effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val t_as_list:list uint32
[ { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let t_as_list : list uint32 = [ u32 0xd76aa478; u32 0xe8c7b756; u32 0x242070db; u32 0xc1bdceee; u32 0xf57c0faf; u32 0x4787c62a; u32 0xa8304613; u32 0xfd469501; u32 0x698098d8; u32 0x8b44f7af; u32 0xffff5bb1; u32 0x895cd7be; u32 0x6b901122; u32 0xfd987193; u32 0xa679438e; u32 0x49b40821; u32 0xf61e2562; u32 0xc040b340; u32 0x265e5a51; u32 0xe9b6c7aa; u32 0xd62f105d; u32 0x02441453; u32 0xd8a1e681; u32 0xe7d3fbc8; u32 0x21e1cde6; u32 0xc33707d6; u32 0xf4d50d87; u32 0x455a14ed; u32 0xa9e3e905; u32 0xfcefa3f8; u32 0x676f02d9; u32 0x8d2a4c8a; u32 0xfffa3942; u32 0x8771f681; u32 0x6d9d6122; u32 0xfde5380c; u32 0xa4beea44; u32 0x4bdecfa9; u32 0xf6bb4b60; u32 0xbebfbc70; u32 0x289b7ec6; u32 0xeaa127fa; u32 0xd4ef3085; u32 0x4881d05; u32 0xd9d4d039; u32 0xe6db99e5; u32 0x1fa27cf8; u32 0xc4ac5665; u32 0xf4292244; u32 0x432aff97; u32 0xab9423a7; u32 0xfc93a039; u32 0x655b59c3; u32 0x8f0ccc92; u32 0xffeff47d; u32 0x85845dd1; u32 0x6fa87e4f; u32 0xfe2ce6e0; u32 0xa3014314; u32 0x4e0811a1; u32 0xf7537e82; u32 0xbd3af235; u32 0x2ad7d2bb; u32 0xeb86d391; ]
val t_as_list:list uint32 let t_as_list:list uint32 =
false
null
false
[ u32 0xd76aa478; u32 0xe8c7b756; u32 0x242070db; u32 0xc1bdceee; u32 0xf57c0faf; u32 0x4787c62a; u32 0xa8304613; u32 0xfd469501; u32 0x698098d8; u32 0x8b44f7af; u32 0xffff5bb1; u32 0x895cd7be; u32 0x6b901122; u32 0xfd987193; u32 0xa679438e; u32 0x49b40821; u32 0xf61e2562; u32 0xc040b340; u32 0x265e5a51; u32 0xe9b6c7aa; u32 0xd62f105d; u32 0x02441453; u32 0xd8a1e681; u32 0xe7d3fbc8; u32 0x21e1cde6; u32 0xc33707d6; u32 0xf4d50d87; u32 0x455a14ed; u32 0xa9e3e905; u32 0xfcefa3f8; u32 0x676f02d9; u32 0x8d2a4c8a; u32 0xfffa3942; u32 0x8771f681; u32 0x6d9d6122; u32 0xfde5380c; u32 0xa4beea44; u32 0x4bdecfa9; u32 0xf6bb4b60; u32 0xbebfbc70; u32 0x289b7ec6; u32 0xeaa127fa; u32 0xd4ef3085; u32 0x4881d05; u32 0xd9d4d039; u32 0xe6db99e5; u32 0x1fa27cf8; u32 0xc4ac5665; u32 0xf4292244; u32 0x432aff97; u32 0xab9423a7; u32 0xfc93a039; u32 0x655b59c3; u32 0x8f0ccc92; u32 0xffeff47d; u32 0x85845dd1; u32 0x6fa87e4f; u32 0xfe2ce6e0; u32 0xa3014314; u32 0x4e0811a1; u32 0xf7537e82; u32 0xbd3af235; u32 0x2ad7d2bb; u32 0xeb86d391 ]
{ "checked_file": "Spec.MD5.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Spec.MD5.fst" }
[ "total" ]
[ "Prims.Cons", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.IntTypes.u32", "Prims.Nil" ]
[]
module Spec.MD5 (* Source: https://tools.ietf.org/html/rfc1321 *) open Lib.IntTypes open Spec.Hash.Definitions (* Section 3.3 *) inline_for_extraction let init_as_list : list uint32 = [ u32 0x67452301; u32 0xefcdab89; u32 0x98badcfe; u32 0x10325476; ] let init : words_state MD5 = Seq.seq_of_list init_as_list (* Section 3.4 *) inline_for_extraction let f (x y z: uint32) : Tot uint32 = (x &. y) |. ((~. x) &. z) inline_for_extraction let g (x y z: uint32) : Tot uint32 = (x &. z) |. (y &. (~. z)) inline_for_extraction let h (x y z: uint32) : Tot uint32 = x ^. y ^. z inline_for_extraction let i (x y z: uint32) : Tot uint32 = y ^. (x |. ~. z) (* Table T: specified in 3.4, defined in Appendix A.3, function MD5Transform *)
false
true
Spec.MD5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val t_as_list:list uint32
[]
Spec.MD5.t_as_list
{ "file_name": "specs/Spec.MD5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.list (Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.SEC)
{ "end_col": 1, "end_line": 109, "start_col": 30, "start_line": 41 }
Prims.Tot
val init: init_t MD5
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let init : words_state MD5 = Seq.seq_of_list init_as_list
val init: init_t MD5 let init:words_state MD5 =
false
null
false
Seq.seq_of_list init_as_list
{ "checked_file": "Spec.MD5.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Spec.MD5.fst" }
[ "total" ]
[ "FStar.Seq.Properties.seq_of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Spec.MD5.init_as_list", "Spec.Hash.Definitions.words_state", "Spec.Hash.Definitions.MD5" ]
[]
module Spec.MD5 (* Source: https://tools.ietf.org/html/rfc1321 *) open Lib.IntTypes open Spec.Hash.Definitions (* Section 3.3 *) inline_for_extraction let init_as_list : list uint32 = [ u32 0x67452301; u32 0xefcdab89; u32 0x98badcfe; u32 0x10325476; ]
false
true
Spec.MD5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val init: init_t MD5
[]
Spec.MD5.init
{ "file_name": "specs/Spec.MD5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Hash.Definitions.init_t Spec.Hash.Definitions.MD5
{ "end_col": 57, "end_line": 18, "start_col": 29, "start_line": 18 }
Prims.GTot
val free_stack64 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free_stack64 start finish h = BS.free_stack' start finish h
val free_stack64 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack let free_stack64 start finish h =
false
null
false
BS.free_stack' start finish h
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.free_stack'" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free_stack64 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack
[]
Vale.X64.Stack_i.free_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> Prims.GTot Vale.X64.Stack_i.vale_stack
{ "end_col": 63, "end_line": 11, "start_col": 34, "start_line": 11 }
Prims.GTot
val load_stack64 (ptr:int) (h:vale_stack) : GTot nat64
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_stack64 i st = BS.eval_stack i st
val load_stack64 (ptr:int) (h:vale_stack) : GTot nat64 let load_stack64 i st =
false
null
false
BS.eval_stack i st
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.eval_stack", "Vale.X64.Memory.nat64" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_stack64 (ptr:int) (h:vale_stack) : GTot nat64
[]
Vale.X64.Stack_i.load_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> Prims.GTot Vale.X64.Memory.nat64
{ "end_col": 42, "end_line": 9, "start_col": 24, "start_line": 9 }
Prims.Tot
val vale_stack : Type u#0
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vale_stack = BS.machine_stack
val vale_stack : Type u#0 let vale_stack =
false
null
false
BS.machine_stack
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "total" ]
[ "Vale.X64.Machine_Semantics_s.machine_stack" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s
false
true
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vale_stack : Type u#0
[]
Vale.X64.Stack_i.vale_stack
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 33, "end_line": 6, "start_col": 17, "start_line": 6 }
Prims.GTot
val valid_src_stack64 (ptr:int) (h:vale_stack) : GTot bool
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_src_stack64 i st = BS.valid_src_stack64 i st
val valid_src_stack64 (ptr:int) (h:vale_stack) : GTot bool let valid_src_stack64 i st =
false
null
false
BS.valid_src_stack64 i st
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.valid_src_stack64", "Prims.bool" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_src_stack64 (ptr:int) (h:vale_stack) : GTot bool
[]
Vale.X64.Stack_i.valid_src_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> Prims.GTot Prims.bool
{ "end_col": 54, "end_line": 8, "start_col": 29, "start_line": 8 }
Prims.GTot
val valid_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_taint_stack128 ptr t stackTaint = valid_taint_stack64 ptr t stackTaint /\ valid_taint_stack64 (ptr + 8) t stackTaint
val valid_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0 let valid_taint_stack128 ptr t stackTaint =
false
null
false
valid_taint_stack64 ptr t stackTaint /\ valid_taint_stack64 (ptr + 8) t stackTaint
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Memory.memtaint", "Prims.l_and", "Vale.X64.Stack_i.valid_taint_stack64", "Prims.op_Addition", "Vale.Def.Prop_s.prop0" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let BS.Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_compose_free_stack64 start inter finish h = let BS.Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let BS.Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let BS.Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_rsp_free_stack64 start finish h = () let lemma_same_init_rsp_store_stack64 ptr v h = () let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[]
Vale.X64.Stack_i.valid_taint_stack128
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> stackTaint: Vale.X64.Memory.memtaint -> Prims.GTot Vale.Def.Prop_s.prop0
{ "end_col": 84, "end_line": 84, "start_col": 2, "start_line": 84 }
Prims.Tot
val init_rsp (h:vale_stack) : (n:nat64{n >= 4096})
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let init_rsp h = h.BS.initial_rsp
val init_rsp (h:vale_stack) : (n:nat64{n >= 4096}) let init_rsp h =
false
null
false
h.BS.initial_rsp
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "total" ]
[ "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.__proj__Machine_stack__item__initial_rsp", "Vale.X64.Memory.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val init_rsp (h:vale_stack) : (n:nat64{n >= 4096})
[]
Vale.X64.Stack_i.init_rsp
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: Vale.X64.Stack_i.vale_stack -> n: Vale.X64.Memory.nat64{n >= 4096}
{ "end_col": 33, "end_line": 17, "start_col": 17, "start_line": 17 }
Prims.GTot
val load_stack128 (ptr:int) (h:vale_stack) : GTot quad32
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_stack128 i st = BS.eval_stack128 i st
val load_stack128 (ptr:int) (h:vale_stack) : GTot quad32 let load_stack128 i st =
false
null
false
BS.eval_stack128 i st
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.eval_stack128", "Vale.X64.Memory.quad32" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_stack128 (ptr:int) (h:vale_stack) : GTot quad32
[]
Vale.X64.Stack_i.load_stack128
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> Prims.GTot Vale.X64.Memory.quad32
{ "end_col": 46, "end_line": 14, "start_col": 25, "start_line": 14 }
Prims.GTot
val store_stack64 (ptr:int) (v:nat64) (h:vale_stack) : GTot vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_stack64 i v h = BS.update_stack64' i v h
val store_stack64 (ptr:int) (v:nat64) (h:vale_stack) : GTot vale_stack let store_stack64 i v h =
false
null
false
BS.update_stack64' i v h
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.X64.Memory.nat64", "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.update_stack64'" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_stack64 (ptr:int) (v:nat64) (h:vale_stack) : GTot vale_stack
[]
Vale.X64.Stack_i.store_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.X64.Memory.nat64 -> h: Vale.X64.Stack_i.vale_stack -> Prims.GTot Vale.X64.Stack_i.vale_stack
{ "end_col": 50, "end_line": 10, "start_col": 26, "start_line": 10 }
Prims.GTot
val valid_src_stack128 (ptr:int) (h:vale_stack) : GTot bool
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_src_stack128 i st = BS.valid_src_stack128 i st
val valid_src_stack128 (ptr:int) (h:vale_stack) : GTot bool let valid_src_stack128 i st =
false
null
false
BS.valid_src_stack128 i st
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.valid_src_stack128", "Prims.bool" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_src_stack128 (ptr:int) (h:vale_stack) : GTot bool
[]
Vale.X64.Stack_i.valid_src_stack128
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> Prims.GTot Prims.bool
{ "end_col": 56, "end_line": 13, "start_col": 30, "start_line": 13 }
Prims.GTot
val store_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_taint_stack64 ptr t stackTaint = BS.update_n ptr 8 stackTaint t
val store_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint let store_taint_stack64 ptr t stackTaint =
false
null
false
BS.update_n ptr 8 stackTaint t
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Memory.memtaint", "Vale.X64.Machine_Semantics_s.update_n" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let BS.Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_compose_free_stack64 start inter finish h = let BS.Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let BS.Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let BS.Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_rsp_free_stack64 start finish h = () let lemma_same_init_rsp_store_stack64 ptr v h = () let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t let valid_taint_stack128 ptr t stackTaint = valid_taint_stack64 ptr t stackTaint /\ valid_taint_stack64 (ptr + 8) t stackTaint
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint
[]
Vale.X64.Stack_i.store_taint_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> stackTaint: Vale.X64.Memory.memtaint -> Prims.GTot Vale.X64.Memory.memtaint
{ "end_col": 73, "end_line": 86, "start_col": 43, "start_line": 86 }
Prims.GTot
