ s start i j len = cut (equal (slice (swap s i j) start len) (swap (slice s start len) (i - start) (j - start))) let lemma_swap_permutes_slice #_ s start i j len = lemma_swap_slice_commute s start i j len; lemma_swap_permutes (slice s start len) (i - start) (j - start) let splice_refl #_ s i j = cut (equal s (splice s i s j)) let lemma_swap_splice #_ s start i j len = cut (equal (swap s i j) (splice s start (swap s i j) len)) let lemma_seq_frame_hi #_ s1 s2 i j m n = cut (equal (slice s1 m n) (slice s2 m n)) let lemma_seq_frame_lo #_ s1 s2 i j m n = cut (equal (slice s1 i j) (slice s2 i j)) let lemma_tail_slice #_ s i j = cut (equal (tail (slice s i j)) (slice s (i + 1) j)) let lemma_weaken_frame_right #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_weaken_frame_left #_ s1 s2 i j k = cut (equal s1 (splice s2 i s1 k)) let lemma_trans_frame #_ s1 s2 s3 i j = cut (equal s1 (splice s3 i s1 j)) let lemma_weaken_perm_left #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s2 i j) (slice s1 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s2 i j) (slice s1 j k) let lemma_weaken_perm_right #_ s1 s2 i j k = cut (equal (slice s2 i k) (append (slice s2 i j) (slice s2 j k))); cut (equal (slice s1 i k) (append (slice s1 i j) (slice s2 j k))); lemma_append_count (slice s2 i j) (slice s2 j k); lemma_append_count (slice s1 i j) (slice s2 j k) let lemma_trans_perm #_ _ _ _ _ _ = () let lemma_cons_snoc #_ _ _ _ = () let lemma_tail_snoc #_ s x = lemma_slice_first_in_append s (Seq.create 1 x) 1 let lemma_snoc_inj #_ s1 s2 v1 v2 = let t1 = create 1 v1 in let t2 = create 1 v2 in lemma_append_inj s1 t1 s2 t2; assert(head t1 == head t2) let lemma_mem_snoc #_ s x = lemma_append_count s (Seq.create 1 x) let rec find_append_some': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (Some? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1)) = fun #_ s1 s2 f -> if f (head s1) then () else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_some' (tail s1) s2 f let find_append_some = find_append_some' let rec find_append_none': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s1))) (ensures (find_l f (append s1 s2) == find_l f s2)) (decreases (length s1)) = fun #_ s1 s2 f -> if Seq.length s1 = 0 then cut (equal (append s1 s2) s2) else let _ = cut (equal (tail (append s1 s2)) (append (tail s1) s2)) in find_append_none' (tail s1) s2 f let find_append_none = find_append_none' let rec find_append_none_s2': #a:Type -> s1:seq a -> s2:seq a -> f:(a -> Tot bool) -> Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1))
false
false
FStar.Seq.Properties.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_append_none_s2' (#a: Type) (s1 s2: seq a) (f: (a -> Tot bool)) : Lemma (requires (None? (find_l f s2))) (ensures (find_l f (append s1 s2) == find_l f s1)) (decreases (length s1))
[ "recursion" ]
FStar.Seq.Properties.find_append_none_s2'
{ "file_name": "ulib/FStar.Seq.Properties.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> f: (_: a -> Prims.bool) -> FStar.Pervasives.Lemma (requires None? (FStar.Seq.Properties.find_l f s2)) (ensures FStar.Seq.Properties.find_l f (FStar.Seq.Base.append s1 s2) == FStar.Seq.Properties.find_l f s1) (decreases FStar.Seq.Base.length s1)
{ "end_col": 5, "end_line": 357, "start_col": 2, "start_line": 351 }