val store_stack128 (ptr:int) (v:quad32) (h:vale_stack) : GTot vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_stack128 i v h = BS.update_stack128' i v h
val store_stack128 (ptr:int) (v:quad32) (h:vale_stack) : GTot vale_stack let store_stack128 i v h =
false
null
false
BS.update_stack128' i v h
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.X64.Memory.quad32", "Vale.X64.Stack_i.vale_stack", "Vale.X64.Machine_Semantics_s.update_stack128'" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_stack128 (ptr:int) (v:quad32) (h:vale_stack) : GTot vale_stack
[]
Vale.X64.Stack_i.store_stack128
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.X64.Memory.quad32 -> h: Vale.X64.Stack_i.vale_stack -> Prims.GTot Vale.X64.Stack_i.vale_stack
{ "end_col": 52, "end_line": 15, "start_col": 27, "start_line": 15 }
Prims.GTot
val valid_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t
val valid_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0 let valid_taint_stack64 ptr t stackTaint =
false
null
false
Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Memory.memtaint", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.Map.sel", "Prims.op_Addition", "Vale.Def.Prop_s.prop0" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let BS.Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_compose_free_stack64 start inter finish h = let BS.Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let BS.Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let BS.Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_rsp_free_stack64 start finish h = () let lemma_same_init_rsp_store_stack64 ptr v h = ()
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[]
Vale.X64.Stack_i.valid_taint_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> stackTaint: Vale.X64.Memory.memtaint -> Prims.GTot Vale.Def.Prop_s.prop0
{ "end_col": 34, "end_line": 81, "start_col": 2, "start_line": 74 }
FStar.Pervasives.Lemma
val lemma_correct_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (load_stack64 ptr (store_stack64 ptr v h) == v) [SMTPat (load_stack64 ptr (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_correct_store_load_stack64 ptr v h = let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem
val lemma_correct_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (load_stack64 ptr (store_stack64 ptr v h) == v) [SMTPat (load_stack64 ptr (store_stack64 ptr v h))] let lemma_correct_store_load_stack64 ptr v h =
false
null
true
let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Memory.nat64", "Vale.X64.Stack_i.vale_stack", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.Def.Types_s.nat8", "Vale.Arch.MachineHeap.correct_update_get64", "Prims.unit" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () #pop-options
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_correct_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (load_stack64 ptr (store_stack64 ptr v h) == v) [SMTPat (load_stack64 ptr (store_stack64 ptr v h))]
[]
Vale.X64.Stack_i.lemma_correct_store_load_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.X64.Memory.nat64 -> h: Vale.X64.Stack_i.vale_stack -> FStar.Pervasives.Lemma (ensures Vale.X64.Stack_i.load_stack64 ptr (Vale.X64.Stack_i.store_stack64 ptr v h) == v) [SMTPat (Vale.X64.Stack_i.load_stack64 ptr (Vale.X64.Stack_i.store_stack64 ptr v h))]
{ "end_col": 32, "end_line": 38, "start_col": 46, "start_line": 36 }
FStar.Pervasives.Lemma
val lemma_free_stack_same_valid64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures valid_src_stack64 ptr (free_stack64 start finish h)) [SMTPat (valid_src_stack64 ptr (free_stack64 start finish h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
val lemma_free_stack_same_valid64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures valid_src_stack64 ptr (free_stack64 start finish h)) [SMTPat (valid_src_stack64 ptr (free_stack64 start finish h))] let lemma_free_stack_same_valid64 start finish ptr h =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.Def.Types_s.nat8", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "FStar.Set.set", "FStar.Map.domain", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_free_stack_same_valid64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures valid_src_stack64 ptr (free_stack64 start finish h)) [SMTPat (valid_src_stack64 ptr (free_stack64 start finish h))]
[]
Vale.X64.Stack_i.lemma_free_stack_same_valid64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires Vale.X64.Stack_i.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures Vale.X64.Stack_i.valid_src_stack64 ptr (Vale.X64.Stack_i.free_stack64 start finish h) ) [ SMTPat (Vale.X64.Stack_i.valid_src_stack64 ptr (Vale.X64.Stack_i.free_stack64 start finish h)) ]
{ "end_col": 81, "end_line": 29, "start_col": 2, "start_line": 26 }
FStar.Pervasives.Lemma
val lemma_frame_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack64 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_frame_store_load_stack64 ptr v h i = let BS.Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal ()
val lemma_frame_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack64 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack64 ptr v h))] let lemma_frame_store_load_stack64 ptr v h i =
false
null
true
let BS.Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal ()
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Memory.nat64", "Vale.X64.Stack_i.vale_stack", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.Def.Types_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val64_reveal", "Prims.unit", "Vale.Arch.MachineHeap.frame_update_heap64" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_frame_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack64 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack64 ptr v h))]
[]
Vale.X64.Stack_i.lemma_frame_store_load_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.X64.Memory.nat64 -> h: Vale.X64.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.X64.Stack_i.valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures Vale.X64.Stack_i.load_stack64 i (Vale.X64.Stack_i.store_stack64 ptr v h) == Vale.X64.Stack_i.load_stack64 i h) [SMTPat (Vale.X64.Stack_i.load_stack64 i (Vale.X64.Stack_i.store_stack64 ptr v h))]
{ "end_col": 29, "end_line": 43, "start_col": 46, "start_line": 40 }
FStar.Pervasives.Lemma
val lemma_free_stack_same_load64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures load_stack64 ptr h == load_stack64 ptr (free_stack64 start finish h)) [SMTPat (load_stack64 ptr (free_stack64 start finish h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal ()
val lemma_free_stack_same_load64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures load_stack64 ptr h == load_stack64 ptr (free_stack64 start finish h)) [SMTPat (load_stack64 ptr (free_stack64 start finish h))] let lemma_free_stack_same_load64 start finish ptr h =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal ()
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.Def.Types_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val64_reveal", "Prims.unit", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "FStar.Set.set", "FStar.Map.domain", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let BS.Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal ()
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_free_stack_same_load64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures load_stack64 ptr h == load_stack64 ptr (free_stack64 start finish h)) [SMTPat (load_stack64 ptr (free_stack64 start finish h))]
[]
Vale.X64.Stack_i.lemma_free_stack_same_load64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires Vale.X64.Stack_i.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures Vale.X64.Stack_i.load_stack64 ptr h == Vale.X64.Stack_i.load_stack64 ptr (Vale.X64.Stack_i.free_stack64 start finish h)) [SMTPat (Vale.X64.Stack_i.load_stack64 ptr (Vale.X64.Stack_i.free_stack64 start finish h))]
{ "end_col": 29, "end_line": 50, "start_col": 2, "start_line": 46 }
FStar.Pervasives.Lemma
val lemma_store_stack_same_valid64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
val lemma_store_stack_same_valid64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack64 ptr v h))] let lemma_store_stack_same_valid64 ptr v h i =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Memory.nat64", "Vale.X64.Stack_i.vale_stack", "Vale.Arch.MachineHeap_s.update_heap64_reveal", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40"
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_stack_same_valid64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack64 ptr v h))]
[]
Vale.X64.Stack_i.lemma_store_stack_same_valid64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.X64.Memory.nat64 -> h: Vale.X64.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.X64.Stack_i.valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures Vale.X64.Stack_i.valid_src_stack64 i (Vale.X64.Stack_i.store_stack64 ptr v h)) [SMTPat (Vale.X64.Stack_i.valid_src_stack64 i (Vale.X64.Stack_i.store_stack64 ptr v h))]
{ "end_col": 28, "end_line": 23, "start_col": 2, "start_line": 22 }
FStar.Pervasives.Lemma
val lemma_store_new_valid64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (valid_src_stack64 ptr (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 ptr (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
val lemma_store_new_valid64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (valid_src_stack64 ptr (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 ptr (store_stack64 ptr v h))] let lemma_store_new_valid64 ptr v h =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Memory.nat64", "Vale.X64.Stack_i.vale_stack", "Vale.Arch.MachineHeap_s.update_heap64_reveal", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_new_valid64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (valid_src_stack64 ptr (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 ptr (store_stack64 ptr v h))]
[]
Vale.X64.Stack_i.lemma_store_new_valid64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.X64.Memory.nat64 -> h: Vale.X64.Stack_i.vale_stack -> FStar.Pervasives.Lemma (ensures Vale.X64.Stack_i.valid_src_stack64 ptr (Vale.X64.Stack_i.store_stack64 ptr v h)) [SMTPat (Vale.X64.Stack_i.valid_src_stack64 ptr (Vale.X64.Stack_i.store_stack64 ptr v h))]
{ "end_col": 28, "end_line": 33, "start_col": 2, "start_line": 32 }
FStar.Pervasives.Lemma
val lemma_compose_free_stack64 (start:int) (inter:int) (finish:int) (h:vale_stack) : Lemma (requires start <= inter /\ inter <= finish) (ensures free_stack64 inter finish (free_stack64 start inter h) == free_stack64 start finish h) [SMTPat (free_stack64 inter finish (free_stack64 start inter h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_compose_free_stack64 start inter finish h = let BS.Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let BS.Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let BS.Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2)
val lemma_compose_free_stack64 (start:int) (inter:int) (finish:int) (h:vale_stack) : Lemma (requires start <= inter /\ inter <= finish) (ensures free_stack64 inter finish (free_stack64 start inter h) == free_stack64 start finish h) [SMTPat (free_stack64 inter finish (free_stack64 start inter h))] let lemma_compose_free_stack64 start inter finish h =
false
null
true
let BS.Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let BS.Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let BS.Machine_stack _ mem2 = free_stack64 start finish h in let aux (i: int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2)
{ "checked_file": "Vale.X64.Stack_i.fst.checked", "dependencies": [ "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.X64.Stack_i.vale_stack", "Vale.Def.Types_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.Def.Types_s.nat8", "Prims._assert", "FStar.Map.equal", "Prims.unit", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.op_Equality", "Prims.bool", "FStar.Map.contains", "FStar.Map.sel", "Prims.l_True", "Prims.squash", "Vale.Def.Words_s.nat8", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Lib.Set.lemma_sel_restrict", "Vale.Lib.Set.remove_between", "Vale.Lib.Set.remove_between_reveal", "Vale.X64.Stack_i.free_stack64", "FStar.Set.set", "FStar.Map.domain", "FStar.Map.restrict" ]
[]
module Vale.X64.Stack_i open FStar.Mul module BS = Vale.X64.Machine_Semantics_s open Vale.Arch.MachineHeap let vale_stack = BS.machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let init_rsp h = h.BS.initial_rsp (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let BS.Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let BS.Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let BS.Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal ()
false
false
Vale.X64.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_compose_free_stack64 (start:int) (inter:int) (finish:int) (h:vale_stack) : Lemma (requires start <= inter /\ inter <= finish) (ensures free_stack64 inter finish (free_stack64 start inter h) == free_stack64 start finish h) [SMTPat (free_stack64 inter finish (free_stack64 start inter h))]
[]
Vale.X64.Stack_i.lemma_compose_free_stack64
{ "file_name": "vale/code/arch/x64/Vale.X64.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> inter: Prims.int -> finish: Prims.int -> h: Vale.X64.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires start <= inter /\ inter <= finish) (ensures Vale.X64.Stack_i.free_stack64 inter finish (Vale.X64.Stack_i.free_stack64 start inter h) == Vale.X64.Stack_i.free_stack64 start finish h) [ SMTPat (Vale.X64.Stack_i.free_stack64 inter finish (Vale.X64.Stack_i.free_stack64 start inter h)) ]
{ "end_col": 30, "end_line": 67, "start_col": 53, "start_line": 52 }
FStar.Pervasives.Lemma
val lemma_BitwiseXorWithZero64 (n:nat64) : Lemma (ixor n 0 == n)
[ { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_BitwiseXorWithZero64 n = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n 0) n
val lemma_BitwiseXorWithZero64 (n:nat64) : Lemma (ixor n 0 == n) let lemma_BitwiseXorWithZero64 n =
false
null
true
lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n 0) n
{ "checked_file": "Vale.AES.Types_helpers.fst.checked", "dependencies": [ "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.Types_helpers.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat64", "Vale.Arch.TypesNative.lemma_equal_nth", "Vale.Def.Types_s.ixor", "Vale.Def.Words_s.pow2_64", "Prims.unit", "Vale.Arch.TypesNative.lemma_zero_nth", "Vale.Arch.TypesNative.lemma_ixor_nth_all" ]
[]
module Vale.AES.Types_helpers open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open Vale.Arch.TypesNative let lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) )) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; () let lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) )) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat8); reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; ()
false
false
Vale.AES.Types_helpers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_BitwiseXorWithZero64 (n:nat64) : Lemma (ixor n 0 == n)
[]
Vale.AES.Types_helpers.lemma_BitwiseXorWithZero64
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Vale.Def.Types_s.nat64 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.ixor n 0 == n)
{ "end_col": 33, "end_line": 39, "start_col": 2, "start_line": 37 }
FStar.Pervasives.Lemma
val lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) ))
[ { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) )) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat8); reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; ()
val lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) )) let lemma_slices_be_quad32_to_bytes (q: quad32) : Lemma (ensures (let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)))) =
false
null
true
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat8); reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; ()
{ "checked_file": "Vale.AES.Types_helpers.fst.checked", "dependencies": [ "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.Types_helpers.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words.Seq_s.seq16", "Vale.Def.Words_s.nat8", "Vale.Arch.Types.be_quad32_to_bytes", "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Prims.l_True", "Prims.squash", "Prims.l_and", "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_to_four_BE", "FStar.Seq.Base.slice", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Prims.pow2", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.Types_helpers open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open Vale.Arch.TypesNative let lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) )) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; () let lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) ))
false
false
Vale.AES.Types_helpers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) ))
[]
Vale.AES.Types_helpers.lemma_slices_be_quad32_to_bytes
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures (let s = Vale.Arch.Types.be_quad32_to_bytes q in Mkfour?.hi3 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 0 4)) /\ Mkfour?.hi2 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 4 8)) /\ Mkfour?.lo1 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 8 12)) /\ Mkfour?.lo0 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 12 16))))
{ "end_col": 4, "end_line": 34, "start_col": 2, "start_line": 32 }
FStar.Pervasives.Lemma
val lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) ))
[ { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) )) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; ()
val lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) )) let lemma_slices_le_quad32_to_bytes (q: quad32) : Lemma (ensures (let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)))) =
false
null
true
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; ()
{ "checked_file": "Vale.AES.Types_helpers.fst.checked", "dependencies": [ "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.Types_helpers.fst" }
[ "lemma" ]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "FStar.Pervasives.reveal_opaque", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Prims.l_True", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.Def.Words_s.four", "FStar.Mul.op_Star", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Prims.squash", "Prims.l_and", "Vale.Def.Words_s.natN", "Vale.Def.Words_s.pow2_32", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_to_four_LE", "FStar.Seq.Base.slice", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Prims.pow2", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Words_s.nat8", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.Types_helpers open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open Vale.Arch.TypesNative let lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) ))
false
false
Vale.AES.Types_helpers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) ))
[]
Vale.AES.Types_helpers.lemma_slices_le_quad32_to_bytes
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures (let s = Vale.Def.Types_s.le_quad32_to_bytes q in Mkfour?.lo0 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE (FStar.Seq.Base.slice s 0 4)) /\ Mkfour?.lo1 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE (FStar.Seq.Base.slice s 4 8)) /\ Mkfour?.hi2 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE (FStar.Seq.Base.slice s 8 12)) /\ Mkfour?.hi3 q == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE (FStar.Seq.Base.slice s 12 16))))
{ "end_col": 4, "end_line": 21, "start_col": 2, "start_line": 19 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow_point (k:nat) (p:S.aff_point) = LE.pow S.mk_p256_comm_monoid p k
let pow_point (k: nat) (p: S.aff_point) =
false
null
false
LE.pow S.mk_p256_comm_monoid p k
{ "checked_file": "Hacl.P256.PrecompTable.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.PrecompTable.fsti" }
[ "total" ]
[ "Prims.nat", "Spec.P256.PointOps.aff_point", "Lib.Exponentiation.Definition.pow", "Spec.P256.mk_p256_comm_monoid" ]
[]
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation.Definition module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation.Definitions module SPT = Hacl.Spec.PrecompBaseTable module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val proj_point_to_list: p:S.proj_point -> x:list uint64{FStar.List.Tot.length x = 12 /\ mk_to_p256_comm_monoid.BE.linv (Seq.seq_of_list x)} val lemma_refl: x:S.proj_point -> Lemma (S.mk_p256_concrete_ops.SE.to.SE.refl x == mk_to_p256_comm_monoid.BE.refl (Seq.seq_of_list (proj_point_to_list x))) inline_for_extraction noextract let mk_p256_precomp_base_table: SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul = { SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl; } inline_for_extraction noextract
false
true
Hacl.P256.PrecompTable.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow_point : k: Prims.nat -> p: Spec.P256.PointOps.aff_point -> Spec.P256.PointOps.aff_point
[]
Hacl.P256.PrecompTable.pow_point
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Prims.nat -> p: Spec.P256.PointOps.aff_point -> Spec.P256.PointOps.aff_point
{ "end_col": 34, "end_line": 45, "start_col": 2, "start_line": 45 }
Prims.Tot
val g_aff:S.aff_point
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_aff : S.aff_point = S.to_aff_point S.base_point
val g_aff:S.aff_point let g_aff:S.aff_point =
false
null
false
S.to_aff_point S.base_point
{ "checked_file": "Hacl.P256.PrecompTable.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.PrecompTable.fsti" }
[ "total" ]
[ "Spec.P256.PointOps.to_aff_point", "Spec.P256.PointOps.base_point" ]
[]
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation.Definition module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation.Definitions module SPT = Hacl.Spec.PrecompBaseTable module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val proj_point_to_list: p:S.proj_point -> x:list uint64{FStar.List.Tot.length x = 12 /\ mk_to_p256_comm_monoid.BE.linv (Seq.seq_of_list x)} val lemma_refl: x:S.proj_point -> Lemma (S.mk_p256_concrete_ops.SE.to.SE.refl x == mk_to_p256_comm_monoid.BE.refl (Seq.seq_of_list (proj_point_to_list x))) inline_for_extraction noextract let mk_p256_precomp_base_table: SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul = { SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl; } inline_for_extraction noextract let pow_point (k:nat) (p:S.aff_point) = LE.pow S.mk_p256_comm_monoid p k //----------------
false
true
Hacl.P256.PrecompTable.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_aff:S.aff_point
[]
Hacl.P256.PrecompTable.g_aff
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.P256.PointOps.aff_point
{ "end_col": 53, "end_line": 50, "start_col": 26, "start_line": 50 }
Prims.Tot
val g_pow2_64:S.aff_point
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_pow2_64 : S.aff_point = pow_point (pow2 64) g_aff
val g_pow2_64:S.aff_point let g_pow2_64:S.aff_point =
false
null
false
pow_point (pow2 64) g_aff
{ "checked_file": "Hacl.P256.PrecompTable.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.PrecompTable.fsti" }
[ "total" ]
[ "Hacl.P256.PrecompTable.pow_point", "Prims.pow2", "Hacl.P256.PrecompTable.g_aff" ]
[]
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation.Definition module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation.Definitions module SPT = Hacl.Spec.PrecompBaseTable module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val proj_point_to_list: p:S.proj_point -> x:list uint64{FStar.List.Tot.length x = 12 /\ mk_to_p256_comm_monoid.BE.linv (Seq.seq_of_list x)} val lemma_refl: x:S.proj_point -> Lemma (S.mk_p256_concrete_ops.SE.to.SE.refl x == mk_to_p256_comm_monoid.BE.refl (Seq.seq_of_list (proj_point_to_list x))) inline_for_extraction noextract let mk_p256_precomp_base_table: SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul = { SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl; } inline_for_extraction noextract let pow_point (k:nat) (p:S.aff_point) = LE.pow S.mk_p256_comm_monoid p k //---------------- noextract let g_aff : S.aff_point = S.to_aff_point S.base_point // [pow2 64]G
false
true
Hacl.P256.PrecompTable.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_pow2_64:S.aff_point
[]
Hacl.P256.PrecompTable.g_pow2_64
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.P256.PointOps.aff_point
{ "end_col": 55, "end_line": 54, "start_col": 30, "start_line": 54 }
Prims.Tot
val g_pow2_192:S.aff_point
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_pow2_192 : S.aff_point = pow_point (pow2 192) g_aff
val g_pow2_192:S.aff_point let g_pow2_192:S.aff_point =
false
null
false
pow_point (pow2 192) g_aff
{ "checked_file": "Hacl.P256.PrecompTable.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.PrecompTable.fsti" }
[ "total" ]
[ "Hacl.P256.PrecompTable.pow_point", "Prims.pow2", "Hacl.P256.PrecompTable.g_aff" ]
[]
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation.Definition module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation.Definitions module SPT = Hacl.Spec.PrecompBaseTable module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val proj_point_to_list: p:S.proj_point -> x:list uint64{FStar.List.Tot.length x = 12 /\ mk_to_p256_comm_monoid.BE.linv (Seq.seq_of_list x)} val lemma_refl: x:S.proj_point -> Lemma (S.mk_p256_concrete_ops.SE.to.SE.refl x == mk_to_p256_comm_monoid.BE.refl (Seq.seq_of_list (proj_point_to_list x))) inline_for_extraction noextract let mk_p256_precomp_base_table: SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul = { SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl; } inline_for_extraction noextract let pow_point (k:nat) (p:S.aff_point) = LE.pow S.mk_p256_comm_monoid p k //---------------- noextract let g_aff : S.aff_point = S.to_aff_point S.base_point // [pow2 64]G noextract let g_pow2_64 : S.aff_point = pow_point (pow2 64) g_aff // [pow2 128]G noextract let g_pow2_128 : S.aff_point = pow_point (pow2 128) g_aff // [pow2 192]G
false
true
Hacl.P256.PrecompTable.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_pow2_192:S.aff_point
[]
Hacl.P256.PrecompTable.g_pow2_192
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.P256.PointOps.aff_point
{ "end_col": 57, "end_line": 62, "start_col": 31, "start_line": 62 }
Prims.Tot
val g_pow2_128:S.aff_point
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_pow2_128 : S.aff_point = pow_point (pow2 128) g_aff
val g_pow2_128:S.aff_point let g_pow2_128:S.aff_point =
false
null
false
pow_point (pow2 128) g_aff
{ "checked_file": "Hacl.P256.PrecompTable.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.PrecompTable.fsti" }
[ "total" ]
[ "Hacl.P256.PrecompTable.pow_point", "Prims.pow2", "Hacl.P256.PrecompTable.g_aff" ]
[]
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation.Definition module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation.Definitions module SPT = Hacl.Spec.PrecompBaseTable module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val proj_point_to_list: p:S.proj_point -> x:list uint64{FStar.List.Tot.length x = 12 /\ mk_to_p256_comm_monoid.BE.linv (Seq.seq_of_list x)} val lemma_refl: x:S.proj_point -> Lemma (S.mk_p256_concrete_ops.SE.to.SE.refl x == mk_to_p256_comm_monoid.BE.refl (Seq.seq_of_list (proj_point_to_list x))) inline_for_extraction noextract let mk_p256_precomp_base_table: SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul = { SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl; } inline_for_extraction noextract let pow_point (k:nat) (p:S.aff_point) = LE.pow S.mk_p256_comm_monoid p k //---------------- noextract let g_aff : S.aff_point = S.to_aff_point S.base_point // [pow2 64]G noextract let g_pow2_64 : S.aff_point = pow_point (pow2 64) g_aff // [pow2 128]G
false
true
Hacl.P256.PrecompTable.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_pow2_128:S.aff_point
[]
Hacl.P256.PrecompTable.g_pow2_128
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.P256.PointOps.aff_point
{ "end_col": 57, "end_line": 58, "start_col": 31, "start_line": 58 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let precomp_table_acc_inv (p:S.aff_point) (table_len:nat{table_len * 12 <= max_size_t}) (table:LSeq.lseq uint64 (table_len * 12)) (j:nat{j < table_len}) = Math.Lemmas.lemma_mult_lt_right 12 j table_len; Math.Lemmas.lemma_mult_le_right 12 (j + 1) table_len; let bj = LSeq.sub table (j * 12) 12 in point_inv_seq bj /\ S.to_aff_point (from_mont_point (as_point_nat_seq bj)) == pow_point j p
let precomp_table_acc_inv (p: S.aff_point) (table_len: nat{table_len * 12 <= max_size_t}) (table: LSeq.lseq uint64 (table_len * 12)) (j: nat{j < table_len}) =
false
null
false
Math.Lemmas.lemma_mult_lt_right 12 j table_len; Math.Lemmas.lemma_mult_le_right 12 (j + 1) table_len; let bj = LSeq.sub table (j * 12) 12 in point_inv_seq bj /\ S.to_aff_point (from_mont_point (as_point_nat_seq bj)) == pow_point j p
{ "checked_file": "Hacl.P256.PrecompTable.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.PrecompTable.fsti" }
[ "total" ]
[ "Spec.P256.PointOps.aff_point", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.op_LessThan", "Prims.l_and", "Hacl.Impl.P256.Point.point_inv_seq", "Prims.eq2", "Spec.P256.PointOps.to_aff_point", "Hacl.Impl.P256.Point.from_mont_point", "Hacl.Impl.P256.Point.as_point_nat_seq", "Hacl.P256.PrecompTable.pow_point", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.op_Addition", "Prims.l_Forall", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.lemma_mult_lt_right", "Prims.logical" ]
[]
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation.Definition module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation.Definitions module SPT = Hacl.Spec.PrecompBaseTable module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val proj_point_to_list: p:S.proj_point -> x:list uint64{FStar.List.Tot.length x = 12 /\ mk_to_p256_comm_monoid.BE.linv (Seq.seq_of_list x)} val lemma_refl: x:S.proj_point -> Lemma (S.mk_p256_concrete_ops.SE.to.SE.refl x == mk_to_p256_comm_monoid.BE.refl (Seq.seq_of_list (proj_point_to_list x))) inline_for_extraction noextract let mk_p256_precomp_base_table: SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul = { SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl; } inline_for_extraction noextract let pow_point (k:nat) (p:S.aff_point) = LE.pow S.mk_p256_comm_monoid p k //---------------- noextract let g_aff : S.aff_point = S.to_aff_point S.base_point // [pow2 64]G noextract let g_pow2_64 : S.aff_point = pow_point (pow2 64) g_aff // [pow2 128]G noextract let g_pow2_128 : S.aff_point = pow_point (pow2 128) g_aff // [pow2 192]G noextract let g_pow2_192 : S.aff_point = pow_point (pow2 192) g_aff inline_for_extraction noextract val proj_g_pow2_64_lseq : LSeq.lseq uint64 12 inline_for_extraction noextract val proj_g_pow2_128_lseq : LSeq.lseq uint64 12 inline_for_extraction noextract val proj_g_pow2_192_lseq : LSeq.lseq uint64 12 val proj_g_pow2_64_lseq_lemma: unit -> Lemma (point_inv_seq proj_g_pow2_64_lseq /\ S.to_aff_point (from_mont_point (as_point_nat_seq proj_g_pow2_64_lseq)) == g_pow2_64) val proj_g_pow2_128_lseq_lemma: unit -> Lemma (point_inv_seq proj_g_pow2_128_lseq /\ S.to_aff_point (from_mont_point (as_point_nat_seq proj_g_pow2_128_lseq)) == g_pow2_128) val proj_g_pow2_192_lseq_lemma: unit -> Lemma (point_inv_seq proj_g_pow2_192_lseq /\ S.to_aff_point (from_mont_point (as_point_nat_seq proj_g_pow2_192_lseq)) == g_pow2_192) inline_for_extraction val mk_proj_g_pow2_64: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_64_lseq) inline_for_extraction val mk_proj_g_pow2_128: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_128_lseq) inline_for_extraction val mk_proj_g_pow2_192: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_192_lseq) //---------------- unfold let precomp_table_acc_inv (p:S.aff_point) (table_len:nat{table_len * 12 <= max_size_t}) (table:LSeq.lseq uint64 (table_len * 12)) (j:nat{j < table_len})
false
false
Hacl.P256.PrecompTable.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val precomp_table_acc_inv : p: Spec.P256.PointOps.aff_point -> table_len: Prims.nat{table_len * 12 <= Lib.IntTypes.max_size_t} -> table: Lib.Sequence.lseq Lib.IntTypes.uint64 (table_len * 12) -> j: Prims.nat{j < table_len} -> Prims.logical
[]
Hacl.P256.PrecompTable.precomp_table_acc_inv
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.P256.PointOps.aff_point -> table_len: Prims.nat{table_len * 12 <= Lib.IntTypes.max_size_t} -> table: Lib.Sequence.lseq Lib.IntTypes.uint64 (table_len * 12) -> j: Prims.nat{j < table_len} -> Prims.logical
{ "end_col": 93, "end_line": 112, "start_col": 2, "start_line": 109 }
Prims.Tot
val mk_p256_precomp_base_table:SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_p256_precomp_base_table: SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul = { SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl; }
val mk_p256_precomp_base_table:SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul let mk_p256_precomp_base_table:SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul =
false
null
false
{ SPT.concr_ops = S.mk_p256_concrete_ops; SPT.to_cm = mk_to_p256_comm_monoid; SPT.to_list = proj_point_to_list; SPT.lemma_refl = lemma_refl }
{ "checked_file": "Hacl.P256.PrecompTable.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.PrecompTable.fsti" }
[ "total" ]
[ "Hacl.Spec.PrecompBaseTable.Mkmk_precomp_base_table", "Spec.P256.PointOps.proj_point", "Lib.IntTypes.U64", "FStar.UInt32.uint_to_t", "Spec.P256.mk_p256_concrete_ops", "Hacl.Impl.P256.Group.mk_to_p256_comm_monoid", "Hacl.P256.PrecompTable.proj_point_to_list", "Hacl.P256.PrecompTable.lemma_refl" ]
[]
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation.Definition module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation.Definitions module SPT = Hacl.Spec.PrecompBaseTable module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val proj_point_to_list: p:S.proj_point -> x:list uint64{FStar.List.Tot.length x = 12 /\ mk_to_p256_comm_monoid.BE.linv (Seq.seq_of_list x)} val lemma_refl: x:S.proj_point -> Lemma (S.mk_p256_concrete_ops.SE.to.SE.refl x == mk_to_p256_comm_monoid.BE.refl (Seq.seq_of_list (proj_point_to_list x))) inline_for_extraction noextract
false
false
Hacl.P256.PrecompTable.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_p256_precomp_base_table:SPT.mk_precomp_base_table S.proj_point U64 12ul 0ul
[]
Hacl.P256.PrecompTable.mk_p256_precomp_base_table
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Spec.PrecompBaseTable.mk_precomp_base_table Spec.P256.PointOps.proj_point Lib.IntTypes.U64 (FStar.UInt32.uint_to_t 12 <: FStar.UInt32.t) (FStar.UInt32.uint_to_t 0 <: FStar.UInt32.t)
{ "end_col": 30, "end_line": 40, "start_col": 2, "start_line": 37 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nullary_macro t d = { macro_arguments_t = []; macro_result_t = t; macro_defn_t = d }
let nullary_macro t d =
false
null
false
{ macro_arguments_t = []; macro_result_t = t; macro_defn_t = d }
{ "checked_file": "GlobalEnv.fst.checked", "dependencies": [ "prims.fst.checked", "Hashtable.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.All.fst.checked", "Config.fst.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "GlobalEnv.fst" }
[ "total" ]
[ "Ast.typ", "FStar.Pervasives.Native.option", "Ast.expr", "GlobalEnv.Mkmacro_signature", "Prims.Nil", "GlobalEnv.macro_signature" ]
[]
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain as copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module GlobalEnv (* This module implements a pass over the source AST -- checking that all names are properly bound -- well-typed -- computing the size of types -- computing which fields are dependent on others *) open FStar.Mul open FStar.List.Tot open Ast open FStar.All module H = Hashtable /// Computed attributes for a decl: /// -- its size in bytes /// -- whether or not it ends with a variable-length field (suffix) /// -- whether or not its validator may fail /// -- whether the type is an integral type, i.e., can it be decomposed into bitfields type decl_attributes = { may_fail:bool; integral:option integer_type; bit_order: (bit_order: option bitfield_bit_order { Some? bit_order ==> Some? integral }); has_reader:bool; parser_weak_kind:weak_kind; parser_kind_nz:option bool } noeq type macro_signature = { macro_arguments_t: list typ; macro_result_t: typ; macro_defn_t:option expr }
false
true
GlobalEnv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nullary_macro : t: Ast.typ -> d: FStar.Pervasives.Native.option Ast.expr -> GlobalEnv.macro_signature
[]
GlobalEnv.nullary_macro
{ "file_name": "src/3d/GlobalEnv.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Ast.typ -> d: FStar.Pervasives.Native.option Ast.expr -> GlobalEnv.macro_signature
{ "end_col": 18, "end_line": 55, "start_col": 2, "start_line": 53 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verify_p256_st (alg:S.hash_alg_ecdsa) = msg_len:size_t{v msg_len >= S.min_input_length alg} -> msg:lbuffer uint8 msg_len -> public_key:lbuffer uint8 64ul -> signature_r:lbuffer uint8 32ul -> signature_s:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h public_key /\ live h signature_r /\ live h signature_s /\ live h msg) (ensures fun h0 res h1 -> modifies0 h0 h1 /\ res == S.ecdsa_verification_agile alg (v msg_len) (as_seq h0 msg) (as_seq h0 public_key) (as_seq h0 signature_r) (as_seq h0 signature_s))
let ecdsa_verify_p256_st (alg: S.hash_alg_ecdsa) =
false
null
false
msg_len: size_t{v msg_len >= S.min_input_length alg} -> msg: lbuffer uint8 msg_len -> public_key: lbuffer uint8 64ul -> signature_r: lbuffer uint8 32ul -> signature_s: lbuffer uint8 32ul -> Stack bool (requires fun h -> live h public_key /\ live h signature_r /\ live h signature_s /\ live h msg ) (ensures fun h0 res h1 -> modifies0 h0 h1 /\ res == S.ecdsa_verification_agile alg (v msg_len) (as_seq h0 msg) (as_seq h0 public_key) (as_seq h0 signature_r) (as_seq h0 signature_s))
{ "checked_file": "Hacl.P256.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.fsti" }
[ "total" ]
[ "Spec.P256.hash_alg_ecdsa", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.P256.min_input_length", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Prims.bool", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.modifies0", "Prims.eq2", "Spec.P256.ecdsa_verification_agile", "Lib.Buffer.as_seq" ]
[]
module Hacl.P256 open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Spec.Hash.Definitions module S = Spec.P256 module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" // TODO?: change API for `ecdsa_verify`, namely, take `signature` as an argument inline_for_extraction noextract let ecdsa_sign_p256_st (alg:S.hash_alg_ecdsa) = signature:lbuffer uint8 64ul -> msg_len:size_t{v msg_len >= S.min_input_length alg} -> msg:lbuffer uint8 msg_len -> private_key:lbuffer uint8 32ul -> nonce:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h signature /\ live h msg /\ live h private_key /\ live h nonce /\ disjoint signature msg /\ disjoint signature private_key /\ disjoint signature nonce) (ensures fun h0 flag h1 -> modifies (loc signature) h0 h1 /\ (let sgnt = S.ecdsa_signature_agile alg (v msg_len) (as_seq h0 msg) (as_seq h0 private_key) (as_seq h0 nonce) in (flag <==> Some? sgnt) /\ (flag ==> (as_seq h1 signature == Some?.v sgnt)))) inline_for_extraction noextract
false
true
Hacl.P256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verify_p256_st : alg: Spec.P256.hash_alg_ecdsa -> Type0
[]
Hacl.P256.ecdsa_verify_p256_st
{ "file_name": "code/ecdsap256/Hacl.P256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Spec.P256.hash_alg_ecdsa -> Type0
{ "end_col": 77, "end_line": 49, "start_col": 4, "start_line": 39 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_sign_p256_st (alg:S.hash_alg_ecdsa) = signature:lbuffer uint8 64ul -> msg_len:size_t{v msg_len >= S.min_input_length alg} -> msg:lbuffer uint8 msg_len -> private_key:lbuffer uint8 32ul -> nonce:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h signature /\ live h msg /\ live h private_key /\ live h nonce /\ disjoint signature msg /\ disjoint signature private_key /\ disjoint signature nonce) (ensures fun h0 flag h1 -> modifies (loc signature) h0 h1 /\ (let sgnt = S.ecdsa_signature_agile alg (v msg_len) (as_seq h0 msg) (as_seq h0 private_key) (as_seq h0 nonce) in (flag <==> Some? sgnt) /\ (flag ==> (as_seq h1 signature == Some?.v sgnt))))
let ecdsa_sign_p256_st (alg: S.hash_alg_ecdsa) =
false
null
false
signature: lbuffer uint8 64ul -> msg_len: size_t{v msg_len >= S.min_input_length alg} -> msg: lbuffer uint8 msg_len -> private_key: lbuffer uint8 32ul -> nonce: lbuffer uint8 32ul -> Stack bool (requires fun h -> live h signature /\ live h msg /\ live h private_key /\ live h nonce /\ disjoint signature msg /\ disjoint signature private_key /\ disjoint signature nonce) (ensures fun h0 flag h1 -> modifies (loc signature) h0 h1 /\ (let sgnt = S.ecdsa_signature_agile alg (v msg_len) (as_seq h0 msg) (as_seq h0 private_key) (as_seq h0 nonce) in (flag <==> Some? sgnt) /\ (flag ==> (as_seq h1 signature == Some?.v sgnt))))
{ "checked_file": "Hacl.P256.fsti.checked", "dependencies": [ "Spec.P256.fst.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.P256.fsti" }
[ "total" ]
[ "Spec.P256.hash_alg_ecdsa", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.P256.min_input_length", "Prims.bool", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.l_iff", "FStar.Pervasives.Native.uu___is_Some", "Lib.ByteSequence.lbytes", "Prims.l_imp", "Prims.eq2", "Lib.Sequence.lseq", "Lib.Buffer.as_seq", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.option", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.P256.ecdsa_signature_agile" ]
[]
module Hacl.P256 open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Spec.Hash.Definitions module S = Spec.P256 module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" // TODO?: change API for `ecdsa_verify`, namely, take `signature` as an argument inline_for_extraction noextract
false
true
Hacl.P256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_sign_p256_st : alg: Spec.P256.hash_alg_ecdsa -> Type0
[]
Hacl.P256.ecdsa_sign_p256_st
{ "file_name": "code/ecdsap256/Hacl.P256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Spec.P256.hash_alg_ecdsa -> Type0
{ "end_col": 81, "end_line": 34, "start_col": 4, "start_line": 22 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_subst = shift_subst_n 1
let shift_subst =
false
null
false
shift_subst_n 1
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.shift_subst_n" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_subst : x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
[]
FStar.Reflection.Typing.shift_subst
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
{ "end_col": 33, "end_line": 201, "start_col": 18, "start_line": 201 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tm_type u = pack_ln (Tv_Type u)
let tm_type u =
false
null
false
pack_ln (Tv_Type u)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Type", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tm_type : u118: FStar.Reflection.Types.universe -> FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.tm_type
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
u118: FStar.Reflection.Types.universe -> FStar.Reflection.Types.term
{ "end_col": 35, "end_line": 540, "start_col": 16, "start_line": 540 }
Prims.Tot
val sort_default:sort_t
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun
val sort_default:sort_t let sort_default:sort_t =
false
null
false
FStar.Sealed.Inhabited.seal tun
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Sealed.Inhabited.seal", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.tun" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sort_default:sort_t
[]
FStar.Reflection.Typing.sort_default
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Typing.sort_t
{ "end_col": 59, "end_line": 135, "start_col": 28, "start_line": 135 }
Prims.Tot
val lookup_fvar (e: env) (x: fv) : option term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
val lookup_fvar (e: env) (x: fv) : option term let lookup_fvar (e: env) (x: fv) : option term =
false
null
false
lookup_fvar_uinst e x []
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "FStar.Reflection.Types.fv", "FStar.Reflection.Typing.lookup_fvar_uinst", "Prims.Nil", "FStar.Reflection.Types.universe", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lookup_fvar (e: env) (x: fv) : option term
[]
FStar.Reflection.Typing.lookup_fvar
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
e: FStar.Reflection.Types.env -> x: FStar.Reflection.Types.fv -> FStar.Pervasives.Native.option FStar.Reflection.Types.term
{ "end_col": 71, "end_line": 126, "start_col": 47, "start_line": 126 }
Prims.Tot
val pp_name_default:pp_name_t
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x"
val pp_name_default:pp_name_t let pp_name_default:pp_name_t =
false
null
false
FStar.Sealed.Inhabited.seal "x"
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Sealed.Inhabited.seal", "Prims.string" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pp_name_default:pp_name_t
[]
FStar.Reflection.Typing.pp_name_default
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Typing.pp_name_t
{ "end_col": 65, "end_line": 129, "start_col": 34, "start_line": 129 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_ghost t = pack_comp (C_GTotal t)
let mk_ghost t =
false
null
false
pack_comp (C_GTotal t)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.typ", "FStar.Reflection.V2.Builtins.pack_comp", "FStar.Reflection.V2.Data.C_GTotal", "FStar.Reflection.Types.comp" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_ghost : t: FStar.Reflection.Types.typ -> FStar.Reflection.Types.comp
[]
FStar.Reflection.Typing.mk_ghost
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.typ -> FStar.Reflection.Types.comp
{ "end_col": 39, "end_line": 296, "start_col": 17, "start_line": 296 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binder_of_t_q t q = mk_binder pp_name_default t q
let binder_of_t_q t q =
false
null
false
mk_binder pp_name_default t q
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.Typing.mk_binder", "FStar.Reflection.Typing.pp_name_default", "FStar.Reflection.Types.binder" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binder_of_t_q : t: FStar.Reflection.Types.term -> q: FStar.Reflection.V2.Data.aqualv -> FStar.Reflection.Types.binder
[]
FStar.Reflection.Typing.binder_of_t_q
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> q: FStar.Reflection.V2.Data.aqualv -> FStar.Reflection.Types.binder
{ "end_col": 53, "end_line": 293, "start_col": 24, "start_line": 293 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bool_ty = pack_ln (Tv_FVar bool_fv)
let bool_ty =
false
null
false
pack_ln (Tv_FVar bool_fv)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_FVar", "FStar.Reflection.Typing.bool_fv" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bool_ty : FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.bool_ty
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 39, "end_line": 535, "start_col": 14, "start_line": 535 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subst = list subst_elt
let subst =
false
null
false
list subst_elt
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Reflection.Typing.subst_elt" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subst : Type0
[]
FStar.Reflection.Typing.subst
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type0
{ "end_col": 26, "end_line": 197, "start_col": 12, "start_line": 197 }
Prims.Tot
val b2t_fv:R.fv
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let b2t_fv : R.fv = R.pack_fv b2t_lid
val b2t_fv:R.fv let b2t_fv:R.fv =
false
null
false
R.pack_fv b2t_lid
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Typing.b2t_lid" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val b2t_fv:R.fv
[]
FStar.Reflection.Typing.b2t_fv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.fv
{ "end_col": 37, "end_line": 558, "start_col": 20, "start_line": 558 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u_max u1 u2 = pack_universe (Uv_Max [u1; u2])
let u_max u1 u2 =
false
null
false
pack_universe (Uv_Max [u1; u2])
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.V2.Builtins.pack_universe", "FStar.Reflection.V2.Data.Uv_Max", "Prims.Cons", "Prims.Nil" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u_max : u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> FStar.Reflection.Types.universe
[]
FStar.Reflection.Typing.u_max
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> FStar.Reflection.Types.universe
{ "end_col": 49, "end_line": 538, "start_col": 18, "start_line": 538 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv)
let tm_prop =
false
null
false
let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_FVar", "FStar.Reflection.Types.fv", "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.prop_qn" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tm_prop : FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.tm_prop
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 29, "end_line": 543, "start_col": 13, "start_line": 541 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unit_exp = constant_as_term C_Unit
let unit_exp =
false
null
false
constant_as_term C_Unit
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.constant_as_term", "FStar.Reflection.V2.Data.C_Unit" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unit_exp : FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.unit_exp
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 38, "end_line": 531, "start_col": 15, "start_line": 531 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bool_fv = pack_fv bool_lid
let bool_fv =
false
null
false
pack_fv bool_lid
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.bool_lid" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bool_fv : FStar.Reflection.Types.fv
[]
FStar.Reflection.Typing.bool_fv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.fv
{ "end_col": 30, "end_line": 534, "start_col": 14, "start_line": 534 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
let constant_as_term (v: vconst) =
false
null
false
pack_ln (Tv_Const v)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Data.vconst", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Const", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val constant_as_term : v: FStar.Reflection.V2.Data.vconst -> FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.constant_as_term
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: FStar.Reflection.V2.Data.vconst -> FStar.Reflection.Types.term
{ "end_col": 54, "end_line": 530, "start_col": 34, "start_line": 530 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ln_comp (c:comp) = ln'_comp c (-1)
let ln_comp (c: comp) =
false
null
false
ln'_comp c (- 1)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.comp", "FStar.Reflection.Typing.ln'_comp", "Prims.op_Minus", "Prims.bool" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ln_comp : c: FStar.Reflection.Types.comp -> Prims.bool
[]
FStar.Reflection.Typing.ln_comp
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
c: FStar.Reflection.Types.comp -> Prims.bool
{ "end_col": 38, "end_line": 858, "start_col": 23, "start_line": 858 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ]
let close_comp_typ' (c: comp_typ) (x: var) (i: nat) =
false
null
false
fst c, subst_term (snd c) [ND x i]
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Reflection.V2.Data.var", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.term", "FStar.Pervasives.Native.fst", "FStar.Reflection.Types.typ", "FStar.Reflection.Typing.subst_term", "FStar.Pervasives.Native.snd", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil", "FStar.Pervasives.Native.tuple2" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val close_comp_typ' : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.close_comp_typ'
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
{ "end_col": 38, "end_line": 992, "start_col": 2, "start_line": 992 }
Prims.Tot
val close_term_vs (vs: list var) (t: term) : term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t
val close_term_vs (vs: list var) (t: term) : term let close_term_vs (vs: list var) (t: term) : term =
false
null
false
__close_term_vs 0 vs t
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.__close_term_vs" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val close_term_vs (vs: list var) (t: term) : term
[]
FStar.Reflection.Typing.close_term_vs
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
vs: Prims.list FStar.Reflection.V2.Data.var -> t: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 24, "end_line": 1045, "start_col": 2, "start_line": 1045 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let freevars_comp_typ (c:comp_typ) = freevars (snd c)
let freevars_comp_typ (c: comp_typ) =
false
null
false
freevars (snd c)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Reflection.Typing.freevars", "FStar.Pervasives.Native.snd", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.typ", "FStar.Set.set", "FStar.Reflection.V2.Data.var" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val freevars_comp_typ : c: FStar.Reflection.Typing.comp_typ -> FStar.Set.set FStar.Reflection.V2.Data.var
[]
FStar.Reflection.Typing.freevars_comp_typ
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
c: FStar.Reflection.Typing.comp_typ -> FStar.Set.set FStar.Reflection.V2.Data.var
{ "end_col": 53, "end_line": 1003, "start_col": 37, "start_line": 1003 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty
let fstar_env_fvs (g: R.env) =
false
null
false
lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.lookup_fvar", "FStar.Reflection.Typing.unit_fv", "FStar.Pervasives.Native.Some", "FStar.Reflection.Typing.tm_type", "FStar.Reflection.Typing.u_zero", "FStar.Reflection.Typing.bool_fv", "FStar.Reflection.Typing.b2t_fv", "FStar.Reflection.Typing.b2t_ty", "Prims.logical" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions //
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fstar_env_fvs : g: FStar.Reflection.Types.env -> Prims.logical
[]
FStar.Reflection.Typing.fstar_env_fvs
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> Prims.logical
{ "end_col": 38, "end_line": 1741, "start_col": 2, "start_line": 1739 }
Prims.Tot
val namedv_uniq (x: namedv) : var
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq
val namedv_uniq (x: namedv) : var let namedv_uniq (x: namedv) : var =
false
null
false
(inspect_namedv x).uniq
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.namedv", "FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__uniq", "FStar.Reflection.V2.Builtins.inspect_namedv", "FStar.Reflection.V2.Data.var" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val namedv_uniq (x: namedv) : var
[]
FStar.Reflection.Typing.namedv_uniq
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Reflection.Types.namedv -> FStar.Reflection.V2.Data.var
{ "end_col": 27, "end_line": 178, "start_col": 4, "start_line": 178 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tun = pack_ln Tv_Unknown
let tun =
false
null
false
pack_ln Tv_Unknown
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Unknown" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tun : FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.tun
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 28, "end_line": 132, "start_col": 10, "start_line": 132 }
Prims.Tot
val open_with_var (x: var) (i: nat) : subst
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i]
val open_with_var (x: var) (i: nat) : subst let open_with_var (x: var) (i: nat) : subst =
false
null
false
[open_with_var_elt x i]
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Data.var", "Prims.nat", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.open_with_var_elt", "Prims.Nil", "FStar.Reflection.Typing.subst" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt =
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val open_with_var (x: var) (i: nat) : subst
[]
FStar.Reflection.Typing.open_with_var
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Reflection.Typing.subst
{ "end_col": 67, "end_line": 307, "start_col": 44, "start_line": 307 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None
let maybe_uniq_of_term (x: term) =
false
null
false
match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V2.Builtins.inspect_ln", "FStar.Reflection.Types.namedv", "FStar.Pervasives.Native.Some", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Typing.namedv_uniq", "FStar.Reflection.V2.Data.term_view", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_uniq_of_term : x: FStar.Reflection.Types.term -> FStar.Pervasives.Native.option FStar.Reflection.V2.Data.var
[]
FStar.Reflection.Typing.maybe_uniq_of_term
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Reflection.Types.term -> FStar.Pervasives.Native.option FStar.Reflection.V2.Data.var
{ "end_col": 13, "end_line": 206, "start_col": 2, "start_line": 204 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binder_sort (b:binder) = (inspect_binder b).sort
let binder_sort (b: binder) =
false
null
false
(inspect_binder b).sort
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.binder", "FStar.Reflection.V2.Data.__proj__Mkbinder_view__item__sort", "FStar.Reflection.V2.Builtins.inspect_binder", "FStar.Reflection.Types.typ" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binder_sort : b: FStar.Reflection.Types.binder -> FStar.Reflection.Types.typ
[]
FStar.Reflection.Typing.binder_sort
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Reflection.Types.binder -> FStar.Reflection.Types.typ
{ "end_col": 25, "end_line": 181, "start_col": 2, "start_line": 181 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q
let binder_qual (b: binder) =
false
null
false
let { qual = q } = inspect_binder b in q
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.binder", "FStar.Reflection.Types.typ", "FStar.Reflection.V2.Data.aqualv", "Prims.list", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.ppname_t", "FStar.Reflection.V2.Data.binder_view", "Prims.precedes", "FStar.Reflection.V2.Builtins.inspect_binder" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binder_qual : b: FStar.Reflection.Types.binder -> FStar.Reflection.V2.Data.aqualv
[]
FStar.Reflection.Typing.binder_qual
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Reflection.Types.binder -> FStar.Reflection.V2.Data.aqualv
{ "end_col": 42, "end_line": 184, "start_col": 28, "start_line": 183 }
Prims.Tot
val bv_index (x: bv) : var
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bv_index (x:bv) : var = (inspect_bv x).index
val bv_index (x: bv) : var let bv_index (x: bv) : var =
false
null
false
(inspect_bv x).index
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.bv", "FStar.Reflection.V2.Data.__proj__Mkbv_view__item__index", "FStar.Reflection.V2.Builtins.inspect_bv", "FStar.Reflection.V2.Data.var" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bv_index (x: bv) : var
[]
FStar.Reflection.Typing.bv_index
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Reflection.Types.bv -> FStar.Reflection.V2.Data.var
{ "end_col": 24, "end_line": 174, "start_col": 4, "start_line": 174 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_subst_n (n:nat) = L.map (shift_subst_elt n)
let shift_subst_n (n: nat) =
false
null
false
L.map (shift_subst_elt n)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.nat", "FStar.List.Tot.Base.map", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.shift_subst_elt", "Prims.list" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_subst_n : n: Prims.nat -> x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
[]
FStar.Reflection.Typing.shift_subst_n
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> x: Prims.list FStar.Reflection.Typing.subst_elt -> Prims.list FStar.Reflection.Typing.subst_elt
{ "end_col": 53, "end_line": 199, "start_col": 28, "start_line": 199 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let var_as_bv (v:nat) = pack_bv (make_bv v)
let var_as_bv (v: nat) =
false
null
false
pack_bv (make_bv v)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.nat", "FStar.Reflection.V2.Builtins.pack_bv", "FStar.Reflection.Typing.make_bv", "FStar.Reflection.Types.bv" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; }
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val var_as_bv : v: Prims.nat -> FStar.Reflection.Types.bv
[]
FStar.Reflection.Typing.var_as_bv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.nat -> FStar.Reflection.Types.bv
{ "end_col": 43, "end_line": 270, "start_col": 24, "start_line": 270 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sort_t = FStar.Sealed.Inhabited.sealed tun
let sort_t =
false
null
false
FStar.Sealed.Inhabited.sealed tun
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Sealed.Inhabited.sealed", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.tun" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sort_t : Type0
[]
FStar.Reflection.Typing.sort_t
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type0
{ "end_col": 46, "end_line": 134, "start_col": 13, "start_line": 134 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pp_name_t = FStar.Sealed.Inhabited.sealed "x"
let pp_name_t =
false
null
false
FStar.Sealed.Inhabited.sealed "x"
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Sealed.Inhabited.sealed", "Prims.string" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x []
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pp_name_t : Type0
[]
FStar.Reflection.Typing.pp_name_t
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type0
{ "end_col": 49, "end_line": 128, "start_col": 16, "start_line": 128 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_total t = pack_comp (C_Total t)
let mk_total t =
false
null
false
pack_comp (C_Total t)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.typ", "FStar.Reflection.V2.Builtins.pack_comp", "FStar.Reflection.V2.Data.C_Total", "FStar.Reflection.Types.comp" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_total : t: FStar.Reflection.Types.typ -> FStar.Reflection.Types.comp
[]
FStar.Reflection.Typing.mk_total
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.typ -> FStar.Reflection.Types.comp
{ "end_col": 38, "end_line": 295, "start_col": 17, "start_line": 295 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unit_fv = pack_fv unit_lid
let unit_fv =
false
null
false
pack_fv unit_lid
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.unit_lid" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unit_fv : FStar.Reflection.Types.fv
[]
FStar.Reflection.Typing.unit_fv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.fv
{ "end_col": 30, "end_line": 532, "start_col": 14, "start_line": 532 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
let mk_let ppname (e1: R.term) (t1: R.term) (e2: R.term) =
false
null
false
R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.pp_name_t", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Let", "Prims.Nil", "FStar.Reflection.Typing.mk_simple_binder" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i)))
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_let : ppname: FStar.Reflection.Typing.pp_name_t -> e1: FStar.Reflection.Types.term -> t1: FStar.Reflection.Types.term -> e2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.mk_let
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ppname: FStar.Reflection.Typing.pp_name_t -> e1: FStar.Reflection.Types.term -> t1: FStar.Reflection.Types.term -> e2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 66, "end_line": 303, "start_col": 2, "start_line": 303 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unit_ty = pack_ln (Tv_FVar unit_fv)
let unit_ty =
false
null
false
pack_ln (Tv_FVar unit_fv)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_FVar", "FStar.Reflection.Typing.unit_fv" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unit_ty : FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.unit_ty
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 39, "end_line": 533, "start_col": 14, "start_line": 533 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u_zero = pack_universe Uv_Zero
let u_zero =
false
null
false
pack_universe Uv_Zero
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_universe", "FStar.Reflection.V2.Data.Uv_Zero" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u_zero : FStar.Reflection.Types.universe
[]
FStar.Reflection.Typing.u_zero
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.universe
{ "end_col": 34, "end_line": 537, "start_col": 13, "start_line": 537 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v))
let var_as_term (v: var) =
false
null
false
pack_ln (Tv_Var (var_as_namedv v))
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Data.var", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Var", "FStar.Reflection.Typing.var_as_namedv", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; }
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val var_as_term : v: FStar.Reflection.V2.Data.var -> FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.var_as_term
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: FStar.Reflection.V2.Data.var -> FStar.Reflection.Types.term
{ "end_col": 60, "end_line": 291, "start_col": 26, "start_line": 291 }
Prims.Tot
val open_with_var_elt (x: var) (i: nat) : subst_elt
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x)))
val open_with_var_elt (x: var) (i: nat) : subst_elt let open_with_var_elt (x: var) (i: nat) : subst_elt =
false
null
false
DT i (pack_ln (Tv_Var (var_as_namedv x)))
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Data.var", "Prims.nat", "FStar.Reflection.Typing.DT", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Var", "FStar.Reflection.Typing.var_as_namedv", "FStar.Reflection.Typing.subst_elt" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val open_with_var_elt (x: var) (i: nat) : subst_elt
[]
FStar.Reflection.Typing.open_with_var_elt
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Reflection.Typing.subst_elt
{ "end_col": 43, "end_line": 306, "start_col": 2, "start_line": 306 }
Prims.Tot
val mk_simple_binder (pp_name: pp_name_t) (ty: term) : simple_binder
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty}
val mk_simple_binder (pp_name: pp_name_t) (ty: term) : simple_binder let mk_simple_binder (pp_name: pp_name_t) (ty: term) : simple_binder =
false
null
false
pack_binder ({ ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty })
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.pp_name_t", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Builtins.pack_binder", "FStar.Reflection.V2.Data.Mkbinder_view", "FStar.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Reflection.V2.Data.simple_binder" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty}
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_simple_binder (pp_name: pp_name_t) (ty: term) : simple_binder
[]
FStar.Reflection.Typing.mk_simple_binder
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
pp_name: FStar.Reflection.Typing.pp_name_t -> ty: FStar.Reflection.Types.term -> FStar.Reflection.V2.Data.simple_binder
{ "end_col": 20, "end_line": 150, "start_col": 4, "start_line": 146 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n)
let shift_subst_elt (n: nat) =
false
null
false
function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.nat", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.DT", "Prims.op_Addition", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Typing.NT", "FStar.Reflection.Typing.ND" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_subst_elt : n: Prims.nat -> _: FStar.Reflection.Typing.subst_elt -> FStar.Reflection.Typing.subst_elt
[]
FStar.Reflection.Typing.shift_subst_elt
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> _: FStar.Reflection.Typing.subst_elt -> FStar.Reflection.Typing.subst_elt
{ "end_col": 26, "end_line": 195, "start_col": 30, "start_line": 192 }
Prims.Tot
val make_namedv_with_name (s: pp_name_t) (n: nat) : namedv_view
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; }
val make_namedv_with_name (s: pp_name_t) (n: nat) : namedv_view let make_namedv_with_name (s: pp_name_t) (n: nat) : namedv_view =
false
null
false
{ ppname = s; uniq = n; sort = sort_default }
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.pp_name_t", "Prims.nat", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.V2.Data.namedv_view" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; }
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val make_namedv_with_name (s: pp_name_t) (n: nat) : namedv_view
[]
FStar.Reflection.Typing.make_namedv_with_name
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Reflection.Typing.pp_name_t -> n: Prims.nat -> FStar.Reflection.V2.Data.namedv_view
{ "end_col": 24, "end_line": 281, "start_col": 2, "start_line": 279 }
Prims.Tot
val var_as_namedv (v: nat) : namedv
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; }
val var_as_namedv (v: nat) : namedv let var_as_namedv (v: nat) : namedv =
false
null
false
pack_namedv ({ uniq = v; sort = sort_default; ppname = pp_name_default })
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.nat", "FStar.Reflection.V2.Builtins.pack_namedv", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.Typing.pp_name_default", "FStar.Reflection.Types.namedv" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; }
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val var_as_namedv (v: nat) : namedv
[]
FStar.Reflection.Typing.var_as_namedv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: Prims.nat -> FStar.Reflection.Types.namedv
{ "end_col": 3, "end_line": 289, "start_col": 2, "start_line": 285 }
Prims.Tot
val zip2prop (#a #b: _) (f: (a -> b -> Type0)) (xs: list a) (ys: list b) : Type0
[ { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False
val zip2prop (#a #b: _) (f: (a -> b -> Type0)) (xs: list a) (ys: list b) : Type0 let rec zip2prop #a #b (f: (a -> b -> Type0)) (xs: list a) (ys: list b) : Type0 =
false
null
false
match xs, ys with | [], [] -> True | x :: xx, y :: yy -> f x y /\ zip2prop f xx yy | _ -> False
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.l_True", "Prims.l_and", "FStar.Reflection.Typing.zip2prop", "FStar.Pervasives.Native.tuple2", "Prims.l_False" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zip2prop (#a #b: _) (f: (a -> b -> Type0)) (xs: list a) (ys: list b) : Type0
[ "recursion" ]
FStar.Reflection.Typing.zip2prop
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: b -> Type0) -> xs: Prims.list a -> ys: Prims.list b -> Type0
{ "end_col": 14, "end_line": 61, "start_col": 2, "start_line": 58 }
Prims.Tot
val fold_left_dec (#a #b: _) (acc: a) (l: list b) (f: (a -> x: b{x << l} -> a)) : Tot a (decreases l)
[ { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f
val fold_left_dec (#a #b: _) (acc: a) (l: list b) (f: (a -> x: b{x << l} -> a)) : Tot a (decreases l) let rec fold_left_dec #a #b (acc: a) (l: list b) (f: (a -> x: b{x << l} -> a)) : Tot a (decreases l) =
false
null
false
match l with | [] -> acc | x :: xs -> fold_left_dec (f acc x) xs f
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total", "" ]
[ "Prims.list", "Prims.precedes", "FStar.Reflection.Typing.fold_left_dec" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l)
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fold_left_dec (#a #b: _) (acc: a) (l: list b) (f: (a -> x: b{x << l} -> a)) : Tot a (decreases l)
[ "recursion" ]
FStar.Reflection.Typing.fold_left_dec
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
acc: a -> l: Prims.list b -> f: (_: a -> x: b{x << l} -> a) -> Prims.Tot a
{ "end_col": 41, "end_line": 46, "start_col": 2, "start_line": 44 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u_succ u = pack_universe (Uv_Succ u)
let u_succ u =
false
null
false
pack_universe (Uv_Succ u)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.V2.Builtins.pack_universe", "FStar.Reflection.V2.Data.Uv_Succ" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u_succ : u117: FStar.Reflection.Types.universe -> FStar.Reflection.Types.universe
[]
FStar.Reflection.Typing.u_succ
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
u117: FStar.Reflection.Types.universe -> FStar.Reflection.Types.universe
{ "end_col": 40, "end_line": 539, "start_col": 15, "start_line": 539 }
Prims.Tot
val subst_var (v: namedv) (s: subst) : term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v)
val subst_var (v: namedv) (s: subst) : term let subst_var (v: namedv) (s: subst) : term =
false
null
false
match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv ({ inspect_namedv v with uniq = k })))) | Some (ND _ i) -> let bv = pack_bv ({ sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i }) in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.namedv", "FStar.Reflection.Typing.subst", "FStar.Reflection.Typing.find_matching_subst_elt_var", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.maybe_uniq_of_term", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Var", "FStar.Reflection.V2.Builtins.pack_namedv", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__sort", "FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__ppname", "FStar.Reflection.V2.Data.namedv_view", "Prims.precedes", "FStar.Reflection.V2.Builtins.inspect_namedv", "Prims.nat", "FStar.Reflection.V2.Data.Tv_BVar", "FStar.Reflection.Types.bv", "FStar.Reflection.V2.Builtins.pack_bv", "FStar.Reflection.V2.Data.Mkbv_view", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.subst_elt" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subst_var (v: namedv) (s: subst) : term
[]
FStar.Reflection.Typing.subst_var
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
v: FStar.Reflection.Types.namedv -> s: FStar.Reflection.Typing.subst -> FStar.Reflection.Types.term
{ "end_col": 27, "end_line": 256, "start_col": 2, "start_line": 243 }
Prims.Tot
val make_bv (n: nat) : bv_view
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; }
val make_bv (n: nat) : bv_view let make_bv (n: nat) : bv_view =
false
null
false
{ ppname = pp_name_default; index = n; sort = sort_default }
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.nat", "FStar.Reflection.V2.Data.Mkbv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.Typing.pp_name_default", "FStar.Reflection.V2.Data.bv_view" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val make_bv (n: nat) : bv_view
[]
FStar.Reflection.Typing.make_bv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> FStar.Reflection.V2.Data.bv_view
{ "end_col": 22, "end_line": 261, "start_col": 2, "start_line": 259 }
Prims.Tot
val __close_term_vs (i: nat) (vs: list var) (t: term) : Tot term (decreases vs)
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i]
val __close_term_vs (i: nat) (vs: list var) (t: term) : Tot term (decreases vs) let rec __close_term_vs (i: nat) (vs: list var) (t: term) : Tot term (decreases vs) =
false
null
false
match vs with | [] -> t | v :: vs -> subst_term (__close_term_vs (i + 1) vs t) [ND v i]
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total", "" ]
[ "Prims.nat", "Prims.list", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.subst_term", "FStar.Reflection.Typing.__close_term_vs", "Prims.op_Addition", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val __close_term_vs (i: nat) (vs: list var) (t: term) : Tot term (decreases vs)
[ "recursion" ]
FStar.Reflection.Typing.__close_term_vs
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
i: Prims.nat -> vs: Prims.list FStar.Reflection.V2.Data.var -> t: FStar.Reflection.Types.term -> Prims.Tot FStar.Reflection.Types.term
{ "end_col": 52, "end_line": 1042, "start_col": 2, "start_line": 1039 }
Prims.Tot
val extend_env_l (g: env) (bs: bindings) : env
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t
val extend_env_l (g: env) (bs: bindings) : env let rec extend_env_l (g: env) (bs: bindings) : env =
false
null
false
match bs with | [] -> g | (x, t) :: bs -> extend_env (extend_env_l g bs) x t
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "FStar.Reflection.Typing.bindings", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Types.term", "Prims.list", "FStar.Reflection.Typing.binding", "FStar.Reflection.Typing.extend_env", "FStar.Reflection.Typing.extend_env_l" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val extend_env_l (g: env) (bs: bindings) : env
[ "recursion" ]
FStar.Reflection.Typing.extend_env_l
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> bs: FStar.Reflection.Typing.bindings -> FStar.Reflection.Types.env
{ "end_col": 53, "end_line": 1025, "start_col": 4, "start_line": 1023 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let true_bool = pack_ln (Tv_Const C_True)
let true_bool =
false
null
false
pack_ln (Tv_Const C_True)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Const", "FStar.Reflection.V2.Data.C_True" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val true_bool : FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.true_bool
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 41, "end_line": 546, "start_col": 16, "start_line": 546 }
Prims.Tot
val eq2 (u: universe) (t v0 v1: term) : term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
val eq2 (u: universe) (t v0 v1: term) : term let eq2 (u: universe) (t v0 v1: term) : term =
false
null
false
let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_App", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Reflection.V2.Data.Q_Implicit", "FStar.Reflection.V2.Data.Tv_UInst", "Prims.Cons", "Prims.Nil", "FStar.Reflection.Types.fv", "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.eq2_qn" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq2 (u: universe) (t v0 v1: term) : term
[]
FStar.Reflection.Typing.eq2
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
u122: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> v0: FStar.Reflection.Types.term -> v1: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 6, "end_line": 555, "start_col": 3, "start_line": 550 }
Prims.Tot
val eqtype_lid:R.name
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eqtype_lid : R.name = ["Prims"; "eqtype"]
val eqtype_lid:R.name let eqtype_lid:R.name =
false
null
false
["Prims"; "eqtype"]
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.Cons", "Prims.string", "Prims.Nil" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eqtype_lid:R.name
[]
FStar.Reflection.Typing.eqtype_lid
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.name
{ "end_col": 45, "end_line": 544, "start_col": 26, "start_line": 544 }
Prims.Tot
val b2t_lid:R.name
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let b2t_lid : R.name = ["Prims"; "b2t"]
val b2t_lid:R.name let b2t_lid:R.name =
false
null
false
["Prims"; "b2t"]
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.Cons", "Prims.string", "Prims.Nil" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val b2t_lid:R.name
[]
FStar.Reflection.Typing.b2t_lid
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.name
{ "end_col": 39, "end_line": 557, "start_col": 23, "start_line": 557 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let false_bool = pack_ln (Tv_Const C_False)
let false_bool =
false
null
false
pack_ln (Tv_Const C_False)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Const", "FStar.Reflection.V2.Data.C_False" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val false_bool : FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.false_bool
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 43, "end_line": 547, "start_col": 17, "start_line": 547 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ln (t:term) = ln' t (-1)
let ln (t: term) =
false
null
false
ln' t (- 1)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.Typing.ln'", "Prims.op_Minus", "Prims.bool" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ln : t: FStar.Reflection.Types.term -> Prims.bool
[]
FStar.Reflection.Typing.ln
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> Prims.bool
{ "end_col": 28, "end_line": 857, "start_col": 18, "start_line": 857 }
Prims.Tot
val elaborate_pat (p: pattern) (bs: list R.binding) : Tot (option (term & list R.binding)) (decreases p)
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None
val elaborate_pat (p: pattern) (bs: list R.binding) : Tot (option (term & list R.binding)) (decreases p) let rec elaborate_pat (p: pattern) (bs: list R.binding) : Tot (option (term & list R.binding)) (decreases p) =
false
null
false
match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let p, i = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b :: bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total", "" ]
[ "FStar.Reflection.V2.Data.pattern", "Prims.list", "FStar.Reflection.V2.Data.binding", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.vconst", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Const", "FStar.Reflection.Types.fv", "FStar.Pervasives.Native.option", "FStar.Reflection.V2.Data.universes", "Prims.bool", "FStar.Reflection.Typing.fold_left_dec", "Prims.precedes", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.elaborate_pat", "FStar.Reflection.V2.Data.Tv_App", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Implicit", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Reflection.V2.Data.Tv_FVar", "FStar.Sealed.sealed", "FStar.Reflection.V2.Data.ppname_t", "FStar.Reflection.V2.Data.Tv_Var", "FStar.Reflection.Typing.binding_to_namedv" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elaborate_pat (p: pattern) (bs: list R.binding) : Tot (option (term & list R.binding)) (decreases p)
[ "recursion" ]
FStar.Reflection.Typing.elaborate_pat
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: FStar.Reflection.V2.Data.pattern -> bs: Prims.list FStar.Reflection.V2.Data.binding -> Prims.Tot (FStar.Pervasives.Native.option (FStar.Reflection.Types.term * Prims.list FStar.Reflection.V2.Data.binding))
{ "end_col": 13, "end_line": 1144, "start_col": 2, "start_line": 1128 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i)
let open_comp_typ' (c: comp_typ) (x: var) (i: nat) =
false
null
false
fst c, subst_term (snd c) (open_with_var x i)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Reflection.V2.Data.var", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.term", "FStar.Pervasives.Native.fst", "FStar.Reflection.Types.typ", "FStar.Reflection.Typing.subst_term", "FStar.Pervasives.Native.snd", "FStar.Reflection.Typing.open_with_var", "FStar.Pervasives.Native.tuple2" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val open_comp_typ' : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.open_comp_typ'
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> i: Prims.nat -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
{ "end_col": 47, "end_line": 998, "start_col": 2, "start_line": 998 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0
let close_comp_typ (c: comp_typ) (x: var) =
false
null
false
close_comp_typ' c x 0
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Typing.close_comp_typ'", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val close_comp_typ : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.close_comp_typ
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
{ "end_col": 23, "end_line": 995, "start_col": 2, "start_line": 995 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0
let open_comp_typ (c: comp_typ) (x: var) =
false
null
false
open_comp_typ' c x 0
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Typing.open_comp_typ'", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val open_comp_typ : c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
[]
FStar.Reflection.Typing.open_comp_typ
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
c: FStar.Reflection.Typing.comp_typ -> x: FStar.Reflection.V2.Data.var -> FStar.Stubs.TypeChecker.Core.tot_or_ghost * FStar.Reflection.Types.term
{ "end_col": 22, "end_line": 1001, "start_col": 2, "start_line": 1001 }
Prims.Tot
val mk_if (scrutinee then_ else_: R.term) : R.term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)])
val mk_if (scrutinee then_ else_: R.term) : R.term let mk_if (scrutinee then_ else_: R.term) : R.term =
false
null
false
pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)])
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Match", "FStar.Pervasives.Native.None", "FStar.Reflection.Types.match_returns_ascription", "Prims.Cons", "FStar.Reflection.V2.Data.branch", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.pattern", "FStar.Reflection.V2.Data.Pat_Constant", "FStar.Reflection.V2.Data.C_True", "FStar.Reflection.V2.Data.C_False", "Prims.Nil" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_if (scrutinee then_ else_: R.term) : R.term
[]
FStar.Reflection.Typing.mk_if
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
scrutinee: FStar.Reflection.Types.term -> then_: FStar.Reflection.Types.term -> else_: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 67, "end_line": 985, "start_col": 2, "start_line": 984 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
let rename_bindings bs x y =
false
null
false
FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.var", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Typing.rename" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rename_bindings : bs: Prims.list (_ * FStar.Reflection.Types.term) -> x: FStar.Reflection.V2.Data.var -> y: FStar.Reflection.V2.Data.var -> Prims.list (_ * FStar.Reflection.Types.term)
[]
FStar.Reflection.Typing.rename_bindings
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: Prims.list (_ * FStar.Reflection.Types.term) -> x: FStar.Reflection.V2.Data.var -> y: FStar.Reflection.V2.Data.var -> Prims.list (_ * FStar.Reflection.Types.term)
{ "end_col": 84, "end_line": 1019, "start_col": 29, "start_line": 1019 }
Prims.Tot
val close_term_bs (bs: list binding) (t: term) : term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t
val close_term_bs (bs: list binding) (t: term) : term let close_term_bs (bs: list binding) (t: term) : term =
false
null
false
close_term_vs (List.Tot.map fst bs) t
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Reflection.Typing.binding", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.close_term_vs", "FStar.List.Tot.Base.map", "FStar.Reflection.V2.Data.var", "FStar.Pervasives.Native.fst" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val close_term_bs (bs: list binding) (t: term) : term
[]
FStar.Reflection.Typing.close_term_bs
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: Prims.list FStar.Reflection.Typing.binding -> t: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 39, "end_line": 1048, "start_col": 2, "start_line": 1048 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bindings = list binding
let bindings =
false
null
false
list binding
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Reflection.Typing.binding" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bindings : Type0
[]
FStar.Reflection.Typing.bindings
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type0
{ "end_col": 27, "end_line": 1018, "start_col": 15, "start_line": 1018 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binding = var & term
let binding =
false
null
false
var & term
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binding : Type0
[]
FStar.Reflection.Typing.binding
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type0
{ "end_col": 24, "end_line": 1017, "start_col": 14, "start_line": 1017 }
Prims.Tot
val is_non_informative_fv (f: fv) : bool
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f)
val is_non_informative_fv (f: fv) : bool let is_non_informative_fv (f: fv) : bool =
false
null
false
is_non_informative_name (inspect_fv f)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.fv", "FStar.Reflection.Typing.is_non_informative_name", "FStar.Reflection.V2.Builtins.inspect_fv", "Prims.bool" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_non_informative_fv (f: fv) : bool
[]
FStar.Reflection.Typing.is_non_informative_fv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: FStar.Reflection.Types.fv -> Prims.bool
{ "end_col": 40, "end_line": 1036, "start_col": 2, "start_line": 1036 }
Prims.Tot
val refl_bindings_to_bindings (bs: list R.binding) : list binding
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs
val refl_bindings_to_bindings (bs: list R.binding) : list binding let refl_bindings_to_bindings (bs: list R.binding) : list binding =
false
null
false
L.map (fun b -> b.uniq, b.sort) bs
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Reflection.V2.Data.binding", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.tuple2", "Prims.nat", "FStar.Reflection.Types.typ", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__uniq", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__sort", "FStar.Reflection.Typing.binding" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val refl_bindings_to_bindings (bs: list R.binding) : list binding
[]
FStar.Reflection.Typing.refl_bindings_to_bindings
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: Prims.list FStar.Reflection.V2.Data.binding -> Prims.list FStar.Reflection.Typing.binding
{ "end_col": 36, "end_line": 1054, "start_col": 2, "start_line": 1054 }